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1.  Introduction

 This paper is an introduction for the non-expert to the theory of artificial neural
networks as embodied in current versions of feedforward neural networks.  There is a lot of
neural network theory which is not mentioned here, including the large body of work on
natural neural nets (i.e., the theory of neural networks in animals).  For some excellent
foundational work on this topic, see [G1, G2].  We also include very recent work [KP]
regarding what we consider to be the next important step in the theory of neural networks
and their complexity, namely informational complexity theory for neural nets.
 In some sense this paper, being presented at a conference on condensed matter physics,
follows a tradition which David Hestenes began at a conference on the maximum entropy
method in honor of Edward Jaynes, the father of this technique, which has been so
successful in the study and applications of condensed matter physics.  In his contribution to
the proceedings of this conference [He], which we highly recommend, Hestenes presented a
powerful argument for the viewpoint of Grossberg (see references above) in his
explanations of numerous properties of natural neural networks in a set of equations known
as the which form a dynamical system with interesting properties inGrossberg equations, 
its own right, studied extensively by Hirsch and others.  This however is as much as we will
say about work in the area of natural neural nets.  For a general presentation of the theory of
artificial neural networks, including methods and approaches beyond the scope of this
paper, see [Ha].
 The current emphasis on neural networks as a venue toward the eventual ideal of
artificial intelligent systems had its newest genesis in the mid-1980's, when it was realized
that the classical von Neumann architecture (i.e., standard model of computation) was not
coming as close as some had hoped to true artificial intelligence, at the pace hoped for.  The
vision of the 1960's, when the current field of artificial intelligence became popular, had
been that certainly by the year 2000, von Neumann architectures would be capable of
coming close to simulating tasks which are called “intelligent.”  At this point, around 1985-
87, workers in many fields, including computer science, mathematics, physics, biology, and
psychology, began an interdisciplinary effort which continues to the present.  A large
conference in San Diego with some 1500 participants in the “summer of networks” of 1987
topped off a very rapid increase in interest in this area, which had previously been
marginalized due to a variety of circumstances dating to the 1960's and earlier.
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 The impetus for this “switch” of the hopes of many workers to neural nets came largely
from the “existence proof” which neural nets provide.  Specifically, working neural
networks performing intelligent tasks certainly exist in the world today as natural neural
systems.
 Applications of neural nets have been studied in physics, biology, psychology,
engineering, and mathematics, and working artificial networks have been built to make
decisions on mortgage loan applications, identify properties of satellite photographs,
balance a broom on its end, and a large number of other varied tasks.
 In this paper, we first introduce notions related to feedforward networks, including those
related to their most modern incarnations, so-called radial basis function (RBF) networks.
We include a more detailed mathematical analysis of the approximation properties of such
RBF networks.  Complexity issues for networks are covered in detail in the last several
sections, including very recent results of the authors in these areas.  The reader will
hopefully be convinced of the utility of the work in complexity (as well as see examples of
how neural networks would work in a practical setting) in several examples given at the
end.

2.  Feedforward networks

 A basic component of many neural nets, both natural and artificial, is the feedforward
network.   A basic such network has the structure depicted in the following diagram:

fig. 1
 



3

Here a layer is the usual term for a vertical row of neurons.  There is full connectedness
between the  and  layer, i.e., every neuron in the  layer has a connection� � b � �!� !� !�

feeding  into every neuron in the  layer.  These are not all shown in fig. forforward � b �!�

reasons of clarity.  Thus neurons in each layer influence neurons in the successive layer.
The first layer contains the “input”, i.e., we control activations of its neurons.  For example,
the first layer might represent the “retina” of a visual system, which obtains information
which will be fed forward into and processed in further layers.  The last layer contains
“output”, i.e., its activations provide a desired output that the neural network provides in
response to input in first layer.
 Funahashi [Fu] and Hecht-Nielsen, among others, have shown that if we desire a
network which is able to take an arbitrary input pattern in the first layer, and provide an
arbitrary desired output pattern in the last layer, all that is necessary is 3 layers:

fig. 2

More specifically, general i-o functions can be approximated in a general class of error
norms using networks of this type.
 Henceforth we consider only 3 layer networks.  We define to be the activation levelx   i

(either chemical or electrical potential) of the neuron in first layer,  to be the activationi yth 
i

level of the corresponding neuron in second layer, and to be the corresponding activation q  i

level in the third layer.  In addition, we define  to be the strength of the connectionv 
ij

(weight) from the  neuron in layer 1 to  neuron in layer 2, to be the weight from thej i w  !� th  
ij

j i  th th neuron in layer 2 to in layer 3.
 As an example, the first layer might be the retina and  might be proportional to the%�

illumination level at the neuron labeled   This is the input layer - in this case light shines% 
i .

on retina and activates it.  The last layer might represent what we would call a speech center
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(neurons ultimately connected to a vocal device), and its pattern  of neuron activationsqi

corresponds to verbal description about to be delivered of what is seen in first layer.

3. Neuron interaction rule

 Neurons in one layer will be assumed to influence those in next layer in almost a linear
way:

y  = H v  x  - ,i

k

j=1
ij j i
   : ;� �

i.e., activation  is a linear function of activations  in previous layer aside from the& Á�  x 
j

modulating function ; here  is a constant for each / �i
 i.

 The function has on biological grounds traditionally been assumed a sigmoid:H 

fig 3

Note that has a finite upper bound, so that response cannot exceed some fixed constant./

The activation in third layer has the form which is a linear function of the 's.q  = w  y ,  yi ij j j

n

j=1

�
 Our initial goal is to show here that we can get an arbitrary desired output pattern  ofqi

activations on last layer as a function of inputs  in the first layer.  We can impose somexi

vector notation here -

x =  

x

x

x {z }z }
y |

1
  

 
2

k
 

%
Å

will denote the vector of neuron activations in layer, while
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V  =  

v
v

v

i

i1
  

 
i2

ik
 

x {z }z }
y |Å

denotes vector of connection weights from the neurons in first layer to the neuron in thei  th

second layer.
 Now the activation  of the second layer is:yi

y  =  H v  x  -  = H V x - .i i

k

j=1

   i
j i: ;�

��
� �² h ³

The activation  in the third layer is q q  = w  y  =  W y.i i ij j

n

j=1

i� h

Thus we wish to show the activation pattern

q =  

q
q

q

x {z }z }
y |

1
  

 
2

k
 
Å

on the last layer (output) can be made an arbitrary function of the input activation pattern

x =  

x

x

x {z }z }
y |

1
  

 
2

k
 

%
Å

À

 Note the activation the of neuron in layer 3 is:ith 

q  = w  y   =  w  H V x - .i ij j ij j

n n

j=1 j=1

j� � ² h ³ ²� 3 1À ³

Thus our question is: if  is defined by (3 1) (i.e., input determines output through a q = f x² ³ À
neural network equation), is it possible to approximate any function in this form?
 Speaking in the context of the above example, if the first layer represents the retina, then
if any input-output (i-o) function can be approximately encoded in the form 3 1  we can² À ³
require that if represents the visual image of a chair (vector of pixel intensitiesx 
corresponding to chair), then  represent the neural pattern of intensities corresponding to�
articulation of the words “this is a chair.”
 Mathematically, we are asking, given any function , can we approximatef x² ³ ¢ ¦l lk k

f x² ³ with arbitrary precision by a function  of the form (3 1) using various measures of�²%³ À
c

error, or norms (here  represents -tuples of real numbers).  What norms might we bel� �
interested in?  Some are:
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P� c �P ~ O�²%³ c �²%³O
c c

P� c �P ~ �%O�²%³ c �²%³O
c c

P� c �P ~ �%O�²%³ c �²%³O
c c

*

%�

�
�

�

sup
l�

o�
�

or more generally, for any fixed  , where� � �Á P� c �P ~ �%O�²%³ c �²%³O
c c

�
�

�°�8 9

above sup denotes supremum.  These norms are denoted as ( )   and finally theC  L  Llk Á Á�Á �

3 3 � P�P � BÀ� �
� norms, respectively.  In general  denotes the class of functions  such that 

We say that a function  approximates another function  well in  if  is small.  A� � 3 P� c �P
c c�

sequence  converges to a function  in  if ¸� ¹ � 3 P� c �P �À� � ��~�

B � 
� ¦ B

 It can be shown that the components of the above questions can be decoupled to the
extent that they are equivalent to the case where there is only one Indeed, if any desiredq.  
i-o function can be approximated in systems with one output neuron, such single-output
systems can be easily concatenated into larger ones (with more outputs) which have
essentially arbitrary approximable input-output properties.  In any case, the configuration
we assume is therefore:

fig 4
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Thus from (3.1):

q = w  y   =  w  H V x - .� �n n

j=1 j=1
j j j j

j² h ³ ²� 3 2À ³

The fundamental question then is:  Can any function    be approximately f x : ² ³ lk ¦ l

represented exactly in this form?
 A partial answer has come in the form of the solution to Hilbert's 13th problem, which
was constructed by Kolmogorov in 1957.  He proved that continuous function f ¢ lk ¦ l

can be represented in the form

  ( ) ( ) f x  =  x  .� �8 92k+1 k

j=1 i=1
j ij i� �

where  are continuous functions, and  are monotone and independent of .  That is, �j ij ij, f f� �

can be represented as sum of functions each of which depends just on a sum of single
variable functions.

4.  Some results on approximation

 In 1987, Hecht-Nielsen showed that if we have 4 layers,

fig 5

then any continuous function  can be approximated within  in  norm by such af x C² ³ �

network. The caveat here is that we do not yet have the techniques which will allow us to
know how many neurons it will take in the middle (so-called hidden) layers to accomplish
the job.
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 In 1989 Funahashi [Fu] proved:

Theorem:  Let ( ) be a non-constant, bounded, and monotone increasing function.  Let  H x K
be a compact (closed and bounded) subset of , and ( ) be a real-valued continuouslk f x
function on :K

fig 6

Then for arbitrary  > 0, there exist real constants and vectors  such that� w , , j j� = �

f x  = w  H V x - ( ) ( ) 4.1)�n

j=1
j j

j h ²�

satisfies

� � � ² Àf x  - f x   .( ) ( ) 4 2* � ³

This is the statement that functions of the form (4 1) are  in the Banach space ( ) ofÀ dense C K
continuous functions on  defined in the  norm.2 � h �, *

Corollary:  Functions of the form (4.1) are dense in for all .  That is,L K  p, 1 p < p² ³ � B
given any such , and an input-output function ( ) in ( ) i.e. such that < , andp f x L K ,  |f| dx p p
 B

� > 0, there exists an   of the form (4.1) such that , i.e.,f f - f� � �p �

8 9�
K

p|f - f |  dx <  
�°�

�
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The caveat of this Corollary, as indicated earlier is that we may need a very large hidden
layer to accomplish this approximation within .  An important practical question naturally�

is, how large will the hidden layer need to be to get such an approximation  (e.g., how�

complex need a neural network be so that it is able to recognize a picture of a chair)?  Some
of these issues are touched in the brief discussion of complexity issues [KP] at the end of
this paper.

5.  Newer activation functions

 Recall ( ) is assumed to be a sigmoid function having the form of fig. 3.  The reasonH x  
for this choice is biological plausibility in natural networks.  There are newer ideas which
have been studied.  For example, what is possible with a choice of a localized ( ): H x

fig 7

Such a choice, though not as biologically plausible, may work better.  For example,  couldH
be a wavelet   Poggio, Girosi [GP] and others have pointed out that if ( )  cos  on theÀ  H x  = x
interval [ , , we getc µ� �

f x  = w V x - .( )  cos( ) 5.1�n

j=1
j j

j h ²� ³

Now choose ( ) where  are nonnegative integers, and  = 0.  ThenV  = m = m ,m ,m , mj
1 2 3 i jÃ �

f x  = w  cos m x .( ) ( )� 

m
m h

Now if

K = x ,x , ,x  - x i x¸ Ã � � �( )  for  = 2,3,... and 0 , 1 2 k i¢ � ¹� � 1 �
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then this is just a multivariate Fourier cosine series in .  Continuous functions can bex
approximated by multivariate Fourier series, and, as is well-known, we know how to find
the  very easily:wj

w  =  f(x)  m x dx,j
�

²� ³
h

� �
� cos

where  again denotes dimension.  We can build the corresponding network immediately,�
since we know what the weights need to be if we know the i-o function.  This is a very
powerful concept as well as technique.
 Notice that ( ) here has the form H x  

fig. 8

which is nothing like a sigmoid.  Note there are questions of stability, however - if we make
a small mistake in , then cos  may vary wildly   Nevertheless, in machine tasks thisx m xh À
may not be as critical as in biological systems.

6.  Radial basis functions

 Recall that we have for the single neuron output system:

q = w  y   =  w  H V x -  = f x� �n n

j=1 j=1
j j j j

j( ) ( ).h �

We will now consider newer families of activation functions and neural network protocols.
Instead of each neuron in hidden layer summing its inputs, in artificial systems there is no
reason why it cannot take more complicated functions of inputs, for example a function
which is a bump defined on the variable % ~ ²% ÁÃ Á % ³À� �

 Assume now that  is a fixed function in the form of a “bump” which is the/
multidimensional analog of figure 7:
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fig 9

and assume (for some fixed choice of ' Á ³ ¢� �

y  = y x  = 

y  = y x  = 

1 1

2 2

( )

( )

/

/

6 7
6 7
% c '

% c '

�

�

�

�

and in general

y  = y (x) = i i /6 7% c '�
�

Now again) we give the dependence of the output neuron  which we had earlier:² �

q = w  y (x) = w .� � 6 7  

i i
i i i/

%c '�
�

The goal now is to represent the i-o function  as a sum of bump functions.  There aref
mathematical and phenomenological rationales for the choice of such a representation.  The
mathematical ones are discussed below, and rooted in approximation theory.  It turns out
that there are strong optimality properties demonstrable when the choice of  is a so-called/
radial basis function RBF( ) Such functions, depending on the goal and the context, canÀ
simply be “bumps” such as the generic function in figure 9, or more specifically certain
Green's functions, for example of the Laplace operator plus a constant.  The details of the
optimality of such choices are given in [PG1, PG2, MM, MB].
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fig 10

There has been justifiably great interest in the representation of functions in this form in the
mathematical and neural network communities (see references above).
 The essential phenomenological rationale for the use of radial basis functions and more
generally “bumps” of the form in figure 9 rests in the realm of the purpose of feedforward
neural networks.  Specifically, such a network is typically a “feature extractor”, i.e., a
machine which, given input , has an output  which depends on whether  contains a% � %
given “feature” or not.  Intuitively, very often such a feature, as represented by the
corresponding i-o function , is representable as a region of inputs  in which  has large� % �
values (i.e., the location of the “bump”, or equivalently, the location in the input space of
inputs which contain the object of  recognition, be it a chair in a photograph or some other
feature in stock market data), while it would be assumed that outside the region containing
this feature  would have small values.  Hence the notion of “bump”.  More generally, we�
might expect that the region of inputs we wish to recognize may be a union of regions of
this form, meaning that in that case  would be a sum of such bumps.  More fundamentally�
however, it can be proved in the context of mathematical approximation theory that under
very general assumptions,  i-o function  can be represented as a sum of such bumps.any �
 In terms of the neural network itself, each neuron  in the hidden layer has a givenyi

activation function ( ) which depends on activations ( ) in the first layer.y x  x = x , ,xi 1 kÃ
Weights connect the middle layer to the output layer (a single neuron); see fig. 4.  The w  i

output is
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q =  w y x�n

i=1
i i ( )

this should be a good approximation to the desired i-o function ( )q = f x .
 The best choice of weights  is attained by choosing  large if there is large “overlap”w wi i

between the desired i-o function ( ) and the given function ( )  (i.e., ( ) is f x  y x  =  y xi i/4 5%c'�

�

large where ( ) is large):f x

fig 1�

Thus  measures the “overlap” between ( ) and the activation function ( ).w f x y xi i

 Usually there is one neuron  which has the highest overlap ; in adaptive resonancey wi i

theory, this neuron is the “winner” and all other neurons are suppressed to have weight 0.
Here however, each neuron provides a weight  according to its “degree of matching” withwi

the desired ( ).f x
 Tomaso Poggio [Po], in his paper “A theory of how the brain might work” (1990) gives
plausible arguments that something like this “matching" of desired i-o function against
bumps like ( ) may be at work in the brain (he discusses examples in facial recognitiony xi

and motor tasks in cerebellum).

7.  Mathematical analysis of RBF networks:
 Mathematically, the class of functions we obtain from the above-described network has
the form:
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q x  = w  ,( ) 7 2� 6 7k

i=1
i / ²

% c '�
�

À ³

where is a fixed function and  are constants which may vary.  The class of2 ¸zi Á�¹
functions ( ) of this form will be called  The question we will address, this time inq x S (K).  0

a mathematically more precise way, is, What functions ( ) can be approximated byf x
f x( ) ?~ �²%³
 Park and Sandberg [PS] answered this question (other versions of related questions have
appeared previously as well):

Theorem (Park and Sandberg (1993)):  Assuming is integrable,  is dense in ( ) if/  S L0
r1 l

and only if  0
/ £ 

Recall the definition (below (4.2)) of a dense collection of functions.  In particular the
collection  is dense in  if for any function  in  and number  there: 3 ² ³ � 3 ² ³ � ��

� � � �l l �

exists a  in the class  such that�²%³ :
c

�

P� c �P ~ �%O�²%³ c �²%³O � À
c c

� � �

Thus any i-o function ( ) in  (i.e., any integrable function) can be approximated to anf x L1

arbitrary degree of accuracy by a function of the form (7.2) in  norm.  We now provide aL1

sketch of the proof of the result of Park and Sandberg.

Sketch of Proof:   CAssume that  0.  Let  denote continuous compactly supported
/ £ c

(i.e., non-zero on a bounded set) functions on .  Then any function in  can beld  L1

approximated arbitrarily well in  norm by functions in , i.e.,   is dense in ; this is aL  C C L1 1
c c

standard fact of functional analysis.
 Thus to show that  functions can be arbitrarily well approximated in norm byL L1 �

functions in  it is sufficient to show that  functions can be well approximated in  byS , C  L0
1

c

functions in i.e.` that for any function  in  there exists  in  such thatS , 0 � * � 3
c

�
�

P� c �P �
c

� � �.  Choose  > 0 and a function in  such that1   C/c c

� / / � - < .c 1 1�

Let the constant Define , so that a = .  (x) = a (x)�

/
 �(x) dx c� /

� ��(x) dx = a (x) dx = /� 1.

Define A basic lemma we use here but do not prove is the fact that for� � �� �
(x) =   (x/ ).  �

� h

�� in *�,

� �f - * f  � � ��� ¦ Á 0

where  denotes convolution.i
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 Thus functions of the form  can be arbitrarily well approximated by * ; therefore itf f� ���
is sufficient to show *  can be approximated by functions in  arbitrarily well. We now�� f S� 0

write (for  below sufficiently large):;

( )( ) ( ) ( ) ( ) ( ) ( )� � � � � � � � �� � �* f  =  - x  f x  dx    -  f ,
2T
n� �

´c;Á;µ

� � 8 9
�

� #n i c i

n

i=1

r

�

r

where  are all points of the form�i

[ ],-T + , -T + , ,  -T +  
2i T 2i T 2i T

n n n
1 2 r

Ã

so that we have one point in each sub-cube of size 2 .  The convergence of RiemannT/n
sums to their corresponding integrals implies that  pointwise; then we can usev    * fnn ¦SB �� �

the dominated convergence theorem of real analysis to show that convergence is also in L1À
Thus we can approximate  by .  Therefore we need to show that  can be�� i �� v vn n

approximated by S .0

 To this end, we have

v ( ) =  
n  d  

f 2T  - 
n r r 

n

0

c i i
r

c
�

� � �

� � � �

�

/ h
/ Â� 
 8 9

r

( )( )
( ) �

we then replace  by  (which we have shown can be made arbitrarily close), and we then/ /c

have something in completing the proof of the forward implication in the theorem.S  0

 The converse of the theorem (only if part) is easy to show and is omitted here.

 There is a second theorem for density in the  norm.  Define now toL S  2
1 ~ : ²/³�

consist of all functions of the form (( ) ) (the variable scale  a x - z /� 

i
i i i/ � �� can depend on �

here).

We then have the following theorems, also in [PS]:

Theorem:  Assuming that is square integrable, then ( ) is dense in ( ) if and only/ /  S L1
r2 l

if  is non-zero on some set of positive measure./

Theorem:  Assume that  is integrable and continuous and (0) (i.e., the set of  which/ / -1 %
/ ¸ � ¹ $maps to 0) does not contain any set of the form 0  for any vector .  Then  ist : t S$ 1

dense in ( ) with respect to the sup norm for any compact set .C W  W

 This is an indication of what types of approximation results are possible in neural
network theory.  For a detailed analysis of approximation by neural nets, we refer the reader
to [MM1-3; Mh1,2].
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8.  More general RBF networks

 We now consider more general networks which we believe will have impact in future
neural network architectures.  Such networks are still of an RBF nature, but are also less
constrained.  In such networks neurons in first layer influence those in second (hidden) layer
by:

y  = i �  !
�~�

�

�� �# . % À

 The function  is generally a radial basis function centered at :        . ²%³ ~ .²%Á ' ³ '� � �

           '�

fig 12

or

:

fig 13
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in higher dimension.
 We want a network which will approximate a desired i-o function , i.e., so that�²%³

�²%³ � ²%³ ~ . Àq  = w y  w x� �  !n n

j=1 j=1
j j� �

Results regarding approximation have been obtained by a number of workers, including
Funahashi, Hecht-Nielsen, as well as Park and Sandberg [PS], whose result is quoted above.

9. Neural complexity of networks 

An important issue touched on above is: How large a hidden layer do we need to get
approximation within  (e.g., how complex is it to build a neural network which recognizes�

a chair)?  The questions in this area can be formulated as follows.

Question 1.  Given a fully known i-o function  and an error , what is the smallest size � ��

of a hidden layer in a neural net which can approximate  within a given error?�

Work has been done on this question by Chui, Li, Mhaskar, Micchelli, as well as Barron
[Ba; CLM1, 2; MM1-3; Mh1,2].  The issues here are closely related to approximation
theory.

10.  Informational complexity of networks

Question 2: Given an unknown function  with a set of examples (information)�
¸ % Á �²% ³³¹ �W W( , what is the smallest number of examples  for which it is theoretically� � �~�

�

possible to estimate  within given error (regardless of the number of hidden units)?�

 This is the entre into the area of learning theory, a very large one in the neural network
community.  It is what we consider to be the second half of complexity theory for neural
networks, and has been given far less treatment than the issue of neural complexity
mentioned above [KP].  Learning problems are partial information issues: the network is
given a number of examples of how it must compute, and it must generalize from this
partial information.  Thus we want to reconstruct the i-o function  from examples� �²% ³ÀW�
 The issues here are closely related to continuous complexity theory [TWW; TW1,2].
The essential question is, What do we do with limited information - this is at the center of
learning theory for neural nets, and has close connections with the information issues
arising from computer science mentioned in the above references.

Definition:  Information of the form  is called 5� � ²�²% ³ÁÃ Á �²% ³³W W� � standard
information about .  We define�

card²5³ ~ �
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to be the cardinality of information.
 
 One assumption standardly made is that prior knowledge of  places it into a set  of� -�

functions which is convex and  balanced (i.e., if is in the set then  is as well). More� c�
precisely, the complexity-theoretic formulation is:  Given an unknown function  in ,�²%³ -W �

and information {( , what is the minimum cardinality of the& ~ 5� ~ % Á �²% ³³¹W W� � �~�

�

operator  (i.e., smallest amount  of information) for which error  will occur, if we use5 � �

the best possible algorithm for reconstructing ?�
 Formally we denote the reconstruction algorithm by

� l:  �
�¦ - À

Remarks:

1. The best possible algorithm is a mapping  which maps information  into the center of� &
the set  consisting of choices of  which are consistent with the information 5 ²&³ q - � &Àc�

�

2. Then the radius  of this set becomes the smallest possible error of an�²5 ²&³ q - ³c�
�

algorithmic approximation , denoted , and the supremum�²5²�³³ �²5Á &³

�²5³ ~ �²5Á &³
&

sup .

is denoted as worst case error, sometimes also called the radius of information

Theorem:  We have the error
�²5Á &³ ~ �²5 ²&³ q - ³c�

�

Taking suprema over :�

Corollary:  The maximum error for information  is given by�²5³ 5

�²5³ � �²5Á &³ ~ �²5 ²&³ q - ³ � �²5³sup sup
& &

c�
�

Some conclusions are:

1.  If information is only limitation and arbitrary functions can be reconstructed by our RBF
network, then issues of function reconstruction reduce to the geometric ones involving radii
given by the above theoremÀ

2. In particular the maximum possible error of the best possible algorithm for reconstructing
�  is the radius of a set in a normed linear space.
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11.  Informational and neural complexity

Definition:  Define minimal error with information of cardinality  to be� �²�³ �
inf

card²5³~�

�²5³.  Define the informational -complexity of function approximation in the set � -�

to be

�² ³ ~ ¸� ¢ �²�³ � ¹� �inf

Bounds on these quantities give informational complexities, i.e., how much information is
needed to bound  within given error.  These are geometric quantities related to notions�
involving Gelfand radii of sets in a normed linear space.
 We now come to the general question involving the interaction of the two types of
complexities mentioned above.

Question 3. Question 1 Question 2  In  we assume network size  is the only limitation.  In �
we assume example number  is only limitation.   In practice both parameters are limited.�
How do values of  and  interact in determining network error ?� � �

 Here assume  is a bounded set in a -� reproducing kernel Hilbert space (RKHS), i.e., -�

has an inner product  defined for , along with a function  such thatº� Á �» � Á � � - .²%Á &³�

for any ,� � -�

�²%³ ~ º.²%Á &³Á �²&³»

for all ; the inner product above is in   This condition may sound formidable, but in� � - &À�

fact it is a minor restriction:  if function values  are defined and continuous operations,�²%³
then  is an RKHS.-�

 We consider the interaction of the two complexity theories (neural and informational).
Specifically, what is  = number of neurons and  = number of examples necessary to� �
approximate  within given error?�
 We wish to characterize interaction of the two complexities  and , i.e., understand� �
error as a function of both amount of information and available number of neurons.   This is
as yet not a well developed theory; see Poggio and Girosi [PG1,2].
 The aims of this theory are:

• To develop algorithms which optimize information (i.e., number of examples) and number
of neurons necessary to compute i-o functions  in given classes.�

•  To show they apply to examples of interest in constructing RBF neural networks.

•  To show radial basis function (RBF) algorithms are best-possible in very strong sense,
and do define and describe theoretical and practical applications.

The conclusions of the theory in [KP] are:



20

• Relationships between informational and neural complexity can be simply bounded.

• Thus the two can be studied independently before details of interaction.

12.  Theoretical results

 We will show algorithms using radial basis functions are optimal from the standpoint of
informational and neural complexity.  Our results can be used in practical situations for
upper and lower bounds on numbers of examples and neurons for systems with given i-o
functions.
 The main theoretical results require a choice of  as a convex, balanced set of possible-�

i-o functions, and .  For discussion of approximation of the function , we define:� � - ��

• minimal error given  neurons and  examples�²�Á �³ ~ � �

•  minimal error given   neurons with unlimited examples (neural error)� ²�³ ~ �neur

•  minimal error given  examples with unlimited neurons (informational error)� ²�³ ~ �info

Theorem 1:  For an RBF network,

max²� ²�³Á � ²�³³ � �²�Á �³ � � ²�³ b � ²�³neur info neur info

Corollary: For an RBF network,

�²�Á �³ ~ ²� ²�³ b � ²�³³Á ² À ³# neur info 12 1

i.e., the  and  have the same order.�²�Á �³ � ²�³ b � ²�³neur info

Specifically, 12 1  states that the ratio  is bounded above and below by fixed² À ³ �²�Á�³

� ²�³b� ²�³neur info

positive constants.

Corollary:  A necessary condition for error e( , )  is that while a� � � � ²�³Á � ²�³ � Á� �neur info

sufficient condition is .� ²�³Á � ²�³ � �°�neur info �

Theorem 2 ¢ Informational complexity dominates neural complexity.  Specifically for all
�,

� ²�³ � � ²�³neur info .

Conjecture:  � ²�³ � ²�³neur info is comparable with  for standard RBF networks, i.e., also

� ²�³ � * � ²�³info neur

If true this would reduce the work currently done on neuronal complexity to the large body
of work in continuous complexity theory and bounds there.



21

Theorem 3:  If the number  of neurons is larger than the number  of examples, then� �
(a) A strongly optimal algorithm for constructing the weights  of the network$�

approximating  is given by a linear combination , where  is�²%³ ~ $ .²! Á h ³ .²!Á h ³s&W
�

� �
�

the family of radial basis functions and  is the information vector,Á & & ~ �²% ³ÀW � �

(b) For information with bounded noise, is an optimal algorithm for the choice of  fors  &W ��

which  optimizes  regularization functional of the forms&W ~ � �

< �²�³ ~ P�P b O& c �²% ³O
-

� �

�

� �
�

 Such algorithms have been studied by Poggio and Girosi [PG ].�Á �

Definition:   An algorithm is one which is optimal up to a constant factor,almost optimal 
i.e., whose error is at most a constant factor times the optimal error.

 Let  be (� any almost optimal algorithm for finding neural network approximations with
full information.

Theorem 4:
(a)  The composite algorithm yields an approximation which is almost optimal in(� k s  &W

the number  of neurons and the number  of examples.� �
(b)  If the above conjecture is true, then itself yields an almost optimal approximation.s  &W

Classical (and more difficult) algorithms for programming neural networks include
backpropagation and the Boltzmann machine for neural nets.

13.  Examples

A. Building a control system controlling homeostatic parameters of an industrial mixture:

Imagine an industrial system which can control the following input variables:

• Temperature
• Humidity
• Specific chemical contents
• Other related parameters

Assume that the output variable in this case is the ratio of elasticity and strength of a plastic
produced from the above mixture.  Combinations of input variables may have unpredictable
effects on output variable.  Such effects include:

• binary correlations
• tertiary correlations
• more complicated interactions of inputs
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The goal is to build a neural network for which

• the input     is a vector of input parameters% ~ ²% ÁÃ Á % ³¦
� �

• the output is an approximation , which is the ratio of elasticity and strength� � �²%³W

(  here is an unknown function)�

We nevertheless have experimental data of the form

{(  % Á �²% ³³¹W W� � �~�

�

from previous runs of the equipment.  We want to build network which

• runs on a moderate size computer
• requires a moderate number of experiments to learn
• will correctly predict the elasticity/strength ratio  from the homeostatic parameters�
% ~W ²% ÁÃ Á % ³� � .

Thus , the number of examples, , the number of neurons in the simulation, are limited.� �
 We specify an error tolerance  for , and wish to optimize our -network by optimizing� ��
some function .  This function might depend on:�²�Á �³

• only the neuron number �
• only the example number �
• a linear combination of the two (with weights determined by relative difficulty of
increasing computational scale versus obtaining information)
•  a more complicated function.

Given the above theoretical results we summarize some conclusions whose details are given
in [KP]:

•  Knowing the dependence of  on  and  from the above results allows us to do this.� � �
• The optimal algorithms mentioned in the theorems above allow the above best possible
 error tolerance  to be implemented in a computable algorithm�

•  Such learning algorithms are practical, optimal, and much faster than classical neural
 learning algorithms, e.g., backpropagation; Boltzmann machine.

B.   Example neural network which studies purchasing patterns of people using mail order
corporations.

 This example is a modification of one which has been presented to one of the authors as
an issue being worked on by a marketing consulting firm in the U.S.  The paradigm is as
follows. Corporations currently share large databases on purchasing patterns of consumers.
Correct “mining” of such data can produce large numbers of sales to clients very likely to
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purchase given product classes.  A reasonable approach to predicting such patterns would
be as follows:

• create a tree structure on the family of products under consideration
 (e.g., one node would be appliances, a subnode would be kitchen appliances, and a sub-
 subnode ovens.),
• input variables in the form of a vector  for a given individual include% ~ ²% ÁÃ Á % ³W � �

dollar quantities of purchases .
•  The desired output is , the probability that the consumer will purchase a given target�²%³
product, e.g., a blender, toaster, or oven.

The goal here is to find an algorithm yielding a network with the smallest practical error �

for our given information cardinality  and computationally limited neuron cardinality .� �

Features of this particular scenario include:

•  A large dimension  of the input data (many products can be purchased),�
•  An unchangeable size  of the learning set (� ¸ Á �² ³³¹% %W W� �

• The above results yield the minimal computational ability required to find a given
purchase probability within given tolerance
• The above algorithms can be used to find the best utilization of information and
computational resources to compute .�² ³%W

14. Remarks on our assumptions:

 We have here assumed that the i-o function  belongs to a function class .  A simple� -
example of such an  is , the set of functions with  derivatives bounded by a- ) ²3 ³  �

B
 

constant  If a function  with small norm in the space  can “well” approximate the�À � -i

unknown i-o function , it is unnecessary that  be exactly smooth, or exactly belong to the� �
indicated class.  There must be a global fit which is acceptable, and under such assumptions
these theorems can be applied.
 As an example, in the above homeostatic system, assume we know that the variation of
the output quality  is such that  can be approximated by a 10 times differentiable�²%³ �
function (e.g., a polynomial) whose first 10 derivatives are smaller than 15 (in some
appropriate scale).  In the context of polynomial approximation, for example, this places
bounds on the coefficients of the polynomials.  Such bounds in this case would be a
reasonable way to “guess” the nature of the unknown function.  We remark that such
bounds would be a heuristic process, with techniques and guidelines.
 Most importantly, the guesses made through such a process can be validated a posteriori
with the data subsequently obtained.  For example, that the gradient of the data is bounded
by, e.g., 15 units, can be verified experimentally; higher derivatives can be bounded
similarly.
 The results of such an analysis might have the following features in a concrete situation:
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•  The I-O function  can be well-approximated by a function in the Sobolev space , in� 3B

��

the ball of radius 15.  This would provide our set  and function space .- -�

• With this plus a given error tolerance, say .1, we can compute upper and lower� ~
bounds for the informational and neural complexity of our problem using the above results.
•  We can then use the related RBF algorithm (mentioned in Theorem 3 above).
•  For example, such a calculation might show we need 10,000 examples and a network
with 10,000 neurons (typically optimality is achieved with equal numbers by the above
results).

 We mention a caveat here: we still will need to decide what examples to use; continuous
complexity theory yields techniques only for choosing good data points as examples.

References

[Ba]  A.R. Barron, Universal approximation bounds for superposition of a sigmoidal
 function, preprint, Yale University.
[CLM1]  C.K. Chui, X. Li, and H.N. Mhaskar, Neural networks for localized
 approximation,  Center for Approximation Theory Report 289, 1993.
[CLM2]  C.K. Chui, Xin Li, and H. N. Mhaskar, Limitations of the approximation  
 capabilities  of neural networks with one hidden  layer, Advances in Computational
 Mathematics  (1996), 233-243.5
[CL]  C. K. Chui and X. Li, Approximation by ridge functions and neural networks with
 one hidden layer,  (1992), 131-141.J. Approximation Theory 70
[Fu] K. Funahashi. On the approximate realization of continuous mappings by neural
 networks,  183-192, 1989.Neural Networks2, 
[G1]  Stephen Grossberg,  Reidel Publishing Co., Boston, 1982Studies of Mind and Brain,
[G2]  Stephen Grossberg, North-Holland, Amsterdam, 1987The Adaptive Brain, 
[Ha]  Mohamad Hassoun, , M.I.T. Press,Fundamentals of Artificial Neural Networks
 Cambridge, MA., 1995
[He]  D. Hestenes, How the Brain Works: the next great scientific revolution. In  C.R.
 Smith and G.J. Erickson (eds.), Maximum Entropy and Bayesian Spectral Analysis and   
 Estimation Problems, Reidel, Dordrecht/Boston  (1987),173-205.
[KP]  M. Kon and L. Plaskota, Informational Complexity of Neural Networks, preprint.
[MM1]  H.N. Mhaskar and C.A. Micchelli, Approximation by superposition of sigmoidal  
 and radial basis functions, (1992), 350-373.Advances in Applied Mathematics 13 
[MM2] H.N. Mhaskar and C.A. Micchelli, Dimension independent bounds on the degree of
 approximation by neural networks,   (1994), 277-IBM J. Research and Development38
 284.
[MM3] H. Mhaskar and C. Micchelli. Degree of approximation by neural and translation
 networks with a single hidden layer  (1995) 151-Advances in Applied Mathematics161 , 
 183.
[Mh1]  H.N. Mhaskar., Neural networks for optimal approximation of smooth and analytic
 functions,  (1996), 164-177.Neural Computation 8
[Mh2]  H.N. Mhaskar,  Neural Networks and Approximation Theory, Neural Networks 9



25

 (1996), 721-722.
[MB]  Micchelli, C.A. and M. Buhmann, On radial basis approximation on periodic grids,
 Math. Proc. Camb. Phil. Soc. 112 (1992), 317-334.
[PS]  Park, J. and I. Sandberg, Approximation and radial-basis-function networks, Neural
 Computation 5 (1993), 305-316.
[PG1]  T. Poggio, and F. Girosi, Regularization algorithms for learning that are equivalent
 to multilayer networks,   (1990), 978-982.Science247
[PG2]   T. Poggio and F. Girosi, A theory of networks for approximation and learning, A.I.
 Memo No. 1140, M.I.T. A.I. Lab, 1989.
[Po] T. Poggio. A theory of how the brain might work, In Proc. Cold Spring Harbor
 meeting on Quantitative Biology and the Brain, 1990.
´TWW] Traub, J., G. Wasilkowski, and H. Wozniakowski, ,´ Information-Based Complexity
 Academic Press, Boston, 1988.
´TW1] Traub, Joseph and Henryk Wozniakowski, ,´ A General Theory of Optimal Algorithms
 Academic Press, New York, 1980.
´TW2]  Joseph Traub and Henryk Wozniakowski, Breaking intractability, ´ Scientific
 American 270 (Jan. 1994), 102-107.



26

[MB]  Micchelli, C.A. and M. Buhmann, On radial basis approximation on periodic grids,
 Math. Proc. Camb. Phil. Soc. 112 (1992), 317-334.
[PS]  Park, J. and I. Sandberg, Approximation and radial-basis-function networks, Neural
 Computation 5 (1993), 305-316.
[PG1]  T. Poggio, and F. Girosi, Regularization algorithms for learning that are equivalent
 to multilayer networks,   (1990), 978-982.Science247
[PG2]   T. Poggio and F. Girosi, A theory of networks for approximation and learning, A.I.
 Memo No. 1140, M.I.T. A.I. Lab, 1989.
[Po] T. Poggio. A theory of how the brain might work, In Proc. Cold Spring Harbor
 meeting on Quantitative Biology and the Brain, 1990.
´TWW] Traub, J., G. Wasilkowski, and H. Wozniakowski, ,´ Information-Based Complexity
 Academic Press, Boston, 1988.
´TW1] Traub, Joseph and Henryk Wozniakowski, ,´ A General Theory of Optimal Algorithms
 Academic Press, New York, 1980.
´TW2]  Joseph Traub and Henryk Wozniakowski, Breaking intractability, ´ Scientific
 American 270 (Jan. 1994), 102-107.


