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Abstract: This paper presents a new approach to the
production of feature maps for the improvement of
classification in machine learning. The idea is based on
a calculus of differentiation and integration of feature
vectors, which can be viewed as functions on a metric
space or network. Based on this we propose a novel
network-based binary machine learning classifier. We
illustrate our method using molecular networks alone
to distinguish phenotypes, including cancer types and
subtypes. We include feature sets derived from disease-
specific gene co-expression networks in different cancer
data sets using The Cancer Genome Atlas (TCGA)
along with other previously published studies. We also
illustrate our network-based predictor on another data
type, based on infrared spectroscopy of lung cancer
tissue.
Keywords: kernel method, classification, gene co-
expression networks, cancer

1. Introduction

A major challenge in forming machine learning (ML)
classifiers, is the proper choice of feature vectors (FV’s) to
represent objects. It can be argued that the choice of feature
space, feature mapping to a new space, or (equivalently)
the choice of a kernel, is as important as the choice of
the machine classifier itself [1], [2]. Novel maps producing
feature vectors with new characteristics can be a powerful
tool in classification. We propose a natural feature map
construction that performs calculus-like operations on FV’s
analogous to the differentiation (and integration) of ordinary
functions. For instance feature vectors can be viewed as
functions on networks and can be naturally differentiated
using the graph Laplacian. Such calculus-like operations on
FV’s form differentiation feature maps fully transforming
feature vectors into new ones. Our goal is to illustrate
entirely different feature vectors (i.e., derivatives) that alone
(i.e., before any combination with original features) can
result in classification that equals and sometimes surpasses
that of original features.

Feature maps. The usefulness of novel feature maps
can be illustrated in the problem of facial recognition ([3],
[4]), where the choice of feature map dramatically improves
success in an ML task. In the standard representation of
FV’s in face recognition tasks, as bitmap images with
pixel intensities, it has traditionally been difficult to form
a machine that directly takes this information and results in
appropriate facial recognition. However, the problem of face
recognition can be solved quite rapidly with a new feature
map. This replaces standard bitmap vector representations
of facial images, with feature vectors consisting of distances
and ratios of distances among primary facial features. Using
a feature vector of 20 to 40 such features can result in very
sensitive and even better-than-human facial recognition ([5],
[6]).

It is important to develop feature maps that take FV’s
and canonically map them to other (different) feature vectors
that may serve as appropriate starting points for ML algo-
rithms. Forming such feature vectors from the operations
of differentiation (and integration) of feature vectors is one
such approach.

A simple example. The easiest example of a deriva-
tive operation as a feature map occurs when FVs can be
identified with functions on the real line. This occurs for
example when features have a natural ordinal structure.
In the classification of cancer tissue using spectral feature
vectors [7], 500 frequencies of infrared light are reflected
from an object, leading to a feature vector of 500 num-
bers ordered from 1 (lowest frequency) to 500 (highest
frequency). In such cases, it is already a practice [7], [8]
to take derivatives of such feature vectors in the form of
first and second difference operations subtracting adjacent
features. Our general differentiation methodology reduces in
such ordinal cases to naturally produce feature maps similar
to the above-mentioned process of differentiation. In other
words, such a feature map appears naturally from the above
process without any additional algorithmic intervention.

The key observation here is that the FV indices (in this
case 1 . . . 500) have a structure (in this case a simple ordinal
one). This structure can also be viewed as a graph, through
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a trivial linear one, in which each node is connected only to
one before and one after it. The principle of differentiation
in this case can be extended to arbitrary graph structures. In
fact the index set of a family of feature vectors can always
be given such a graph structure, as discussed below.

The differentiation discussed above can be better un-
derstood by noting that a feature vector x = (x1, . . . , xp)
can be viewed as a function of its index set i = 1, . . . , p.
Such an index set will essentially always have an interesting
metric or network structure on which to base a process of
differentiation. (figure 1).

Figure 1. A generic (gene) coexpression network; if feature vector indices
are formed by the nodes of the network then the feature vector can be
viewed as a function on the network. (This figure was imported from [9],
source: http://www.nature.com/msb/journal/v3/n1/full/msb4100138.html)

Our feature map computes the “derivative” of such a
function, more specifically its graph Laplacian, or a (positive
or negative) fractional power thereof.

In the language of kernels, the choice of a feature map
Φ(x) such as this is equivalent to a re-representation of the
kernel K(x, y) being used in the ML task. From that stand-
point, the use of our feature map to produce new kernels
K(Φ(x),Φ(y)) from old ones encodes (in computational
kernel replacements) the geometric process of differentiating
a function.

Network structure. We can illustrate a non-trivial area
of application of this idea in computational biology. Let the
collection of all genes of a species (e.g. humans) be denoted
as V . Note that gene expression array consists of a set of
gene-level activations xi, with i ∈ V in the set of genes.
The feature vector x = (x1, . . . , xp) = {xi}i∈V represents
a tissue sample with regard to its individual gene activation
levels xi.

Note also that V , representing the class of genes, can
have a network structure based say on a set E = {wij}

of (weighted) edges with weights wij . These weights can
represent, say, empirical correlations of gene expression
levels obtained from a prior or the present dataset. Alter-
natively they can represent presence/absence of interaction
among the genes i and j at the protein level (e.g. from a
database of protein-protein interactions). The resulting graph
structure G = {V,E} then provides a unique Laplacian
matrix operator L that can be applied to individual feature
vectors x = (x1, . . . , xp).

This operation Φ(x) = Lx is the simplest example
of this type of feature map. Since the graph Laplacian L
is a non-negative self-adjoint operator, we can also take
fractional powers Ls of L. Note that L fully generalizes
the previously mentioned example of a ’genuine’ feature
vector derivative, in the case of the spectral feature set
V = {1, . . . , 500} with a linear graph structure, where the
Laplacian operator forms a true (discrete) second derivative.

Thus the process of feature vector (FV) differentiation
occurs when FVs are represented as functions, and ordinary
derivative operations (with respect to the underlying graph
structure) are performed.

Note in particular that the network structure may depend
on the training set of feature vectors (e.g. gene expression
vectors) defined on it, but that it may also be entirely
independent of the training/testing dataset of the current
ML procedure (i.e. it forms prior information). For example
in the case of gene expression feature vectors, we can use
the protein-protein network structure G = (V,E), where
the vertices vj ∈ V are genes (or their protein products)
and edge weights wij ∈ E are {0, 1} valued and represent
interactions between genes (or proteins). Examples of such
prior networks are the abovementioned protein-protein inter-
action (PPI) networks [10], metabolic pathways [11], tran-
scriptomes [12], and any prior calculated gene co-expression
networks [13].

Standard vs. differentiated feature vectors. Consider
now the case of networks trained based on correlations
of features in the training set D. The new set of features
obtained from the derivative feature map Φ(x) = Lx can be
viewed as encompassing a different type of information than
the original feature vector x. Indeed, the original family of
feature vectors in training and testing presents information
regarding the locations of (sample) feature vectors typically
belonging to a class A to be identified, allowing a geometri-
cal separation of two classes A and B in the original feature
space F .

The feature vector Lx however encodes information
about the relative locations of individual features to each
other. Indeed, in the above simple example of a linear
ordered network of 500 spectral features, the Laplacian of
a feature vector x represents a second difference of the
intensity of feature xi relative to its network neighbors (in
this case xi±1). This can indicate if the feature vector x fits
into a pattern of network variation encoded in the training
set say for class A, rather than that for class B. This is
a qualitatively different type of information, though it is
directly derived from x via the feature map Φ : x → Lx.
So when a feature vector is classified, relationships among
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its components are being used to determine its class. Differ-
entiation of feature vectors allows the classification of test
vectors x according to whether they fit into the inferred
network of relationships of features of a given class A,
obtained from the training set D.

Application to molecular network-based classifica-
tion. This general method can be applied to a range of
real-life applications. Computational biology is currently an
expanding area that benefits from the explosion of molecular
data types being studied. Conventional classifiers identify
gene expression patterns by treating genes as independent
features. However this may not always capture real biolog-
ical processes - biological systems are complex with all
molecular entities dynamically interacting in the cell. In
some applications below we seek to use the network of gene
interactions and correlations as a source of information using
network information to stratify cancer types and subtypes.

The edges of a gene network reveal new features distinct
from direct expression values, giving a new level of infor-
mation that can be used for classification of test samples.
Currently gene expression signatures are most commonly
exploited for classifiers using different statistical and ML
techniques, such as logistic regression, random forests, sup-
port vector machines, etc. Gene expression classifiers have
been developed for lung cancer [14], breast cancer [15],
colo-rectal cancer [16] and other cancer types. However,
most times these classifiers tend to overfit due to noise in
the data that generates false patterns [17].

Networks and groupings of genes have nevertheless
become important in various types of classification tasks.
Hofree [18] proposes a network based approach for strati-
fication of tumor mutations. The authors test their method
in ovarian, uterine and lung cancer cohorts from TCGA.
For each tissue, they identify subtypes that are predictive
of clinical outcomes such as patient survival, response to
therapy or tumor histology.

Previous work has shown that gene expression classifiers
can be improved by exploiting gene interaction information.
The authors in [19] show that regularizing (smoothing)
micro-array expression values defined on gene sets with
known prior network or metric structures improve predic-
tion.

Below we test the predictor alone and evaluate its perfor-
mance in multiple cancer data sets, including three TCGA
cancer types (breast cancer [20], lung adenocarcinoma [21]
and lung squamous cell carcinoma [22]), a collection of
benchmark cancer data sets [23] and infrared spectroscopy
lung cancer data [8].

2. Methods

Overview. The idea of our approach to predictive clas-
sification in machine learning can be illustrated in a simple
way. In the case of two classes A and B to be distinguished,
assume that there is a training set D = D1 ∪ D2, with
D1 = {xk}n1

k=1 consisting of training data in class 1, and
D2 = {xk}nk=n1+1 consisting of training data in class 2.

The classification method starts by learning the empirical
correlation matrix Σ1 = (σ1

ij)i,j , with σ1
ij the correlation

of features xi and xj in dataset D1. Similarly, matrix Σ2

identifies the correlation structure of the same set of features,
now in datset D2. To clarify notation, the sample data point
xk represents the gene expression vector of sample (e.g.
patient) k in dataset D, with component xk

i representing
the expression level of gene i in sample k.

The above empirical network structures based on the cor-
relation networks Σ1 and Σ2 of the datasets D1, D2 will be
used in a simple way to score test vectors x = (x1, . . . , xp)
with regard binary classification as to membership in two
classes, here denoted as 1 and 2.

As illustrated in figure 2, gene expression correlation
networks provide condition-specific patterns that can be
used to distinguish classes. In the figure these consist of
correlation patters for gene expression in a group of cancer
patients and a group of control patients, for the same gene
set.

Figure 2. For this cancer/normal dataset, the correlation network built from
a disease group differs from that built from a control group for the same
100 genes. These networks were generated using the Diffuse Large B-Cell
Lymphoma (DLBCL) data from [23].

Formalization of the model. We will view a feature
vector x = (xi)

p
i=1 as a function (a feature function ) fx(q)

on the index set, q ∈ 1, . . . , p. Thus fx(q) represents a
function on the network G = (V,E) with V the set of
genes (or equivalently indices 1, . . . , p) and E = {wij}i,j∈V

consisting of edge weights between the vertices in V .
We in fact have two network structures on the set V of

genes, one trained from the dataset D1 (class 1) and one
trained from dataset D2 (class 2), and denote the network
structures by G1 = (V,E1) and G2 = (V,E2). Viewed
as notions of distance or proximity, these two networks
effectively define two different geometries on the space V
of indices, which will be our viewpoint below.

Note we expect feature functions f(q) on V (arising
from feature vectors x, with fx(q) = xq), to be adapted
to different geometries on V depending on their classes.
Thus for example we expect a feature function fx(q) from a
sample x in class 1, to be adapted to the geometry (network
structure) G1 on V , in a sense clarified below.

More specifically, let q and r be ’nearby’ points in V ,
according to the ’geometry’ G1. Then we would expect
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fx(q) and fx(r) to be close to each other if x represents
a feature vector from class 1, and further from each other
if it is from class 2.

This closeness condition defines the notion that fx is
adapted to the geometry G1 on V . Recalling the notion of
’smoothness’ of a function fx on a space V in geometric
terms, the condition intuitively states that fx is ’smooth’ on
V with geometry G1. More specifically we expect a feature
function fx defined on V that is from class 1 to be ’smooth’
on V when if it is equipped with geometry G1, more so than
when fx is from class 2 (in which case fx will be more
adapted to geometry G2).

Practically this will mean that the G1-graph Laplacian
(derivative) L1fx for feature vectors x in class 1 will be
smaller (in the square integral sense) than feature vectors x
from class 2. Recall that for the graph G1 (with |G1| = p
vertices), its p× p Laplacian matrix is defined as

L = D −W

Here the diagonal matrix D has entries Dii =
∑

j∈V wij

representing the sum of weights connected to vertex i, while
W is the connectivity matrix, with Wij = wij .

Thus we train two networks based on the two classes
to be separated, and use the networks to differentiate test
feature vectors between the two classes. In the language
of feature vectors (rather than feature functions), let x and
y be feature vectors from classes 1 and 2. Assume we
differentiate (take the Laplacians of) these vectors under
the different network structures induced by classes 1 and
2. Since x is from class 1, it is naturally adapted to the
metric structure of class 1. Thus the square norm of the
class 1 network Laplacian

||L1x||2 =
∑

i

(L1x)
2
i

(with respect to the metric structure of network 1) will be
smaller than that with respect to the metric structure of class
2. Conversely, the Laplacian norm ||L2y||2 of y with respect
to the class 2 network structure will be smaller than that with
respect to the class 1 network structure.

This measure of adaptation of feature vectors to the
relative metric (network) structures of their feature spaces
is a tool forming new feature vectors to separate objects
in the two classes. In effect this forms a feature map that
yields new and differently structured feature vectors Lx
from old ones x, for improved machine learning recognition,
in particular when used to augment standard features.

The computational implementation (described below) is
very simple in principle. Derivatives of test feature vectors
from an unknown class can be immediately taken by apply-
ing the two graph Laplacians Li (i = 1, 2) relative to the
network structures trained from the two classes. In training,
a threshold is formed effectively separating the mean values
of the two Laplacians 〈x, L1x〉 − 〈x, L2x〉 among training
feature vectors x in the two classes (see next section for
details). Here 〈x, y〉 represents the ordinary (multiply and
sum) dot product of x and y. In testing, vectors which lie

above the threshold are classified as being in class 2, while
those below are classified as 1

Implementation: In more detail, given a trainining set
D = D1 ∪ D1 consisting of data D1 in class 1 and D2

in class 2, we first build gene interaction networks across
the training samples of each of the two classes. To capture
the network of gene interactions, we compute the Spearman
rank correlation coefficient σij between expression measure-
ments of each pair of genes i, j. This estimates how gene
pairs influence each others’ expression levels.

For each feature vector fx = f = (f1, · · · , fp), we de-
fine the smoothness (with respect to the network geometry)
by:

y(f) =
∑

i,j

(fi − fj)
2 · wij = fT · L · f = 〈f, Lf〉 (1)

where L is the Laplacian matrix, and wij is the connection
weight between feature node i and j. Note that here the
feature function f = fx and feature vector x are used
interchangeably. In addition wij is the correlation coefficient
between features i and j in the given class (1 or 2). The
second identity in the above equation (expressing y(f) in
terms of the Laplacian) is easy to verify.

More generally, the Laplacian can be replaced by its
fractional powers,

L∗ = (L+ λ)s (2)

with λ, s parameters. The small parameter λ plays the role
of a regularization parameter for negative powers s.

Then we define the class separation threshold as the av-
erage of the two relative smoothness values, computed as the
difference between smoothnesses under the two networks.
The classification threshold γ can be defined as

γ =
n1 · [ȳ1(f1)− ȳ2(f1)] + n2 · [ȳ1(f2)− ȳ2(f2)]

n1 + n2
, (3)

where n1 and n2 are numbers of samples in class 1 and class
2 respectively, and e.g., ȳ1(f2) represents the mean value of
smoothness for feature vectors in class 2 on network G1, so
that ȳ1(f2) =

∑
f∈class2 y1(f)/n2.

The method is somewhat sensitive to class size, since
it needs similar numbers of samples to build comparable
networks for the two classes. The above threshold definition,
adjusted for sample size, can reduce the false predictions
from unbalanced datasets.

The algorithm consists of four steps:
Step 1. Generate the correlation network Gk for each class
k.
Step 2. Compute the smoothness for each sample according
the network for each class.
Step 3. Find the separation threshold of smoothness values
for the two classes, as defined in (3).
Step 4. Test prediction accuracy by comparing smoothness
differences between the two networks, under the threshold
γ.
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3. Applications

3.1. Performance on benchmark classification algo-
rithms

We first tested our approach on gene expression data
from four of the benchmark cancer data sets studied in
[23]. We emphasize that (table 1), the purpose of the present
results for the network method is to benchmark classification
based on the single feature γ alone, in order to gauge the
strength of network geometry as a classifier. Here γ is as
in (3) above, representing the difference in smoothness of
the feature vector relative to two network geometries. The
feature γ can of course be augmented and combined with
additional features, for example the original feature vector
f , and other functions of its Laplacian L ·f , in more general
approaches.

Data in all tables represent accuracy levels in percent.

TABLE 1. LOOCV ACCURACY OF CLASSIFIERS FOR BINARY CLASS

EXPRESSION DATASETS

algorithms Network TSP k-TSP SVM k-NN

DLBCL 82.73 98.1 97.4 97.4 84.42

Colon 70.97 91.1 90.3 82.26 74.19

Prostate 3 96.97 97 97 100 87.88

Lung 93.92 98.3 98.9 99.45 98.34

Average 86.15 88.26 92.01 91.18 81.63

3.2. TCGA breast and lung cancer data

In this section we test the proposed network-based clas-
sifier on three gene expression data sets from The Cancer
Genome Atlas (TCGA): breast invasive carcinoma (BRCA)
[20], lung squamous cell carcinoma (LUSC) [22] and lung
adenocarcinoma (LUAD) [21]. Gene expression levels esti-
mate the abundance of RNA transcripts that will ultimately
be translated into proteins. We use gene expression profiled
by RNA-Sequencing on the Illumina HiSeq platform. The
RPKM values were normalized as log2(RPKM + 1).

We compared the results of the network-based classifier
with two other classifiers that use gene expression values
as independent classification features (SVM and K-NN). To
evaluate the performance, we computed the mean accuracy
of 10-fold cross validation for each predictor (table 2).

3.2.1. Breast cancer. We used RNA-sequencing gene ex-
pression data for 113 cancer and 113 normal patients with
breast invasive carcinoma (BRCA) [20]. The BRCA RNA-
sequencing data consists of 1107 cancer and 113 normal
patients; it provides the largest set of normal samples with
gene expression measurements in TCGA. For this dataset,
we used all the normal samples available and a subset of
the same size of the cancer samples.

3.2.2. Lung cancer. Here we considered RNA-sequencing
gene expression data for 51 normal and 501 cancer patients
with lung squamous cell carcinoma (LUSC) [22], and for 59
normal and 528 cancer patients with lung adenocarcinoma
(LUAD) [21].

As expected, the normal and cancer classes are well
differentiated for all three cancer types. All three predictors
perform similarly well with a higher than 90% accuracy
(table 2).

TABLE 2. CROSS VALIDATION ACCURACY OF CLASSIFIERS FOR

BINARY CLASS TCGA DATA SETS

Data Network SVM K-NN

BRCA vs. Normal 97.37 100 91.09

LUAD vs. Normal 98.23 99.07 96.52

LUSC vs. Normal 98.31 99.55 99.45

3.3. Infrared spectroscopy data on lung cancer
tissue

Spectral histopathology (SHP) works on the principle
that all biochemical components have distinct fingerprints
in the form of infrared spectral signatures observable via
infrared spectroscopy [24], [7]. When observed through an
infrared microscope, objects smaller than a human cell can
be identified and their spectra can be acquired.

The training portion of this dataset contains 2,000 pixels
in squamous cell carcinoma (SqCC) and 2,000 in adenocar-
cinoma (ADC) from 182 patients, with 501 wavenumber
frequency features. The test data have the same form, from
49 patients [7].

As above, we compare the performance of the network-
based predictor with the results of SVM and K-NN machines
(table 3). The accuracy results in the table are averaged
under 10-fold cross validation. All three predictors perform
well; however in this case the network-based approach alone
outperforms SVM and K-NN.

TABLE 3. CROSS-VALIDATION ACCURACY OF BINARY CLASSIFIERS

FORH INFRARED SPECTROSCOPY LUNG CANCER DATA

Data Network SVM K-NN

SqCC vs. ADC 89.3 87.5 78.1

4. Conclusions

In this paper we have demonstrated the usefulness of dif-
ferentiation of (taking derivatives of) feature vectors in ML
problems, with respect to network structures from within
their training data or from prior outside data. The process
is implemented by computing the graph Laplacian L of
feature vectors, and more generally the fractional Laplacian
(L + λ)s, where s can be fractional. Future work will
incude choices of negative values for s, which will imply
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an integration operation, that will smooth feature vectors,
possibly eliminating noise. We have shown that a single
feature γ representing smoothness with respect to network
structure can be used to separate classes of feature vectors
successfully. This new feature type has been demonstrated
successfully in some binary classification problems involv-
ing gene expression and other molecular-level predictors.
Our model captures the information of gene regulation in the
form of dynamical variations caused by gene interactions.
This new level of information describes real biological
processes that may be complementary to gene expression
measurements and as independent features.

Our approach may serve as a valuable adjunct for
biomarker discovery and identification of disease specific
molecular interactions.
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