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Reed and Simon, Chapter 1

Abstract Measure Theory

Section 1.2:  Metric and normed linear spaces

Page 10, top:  In the displayed set of equations, the fact that   lim x  = x  if x   n np_
² ² ² ² Äp_n n

x follows from problem 8 as indicated, since

lim lim lim
8Ä_ 8Ä_ 8Ä_

8 8 8mB m œ mB  !m œ .ÐB ß !Ñ œ .ÐBß !Ñ œ mBmß

where we are using the fact that the norm can be viewed as a distance from 0.

Page 11, bottom:  The Bolzano-Weierstrass theorem states, in one form, that any bounded
sequence in  has a convergent subsequence.‘n

Section I.3:  The Lebesgue integral

Page 13, top:   Since the space C[a,b] is incomplete, we can complete it, according to theorem
I.3 above.  However, this completion is an abstract normed linear space, and not necessarily a
space of functions.  The question here is whether this abstract space which is the completion
can be identified in a one to one way with some collection of functions on [a,b].
 Once we identify this completed space as a collection of functions, then we will be able
to define the integral on this larger space (whatever collection of functions this new larger
space turns out to be).  The way to do this is to notice that the integral on the original space
C[a,b] defined a norm,  f  = |f(x)| dx.  Thus if this norm is simply extended to the larger² ² 1

b
a

'
space of functions (all norms can be extended to the completion of the space they are defined
on), it will define an integral on the larger space.  In the end, this “larger space" turns out to be
the space of measurable functions, and the norm or integral is the Lebesgue integral - a very
economical and quick way to define the Lebesgue integral.
 The question left then is whether it is indeed possible to identify the completion space
as a space of functions.  At this point the space L [a,b]  (the space of integrable measurable1

functions) is defined in an independent way, and then by general arguments it is shown that
L [a,b] is indeed the completion we discussed above.1

Page 14, top:  The function  turns out to be nothing more than Lebesgue measure.  If a set is.
an interval [a,b], its Lebesgue measure is just its size (or length), namely b - a.  However, if a
set is more complicated, its size is more difficult to define.  This is where the definition of
Lebesgue measure comes in.

Page 15, middle:  Proving Theorem I.8 takes some technicalities, and at this point, we can
take the theorem as given.  This theorem establishes the basic properties of Lebesgue measure.
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Page 16, middle:  The proposition is a standard one in measure theory, but its proof has not
been included in the text.  This is true of most of the of the theorems stated in this section, as
well as a number of assertions regarding measure theory.

Page 18, Theorem I.12:  “so pass to a subsequence with

(1)      f  - f   2 . ”² ² Ÿn n+1 1
-n

 The reason there is a subsequence which satisfies this condition is as follows.  Since
Ö ×   ²f  is Cauchy, we know that for any k, there is an N such that for n,m  N, f  -n n
f 2 .  Thus choose the subsequence (i.e., a subset of the original sequence) to be f , f ,m n n

-k² Ÿ 1 2

f , , where n  represents the original index of the first function in our subsequence, nn 1 23 á
represents the index of the second function in our subsequence, and so on.  Thus we see that
we can label the subsequence by f .  How should we choose this subsequence?  We canÖ ×n i=1i

_

do it as follows.  Choose n  first such that for n,m n , we have f  - f 2 .  Then1 1 n m
-1  ² ² Ÿ

choose n  such that for n,m  n , we have f  - f 2 .  In general then, choose the2 2 n m
-2  ² ² Ÿ

sequence of numbers n , n , n ,  such that for n, m  n , we have f  - f 2 .  Now1 2 3 i n m
-iá   ² ² Ÿ

pick a subsequence of the original one, consisting only of f's with the indices n , n , n ,  .1 2 3 á
The new subsequence has the form f , f , f ,  .  Notice now that by our assumption, fn n n n1 2 3 1á ²
- f  2  by the above, since n ,n  n .  For the same reason, f  - f 2 , and inn 1 2 1 n n

-1 -2
2 2 3² Ÿ   ² ² Ÿ

general f  - f 2 .  The book uses a somewhat different notation for this² ² Ÿn n
-i

i i+1

subsequence, namely, the subsequence we are calling f , the book is calling f  (there isÖ × Ö ×n ni

not much possibility for confusion using the book's notation, even though this is also what the
original sequence was called; essentially the book is replacing the original sequence by the
subsequence).  Thus the above statement is equivalent to (1), which is used in the book.

Page 18, middle:  “Thus |g (x)|<  a.e. "_ _ á
 This follows from the standard fact in measure theory that any function with a finite
integral must be finite almost everywhere.  The fact that the functions f (x) convergem
pointwise a.e. to a function f(x) follows from the fact that the sequence defining f (x) ism
absolutely convergent to a function (as established just above), so that it must be convergent to
some function.
 The fact that f   f in L  is just the statement thatn

1Ä

² ² Äp_f  - f  = |f  - f|dx    0,nn n'
which follows from the dominated convergence theorem.
 The corollary follows from the proof of the theorem.

Section I.4:  Abstract measure theory

Page 19, bottom:  The fact that the limits from the right and left of the function  exist!
follows from the fact that any bounded increasing (or decreasing) sequence of numbers a  hasn
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a limit.  The same is true for a function (x) which is increasing (or decreasing) but bounded.!
Namely, under this assumption,  lim  (x) and  lim  (x) exist.

x y x yÅ Æ
! !

 The fact that one can always extend the given measure on open intervals to all Borel
sets is a standard fact of measure theory.

Page 20, top:  “In particular, ([a,b]) = (b + 0) - (a - 0).". ! !!

 This follows from the fact that [a,b] = (a,b) a b .  Thus Ö ×  Ö ×

(2)    ([a,b]) = ((a,b)) + ( a ) + ( b ).. . . .! ! ! !Ö × Ö ×

However, note that

  ( a ) =    lim  ((a- ,a+ )) = (a+0) - (a-0),
0

. . % % ! !
%

! !Ö ×
Æ

and similarly for ( b ).  Thus by (2) we have.! Ö ×

  ([a,b]) = ((a,b)) + ( a ) + ( b ). . . .! ! ! !Ö × Ö ×

    = ( (b-0) - (a+0)) + ( (a+0) - (a-0)) + ( (b+0)- (b-0))! ! ! ! ! !

    = (b+0) - (a-0).! !

Notice that ( a ) is nonzero if and only if (a+0) - (a-0) 0, i.e., if  is discontinuous at. ! ! !Ö × Á
a.

Page 20, Example 1:
 The easiest way to prove the assertion f dx = f  dx is to prove it first for step' ' ˆ ‰d

dx
!

functions

   f = c! 

k
k;[a ,a ]k k+1 (x),

where a  is a sequence of points in the interval [a,b].  In that case the integralÖ ×k

     f dx = c ( (a ) - (a )),' ! 

k
k k+1 k! !

while

' 'ˆ ‰ ! !f  dx  = c    dx  = c ( (a ) - (a )),d d
dx dx

  

k k
k k k+1 k

a
a

! !k+1

k
! !

where the last equality follows from the fact that the last integral is just a Riemann integral,
whose value we can calculate using the fundamental theorem of calculus.
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Page 21, top:  That is, the numbers in the cantor set are those whose decimal expansions in
base 3 have no 1's in them, e.g., the number .022020020222  would be in the Cantor set.á
The point here is that to show that this set is uncountable, we can identify each number in the
Cantor set with the number which has exactly the same digits, except that every 2 is replaced
by a 1.  Thus the above number would correspond to .011010010111.  Now this can be viewed
as a number in base 2, and notice that we can get every number between 0 and 1 in base 2 this
way.  Thus we have found a one-to-one correspondence between numbers in the Cantor set
and all numbers in the interval [0,1].  This shows that the Cantor set is uncountable, since the
set [0,1] is.

Page 21, middle:  “Extend  by making it continuous."!
 Notice that at this point  is defined on the entire set S, which is easily shown to be!
dense.  There is a basic theorem of analysis (the Tietze extension theorem) which states that
any function which is continuous on a dense subset of a metric space X can be extended to a
continuous function on X.  In this case the dense subset is S, and to see that  as defined on S!
is indeed continuous, it suffices to show that for any x S,    lim  (y) = (x), and lim  (y)

y x y x
−

Å Æ
! ! !

= (x), where here y is of course restricted to be in S.  Let us verify the first statement, since!
the second one follows similarly.
 Notice that since  is monotonically increasing on S, as y  x, (y) increases to some! !Å
limiting value.  We need to show that this limiting value is (x).  Suppose that this were not!
true.  Then as y  x,  (y) would increase to a limiting value L which was less than (x), andÅ ! !
thus there would be no y S such that L< (y)< (x).  Notice now that the range of the− ! !
function  (i.e., the possible values  may take) consists of all numbers of the form k/2 ,! ! n

where n is a positive integer, and 0<k<2  is also an integer.  This forms a dense set in then

interval (0,1).  Thus there is a y S such that (y) lies in any given interval contained in− !
[0,1], which contradicts the assertion that there is no y such that L< (y)< (x).  This! !
contradiction shows that indeed lim  (y) = (x).  This together with lim (y) = (x), which

y x y x Å Æ
! ! ! !

can be proved similarly, shows that  is continuous on S and thus can be extended!
continuously to all of [0,1].
 Notice also that almost everywhere, (x) is just a constant function on some interval I!

which is part of S, so that its derivative  is well-defined, and equal to 0 almost everywhere¨̈!w

(see the illustration).  Finally note that for any interval I = (a,b) making up S, (I) = (b) -. !!

! ! .(a) = 0, since  is constant on I.  From this we conclude that (S) = 0, since S is a!

countable union of such intervals.

Page 22, top:
 Note that a compact set on the real line is one which is closed and bounded.
 In the Definition, it is not difficult to check that a pure point measure is one which has
the property that there is a countable or finite collection of points x  such that ( x ) > 0Ö × Ö ×k k.
for each x , and such that  is 0 on any set not containing any x .  For if there were ank k.
uncountable set of such x , then the set S consisting of all x  would have infinite measure,k k
since the sum of any uncountable collection of positive numbers is infinite.  Clearly also it
must be that a pure point measure  is 0 on any set not containing any x , just by the. k
definition of the pure point measure.
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Page 22, Theorem I.13:
 The fact that the decomposition is unique follows from the fact that in any such
decomposition of ,  is non-zero only on all pure points of , which form a unique set.. . .pp

Page 23, top:
 The integral in this abstract setting can be defined in exactly the same way as it was
defined on the real line earlier, and all of the theorems still hold in this more general setting.

Page 25, top:
 Here (x) (characteristic function) denotes the function which is 1 if x A, and 0 if;A −
x A.Â

Page 25, bottom:
 The material on product measures (from here through the end of section 1.4) is optional,
though interesting.

Page 25, middle:  The material from here through the end of section I.4 (on product
measures) is optional.  It is nevertheless interesting and not very difficult, and so worth
reading if you have the time.

Section I.5:  Two convergence arguments

Page 27, middle:  The inequality in the displayed equation follows from the fact that for any
sequence of numbers a  which has a limit,  for any N > 0,   sup a  lim  a .

 n N   nn n n
 

 
p_

Page 28:  The material from the middle of this page through the end of the chapter is optional.
Again the material is not difficult, and is worth reading if you have the time.
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Reed and and Simon, Chapter 2
Hilbert Spaces

Section II.1:  The geometry of Hilbert space

Page 37, top:  If  = a + bi is a complex number, then its conjugate is defined as a - bi.! ! ´
A function f defined on a vector space is  if f(x + y) = f(x) + f(y), and f( x) =conjugate linear !
!f(x).
 Note also that if  = a + bi is complex, we define | |  = a  + b , and that we can also! ! 2 2 2

write  = | | .!! ! 2

Page 37, bottom:  To show that the vectors (x ,x) x  and x - (x ,x) x  are orthogonal,! !N N

n=1 n=1
n n n n

take their inner product:

 (x ,x) x ,   x - (x ,x) x   =  (x ,x) x ,   x - (x ,x) xŒ  Œ ! ! ! !N N N N

n=1 n=1 n=1 n=1
n n n n n n n n

      =  (x ,x) x ,   x   -  (x ,x) x ,  (x ,x) xŒ  Œ ! ! !N N N

n=1 n=1 n=1
n n n n n n

      =  (x ,x) x ,   x   -  (x ,x) x ,  (x ,x) xŒ  Œ ! ! !N N N

n=1 n=1 m=1
n n n n m m

      =  (x ,x) (x , x)  -  (x ,x) x ,  (x ,x) x! ! !Œ N N N

n=1 n=1 m=1
n n n n m m

      =  |(x ,x)|  -     (x ,x) x ,  (x ,x) x! ! ! a bN N N

n=1 n=1 m=1
n n n m m

2

      =  |(x ,x)|  -     (x ,x) (x ,x) (x ,x )! ! !N N N

n=1 n=1 m=1
n n m n m

2

      =  |(x ,x)|  -     (x ,x) (x ,x) ! ! !N N N

n=1 n=1 m=1
n n m nm 

2 $
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 where  =   is the Kronecker delta function$nm
1 if n = m
0 if n mÁ

      =  |(x ,x)|  -   (x ,x) (x ,x)! !N N

n=1 n=1
n n n

2

       = 0

Note that in the third equality we had to change the index of the second sum in order to
combine the two sums into a single one.

Page 37, top:   Third line:  Note that since the x  are orthonormal, we haven

    (x ,x) x  =   (x ,x) x  ,  (x ,x) x  ² ²! ! !Œ N N N

n=1 n=1 n=1
n n n n n n

2

         =   (x ,x) x  ,  (x ,x) x  Œ ! !N N

n=1 m=1
n n m m

         =     (x ,x) (x ,x) (x ,x )! !N N

n=1 m=1
n m n m

         =     |(x ,x)|! !N N

n=1 m=1
n

2

Page 40, top:  finite dimensional Hilbert spaces
A Hilbert space is finite dimensional if the largest orthonormal set of vectors in the space is
finite.

Page 42, top:  The second equality in the sequence of equations follows from the
parallelogram law, namely:

² ² ² ² ² ² ² ²(y  - x) - (y  - x)  + (y  - x) + (y  - x)  = 2 y  - x  + 2 y  - x .n m n m n m
2 2 2 2

Page 42, bottom:  “ which implies Re(w,y) = 0."á
 This follows from the simple fact that for the parabola at + bt , the parabola crosses the t2

axis if a is not 0.
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Page 43, middle:  “By the continuity of T,  is a closed subspace."a
 This follows from the fact that if x  is a Cauchy sequence in T, then since T isÖ ×n

continuous we have T  lim x  =    lim T(x ) = 0, so that    lim x   is also in , so that  isn n nŠ ‹
p_ p_ p_n n n a a

indeed closed.

Page 43, bottom:  Note that in the equation y = y - x   +  x , it is easy toŠ ‹T(y) T(y)
T(x ) T(x )0 00 0

check that the first group on the right side is in , by applying T to it.a

“If T(x) = (y ,x) also, then "w á
 Note we have

² ²y  - y  = (y  - y ,y  - y )w w w
T T T

2

   = (y ,y ) - (y ,y ) - (y ,y ) - (y ,y )w w w w
T T T T

   = T(y ) - T(y ) - T(y ) - T(y )w w
T T

   = 0.

TOPIC :     A NOTE ON COUNTABLE AND UNCOUNTABLE SETS AND SUMS

Countable and uncountable numbers
 An infinite set A is if it can be put in one to one correspondence with thecountable 
natural numbers  = 1,2,3,4 .  Notice therefore that  itself is countable, and that the set Ö á×
™ of all integers is countable, since we can make the one-to-one correspondence:

1  0Ä
2  1Ä
3  -1Ä
4  2Ä
5  -2Ä
6  3Ä
7  -3Ä
8  4Ä
9  -4Ä

and so on.  Further, through a slightly more complicated argument, we can show that the set 
of all rational numbers (i.e., all numbers expressible as a ratio of two integers) is also
countable.  However, as Cantor showed in the late 19th century, the set  of all real numbers‘
is not countable.  That is, there exists no one to one correspondence between  and .‘ 
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Uncountable sums

 Most infinite sums which are considered are of the form  a .  By definition this means!_
i=1

i

! !_

i=1 i=1
i i

N
 a      lim   a .

N
´

p_

Since these are sums over all natural numbers , such a sum can be written in the form   a . ! 

i
i

−

This is an example of a countable sum, since it is over the set  which is

countable.  Consider now an example of an uncountable sum, say where the index i ranges not
over  but over  or some other uncountable set.  We then have   a  . ‘ ! 

i
i

−‘

What does such a sum mean?  First, any reasonable definition of an  sum whereuncountable
all of the numbers a  are all positive would give an answer of .  Therefore, we say that ani _
uncountable sum converges  the set of a  which are non-zero is much smaller than theonly if i
whole set of a .  Namely, we require that the set of a  which do not vanish is i i countable.
Otherwise the sum is said automatically to diverge.
 Thus, if we have a sum  a  where A is an uncountable set, we will always assume! 

i A i−

that all but a countable number of the a  are zero if the sum is to converge.i
 Note that in Theorem II.6, the sum (II.1) might be over an uncountable set if A is
uncountable, and in this case all but a countable number of the terms are assumed to be 0.

Page 45, bottom:      (x  ,y) x  =     |(x  ,y)|² ²! !n n

j=m+1 j=m+1

2 2
! ! !j j j

This follows from Theorem II.1, where in the statement of the Pythagorean theorem, the
second term on the right side vanishes in this case, since x in this case is given by a finite sum
!n

j=m+1
(x  ,y) x  .! !j j

“Therefore y  is a Cauchy sequence "Ö × án

 Indeed, the sum   |(x  ,y)|  can easily be shown to go to 0 as n,m  ,!n

j=m+1

2
!j Ä _

since the full sum converges.  Since this defines y  - y , we have that y  forms a Cauchyn m nÖ ×
sequence.

“(y - y ,x ) =    lim  y - (x ,y)x , x  "n
w

! ! ! !j jp_  !n

j=1
j j
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 Note that since the inner product is continuous, we have

lim  y - (x ,y)x , x  = y - lim  (x ,y)x , x  = (y - y ,x ) .n np_ p_   ! !n n

j=1 j=1
! ! ! ! ! ! !j j j jj j j

w

Page 46, top:   The second equality in this series follows directly from the Pythagorean
theorem on page 37.

Page 46, middle:   There is a typographical error in this sequence of equalities.  The second
line should read  w  = u  - (v ,u ) v .2 2 1 2 1

Page 47, middle:  “By throwing out some of the x 's "n á
 More precisely, this means that we start with x , x , and throw out x  if it depends on1 2 2
x .  We then look at x , and keep it if it is independent of the previous vectors we have kept,1 3
and throw it out otherwise.  We thus successively look at each vector in our sequence x , andn
throw it out if it is a linear combination of the previous vectors we have kept, and keep it
otherwise.  At the end of this infinite process, we have a collection of vectors in which each
vector is linearly independent of all the previous ones.

 “ the set of finite linear combinations of the y  with rational coefficients is denseá n
in "[á
 This follows from the fact that by theorem (II.6) every y  can be written in the form− [
(II.1) as a countable sum.  Thus y can be arbitrarily well approximated by finite sums of this
form.  Since a finite sum of this form has complex coefficients (x ,y), these coefficients can in!

turn be arbitrarily well approximated by rational complex numbers (complex numbers whose
real and imaginary parts are rational).  Thus any y  can be arbitrarily well approximated− [
by finite sums of the form (II.1), with rational (complex) coefficients.  This says that the set of
such sums is dense in .[
 
“It is easy to show that it is unitary."
 To see that the map is unitary, assume that we have x , x , so that1 2

  x  = (y ,x )  ,  x  = (y ,x )  .h h1 n 1 n 2 n 2 nÖ × Ö ×

Then we have that the inner product of the sequences, as defined in Example 3 of Section II.1,
is

a b !Ö × Ö ×(y ,x )  , (y ,x )   = (y ,x ) (y ,x )n 1 n n 2 n n 1 n 2
n=1

_

     =   (x ,y ) (y ,x )!_
n=1

1 n n 2
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     =     (x ,y ) (y ,x )!_
n,m=1

1 n nm m 2$

     =     (x ,y ) (y ,y ) (y ,x )!_
n,m=1

1 n n m m 2

     =       (x ,y ) (y ,y ) (y ,x )! !_ _

n=1 m=1
1 n n m m 2

     =        (x ,y ) y ,y ) (y ,x )! ! a b_ _

n=1 m=1
1 n n m m 2

     =        (y ,x ) y ,(y ,x )y )! ! a b_ _

n=1 m=1
n 1 n m 2 m

     =      (y ,x ) y ,  (y ,x )y )Œ ! !_ _

n=1 m=1
n 1 n m 2 m

     =     (x ,x )1 2

Thus our  map is indeed unitary.h

Page 48, bottom:
 Theorem II.9:
  To show that the sum given in the statement of the theorem indeed converges in
L  to f(x), we need to show that the system (2 ) e  is a complete orthonormal set (i.e.,2 -1 inx

nÖ ×1 −™

a basis) for  = L .  We know that the set is orthonormal, so we need only show that it is[ 2

complete, i.e., that finite linear combinations of functions in the set (2 ) e  are dense in1 -1 inx
n× −™

[.  The proof that this set is complete starts here with the proof of the claim that the set
C [0,2 ] is dense in  = L [0,2 ].  This fact is then used in the second paragraph of the proof1 2

p 1 [ 1

to complete it.
 Note that we are working in [0,2 ], so that by a periodic function (of period 2 ) what1 1
we mean here is just a function (x) such that (0) = (2 ).9 9 9 1

“But a step function  can be approximated (in L ) by a C [0,2 ] function by "2 1
p 1 á

 If you draw a step function defined somewhere in the interval [0,2 ], then you can see1
that if you draw the ends of the function so that they don't drop abruptly to 0 but instead slant
down at a steep angle, then you have a continuous function which approximates the original
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step function.  This function is still not periodic (that is, its values at the endpoints 0 and 21
still don't match).  To make it periodic, erase the graph of function very near to the point x =
2 , and from the point on the graph of the function where the erasure has started, draw a1
straight line to the point (2 ,a), where a is the height of the original function at 0, i.e., a = f(0).1
This forces the new function to have the same value at 0 and 2 , without making much of a1
change in the original function.  In this way it can be shown that for any original step function
f(x), there is a periodic continuous function which approximates it arbitrarily well (in this case
in the L  metric).2

“To show that (2 ) e   is a complete set we need only show that "Ö × á1 -1/2 inx
-_
_

 Indeed if (e ,g) = 0 implies that g = 0, then this means that the set e  cannot beinx inx
nÖ ×

extended to a larger orthonormal set, since otherwise we could make g a member of this larger
orthonormal set, and still have (e ,g) = 0 without having g = 0.  If the set cannot be extendedinx

to a larger orthonormal set, it must already be a basis.  Thus if we can prove that (e ,g) = 0inx

implies that g = 0, then we will have shown that e  is a basis and we will be finished.Ö ×inx
n

Page 49, top:  “which implies g = 0."
 Indeed, if an element g is orthogonal to every element in a dense set in , it is not[
difficult to show by approximation that it is orthogonal to every element in .[

Note:  Section II.4 is optional reading, and will not be covered in class.

Note: this material will be covered after the material in chapter 4; this section gives
applications of the Riesz representation theorem.

Section II.5:  Ergodic Theory

Page 55, top:  The phase space  is usually a vector space such that each vector corresponds>
to a single physical state of the system being described.  For example, if the system consists of
a mass moving back and forth on a spring (along the real line  say), we define x  to be the‘ 1
position of the mass along , and x  to be the velocity, so that at any moment the position and‘ 2
velocity of the mass would correspond to the point (x ,x ) in the plane.  There is now a unique1 2
correspondence between points in the plane (which is  in this case) and states of the system.>
If the system consisted of masses in motion (again on the line say), then we would definetwo 
x  and x  to be the position and velocity of the first mass, and x  and x  to be the position and1 2 3 4
velocity of the second mass, so that the entire state of the system would be described by the
points (x ,x ,x ,x ), i.e., a point in a four dimensional space which in this case makes up .1 2 3 4 >
Or we might have two particles in three dimensions, in which case we would have the
coordinates x ,x ,x  and x ,x ,x  to describe the components of position and velocity of the1 2 3 4 5 6
first particle, and coordinates x ,x ,x  for position of the second particle, and x ,x ,x  for7 8 9 10 11 12
the velocity of the second particle.  Thus such a system would be described by coordinates
(x ,x , ,x ), i.e., a point in a 12 dimensional space .  Thus in general  is a vector space1 2 12á > >
whose points are in one-to-one correspondence with the possible states of the physical system.
 Note an unfortunate coincidence of notation:  The letter  denotes both a timeX
( , and an operator  - don't confuse these.X − Ñ X‘ >
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“Obviously, T  = T T .”t+s t s
 Note that T  is the operation which takes a point x in  corresponding to a physicalt+s >
state at time 0 and maps this point to the resulting physical state at time t + s.  However, taking
a physical state x at time 0 to the resulting state at a later time t + s is equivalent to first taking
the state to the resulting state at time t (i.e., by applying T ), and then taking that to thet
resulting state s time units later (by applying T ).  Thus we have that for a physical state x ats
time 0, we have

   T x = T (x) = T (T (x)) = T T xt+s t+s t s t s

for each x , so that T  = T T .− > t+s t s

“observables of the system  are functions on phase space"á
 Thus for example, if we want to consider the energy E of the physical system, since E
depends on the physical state of the system, it depends on the numbers (x ,x ,x , ) defined1 2 3 á
above, which define the state of the physical system.  Thus in fact the energy E is given by E =
E(x ,x ,x , ) as a function of the variables x  describing the system.  More generally, for any1 2 3 iá
other physical observable , we can write  as a function of the physical state of the system,b b
so that  = f(x ,x , ,x ) is a function defined on the space .  This is why functions f on b > >1 2 ná
are important here.

Page 55, middle:    The integral

(1) lim (1/T) f(T x) dt 
Tp_

' T
0 t

represents the following.  For concreteness, let x  be a physical state of the system, and− >
assume that f(x) represents the energy of the system in state x.  Then first note that if x is a
state of the system at time t = 0, T x is the corresponding physical state t units of time later.t

Thus f(T x) represents the energy of the system t units of time later.  Therefore (1/T) f(T x)t t
T

0
'

dt is the f(T x) over all t from 0 to T (note that T is being used in twoaverage value of t
different senses in this equation).
 In ergodic theory, one goal is to prove things like the assertion that the energy of a
physical system approaches a limit as time t goes to .  That is, it is desired to prove the_
assertion that f(T x) approaches some limit as t  .  Sometimes this is either very difficultt Ä _
to prove or not true, and so in those cases a weaker assertion is studied.  Instead of trying to
prove that the energy of the system approaches a limit as t  , one instead tries to showÄ _
that the of the system from time 0 to t approaches a limit as t  .  That is,average energy Ä _

one tries to prove exactly that the limit (1/T) f(T x) dt exists (here the upper limit T of' T
0 t

integration represents time t, and we let it approach ).  This is why such limits are_
interesting.
 Note that the word observable here denotes a quantity like the energy, i.e., a function f
on the phase space .>

“energy is a conserved quantity "á
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 That is, the energy f(T x) at time t is the same for all t, i.e., it is independent of time.t

Page 55, bottom:
 The constant energy surface  is simply the set of physical states x = (x ,x , ,x ) forHE 1 2 ná
which the energy E(x ,x , ) takes on a fixed numerical value E, i.e., such that1 2 á
E(x ,x , ,x ) = E.  The idea here is that even if the limit (1) above is not the same for all1 2 ná
initial conditions x (here f(x) represents any physical observable which depends on the
configuration x), it the same for all initial conditions x which have the same energy E.  Thatis 
is, that it is true for all x in the set .  This limit (1), which depends on f, is denoted by (f).H .E
 To verify the three stated properties of , note that (a) states that if the function f is 1.
(i.e., takes the value 1 for all x), then the average value  must of course also be 1.  The.
second condition (b) of linearity is easy to verify directly, as is (c).
 Finally, a version of the Riesz representation theorem in Chapter IV shows that since .
satisfies properties (a) through (c), it is a , and so there exists apositive linear functional
measure  on  such that.̂ HE

    (f) =  f(w) d (w)^. .'
HE

holds for all continuous functions f defined on .HE

Page 56, top:
 Note that  being the characteristic function of F means that;F

; HF
1 if x F
0 if x F(x) = .  Note also that in this section we are assuming that  is just a −

Â

measure space, and hence so is the subset .  Thus we need to define what we mean by aHE
measurable set in .  In this case, we will define the measurable sets in the same way theHE
Borel sets are defined on the real line, namely as the smallest -field of sets which contain the5
open sets in  (here an open set in  can be defined independently of all of , since  isH H H HE E E
itself a metric space).

Page 56, middle:
 Note that one can verify directly that (x) = (T x), using the above definition of a; ;T F F ss

-1

characteristic function.  This implies therefore that

; ;T F t F t ss
-1 (T w) = (T T w).

As stated, we assume the limit  exists for all continuous .  In addition, iflim
XÄ_

"
X !

X
>' 0ÐX AÑ.> 0

the limit exists when  is a characteristic function, then we have0 œ ÐBÑ;J
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lim lim
XÄ_ XÄ_! !

X X

X J > J = >
" "

X X
ÐX AÑ.> œ ÐX X AÑ.>( (; ;

=
"

œ ÐX AÑ.>
"

X
lim
XÄ_ !

X

J >=( ; (1)

œ ÐX AÑ.>  ÐX AÑ.>  ÐX AÑ.>
" " "

X X X
lim lim lim
XÄ_ XÄ_ XÄ_= X !

X= X= =

J >= J >= J >=( ( (; ; ;

Now note that the maximum of the last integrand is , since the integrand is a characteristic"
function.  Therefore we can bound the middle integral on the last line of (1) above by
multiplying 1 by the length of the interval of integration , i.e.=

(
X

X=

J =>; ÐX AÑ.> Ÿ = † ß1

so that  since is fixed.  The last integral in (1) is also , and welim
XÄ_

"
X X

X=
J >=' ; ÐX AÑ.> œ ! = !

get  letting  (using a change of variables for  in the second equality)ß X Ä _ >

lim lim lim
XÄ_ XÄ_ XÄ_! !

X X X

X J > J >= J >
" " "

X X X
ÐX AÑ.> œ ÐX AÑ.> œ ÐX AÑ.>Þ( ( (; ; ;

=
"

s

+s

 By what has been stated (assuming that what holds above for continuous  also0ÐBÑ
holds for the discontinuous function  we then have;J ÐBÑÑ

lim
XÄ_ !

X

J > J
"

X
ÐX AÑ.> œ ÐAÑ. ÐAÑ œ ÐJÑßs s( (; ; . .

HI

since the integral of a characteristic function of  gives the measure of .  On the other handJ J
we similarly have

lim
XÄ_ !

X

X J > =
""

X
ÐX AÑ.> œ ÐX JÑßs( ; .

=
"

from which we conclude that , i.e, that  is invariant under the. . .s sÐJÑ œ ÐX JÑ=
"

transformation  for all .X ==
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Reed and and Simon, Chapter 3
Banach Spaces

Section 3.1:  Definition and examples

Page 68, top:
 “ the uniform limit of continuous functions is continuous”:á
The uniform limit of a sequence of functions  is a limiting function  such that 0 0 0 Ä 08 8

uniformly, i.e., sup
B

8l0ÐBÑ  0 ÐBÑl !ÞÒ8 Ä _

Page 68, middle:
Remember that when we consider classes of functions like  and  we are not workingP P ß: _

with individual functions  on a measure space, but rather equivalence classes.  Two0ÐBÑ
functions are equivalent, or belong to the same equivalence class, if they differ only on a set of
measure 0.

p. 68, bottom:
The Riesz-Fisher theorem is not proved in the supplemental section, but a proof is in the
exercises.

p. 70, bottom:
 “the norm of  is actually equal to ”:E G
We have by the triangle inequality that E œ E EE Ê8 8

mE m Ÿ mE  Em  mEmÞ8 8

Similarly,

mEm Ÿ mE  Em  mE mÞ8 8

Combining the two,

l mE m  mEm l Ÿ mE  Em !8 8 Ò8 Ä _ , 

so

mEm œ mE m œ GÞlim
8Ä_

8

p. 73, middle:
 “the map which identifies  with its dual  is conjugate linear”[ [‡

Note that if  is a linear functional, the correspondence  given byK K 1Ó

Ø1ß 0Ù œ KÐ0Ñ

is such that if we multiply  by a complex number , we have a new operation on  given by1 0!

Ø 1ß 0Ù œ Ø1ß 0Ù œ KÐ0Ñ œ Ð KÑÐ0Ñß! ! ! !
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where the new linear functional  is defined by the above equation.  Thus multiplicationÐ KÑ!
of  by  corresponds to multiplying  by .  The correspondence is thus conjugate linear, in1 K! !
that constants  on one side of the relationship are replaced by their complex conjugates  on! !
the other side.

“  with norm equal to ”á l lá!
5œ"

_

5-

 Note that

m Ö+ ×m œ m + m Ÿ l+ l l l œ l l mÖ+ ×mÞA - - -5 5 5 5 5 5 5

5œ" 5œ" 5œ"

_ _ _

5

" " " sup (1)

By the definition of the norm of an operator, it follows that , which is the smallestm mA
constant  such thatG

m Ö+ ×m Ÿ GmÖ+ ×mA 5 5 .

Why is this equivalent to the definition of the norm of a linear functional give on the top of p.
72?
 In any case, for all sequences , the norm  satisfiesÖ+ × − - m m5 ! A

m m Ÿ l lÞA -"
5œ"

_

5 (2)

Assume without loss that  is not the 0 functional.  Then, if we consider the sequenceA

Ö+ × œ ß ß ß á ß ß !ß !ß !ß !á
l l l l l l l l

5
" # $ R

" # $ R

- - - -

- - - -

with  non-zero terms followed by all zeroes  (define , then we see thatR œ "Ñ!
!

m Ö+ ×m œ œ l l mÖ+ ×mÞ
l l

A - -
-

-
5 5 5 5

5œ" 5œ"

R R
5

5
| |" "

Thus again by definition of we see thatm mßA

m m   l lÞA -"
5œ"

R

5

Letting  and combining with (2) we seeR Ä _ ß

m m œ l lßA -"
5œ"

_

5

as desired.

p. 74, middle
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“It follows from Theorems III.5 and III.6 that, given , we can find a  so thatB − \- ‡

m m œ " ÐBÑ œ mBm Þ- -\ \‡  and ”

This actually follows from Corollary 2 on page 77.  Namely, we are given an element B − \
and Corollary 2 states that there exists a functional  such thatA − \‡

A AÐBÑ œ m m mBm Ð Ñ\ \‡ 3

Þ ÐBÑ œ ÐBÑÎm m m m œ "ß  By defining , we get that and by (4) we see- A A -\ \‡ ‡

-ÐBÑ œ mBm\ ,

as desired.

“This shows that

mBm œ lBÐ Ñl   mBm˜ ˜ (4)\ \
−\ ßm mŸ"

‡‡

‡

sup
- -

-

á

The last inequality follows from the fact that   Thus we haveB̃Ð Ñ œ ÐBÑÞ- -

sup sup
- - - -−\ ßm mŸ" −\ ßm mŸ"

" \
‡ ‡

lBÐ Ñl œ l ÐBÑl   l ÐBÑl œ mBm ß˜ - - -

where  is referred to on the previous displayed equation as having the properties-"
‡− \

m m œ "ß ÐBÑ œ mBm Þ- -" \ " \‡‡

On the other hand, the previous equation in the text, which states that for all - − \‡

lBÐ Ñl Ÿ mBm m m˜ ,- -\ \‡

which states that, by definition of the norm of a linear functional,

mBm Ÿ mBm Þ˜ \ \‡‡

Combining this with (4 , we obtain the conclusionÑ

mBm œ mBm ß˜ \ \‡‡

as desired.

p. 75, middle
“the extension of  to , call it ”˜ ˜- -] á

There is a typo here; note that  should indeed be ˜] ] Þ

p. 76, top
“We can therefore find a real number  such that "+ á
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We can take the supremum of the left side of the previous displayed equation over all !ß C"
and still have the inequality hold.   Then we can take the infimum of the right side of the
equation over all  without changing the inequality (note the infimum on the right is"ß C#
written with respect to  instead of , which is fine as these are dummy variables.  Then! "ß C ß C
we can find an  between the infimum and the supremum.+

“It may easily be verified that the resulting extension satisfies  for all-̃ÐBÑ Ÿ :ÐBÑ
B − ] Þ˜ ”

This follows from the fact that for any vector , we now have for the new extended˜C  D − ]!
functional  (defined on this extended space as above), first assuming :-̃ !  !

- ! - !- - ! - ! ! -
!

˜ ˜ ˜ (1)ÐC  DÑ œ ÐCÑ  ÐDÑ œ ÐCÑ  + Ÿ ÐCÑ  Ð:ÐC  DÑ  ÐCÑÑ
"” •

œ ÐCÑ  :ÐC  DÑ  ÐCÑ œ :ÐC  DÑ- ! - !

Now assuming , we have similarly!  !

- ! - ! - ! ! -
!

˜ (2)ÐC  DÑ œ ÐCÑ  + Ÿ ÐCÑ  Ð:ÐC  Ð ÑDÑÑ  ÐCÑÑ
"


” •

œ :ÐC  DÑ! .

Note that above we must replace  by  since the sup in the first equation on p. 76 is over! !
positive  only.  Nevertheless, since the sup is over   (as long as they're positive), it is OK! !all
to replace  by  everywhere (in the brackets), making it positive.  Note also that in (2) we! !
use the sup part of the first equation on p. 76, while in (1) we use the inf part.  That's because
! is positive in (1) and negative in (2).


