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Abstract

We announce some general bounds on the interactions of neural and information complexities of feedforward neural
networks using general classes of activation functions.  We show that, up to constant factors, neural and information
complexities combine in a well-defined way in the determination of the complexity of a network.

1.  Introduction

Neural networks have as one of their main functions the prediction of outputs from inputs in large, multi-
component, complex systems, through extrapolation from example inputs and outputs of such systems.  They
are currently used for such tasks as prediction of delinquency rates of credit card holders based on past credit
parameters, prediction of outputs of chemical admixtures as functions of their physical components and
parameters (e.g., temperature) robotic motion (prediction of outputs of motion parameters from inputs ofÁ

desired final positions), and stock market forecasting.  The effective task of such a predictive neural network
is to forecast values of an input-output (i-o) function  at unknown input values from known values of .� �

The inputs are current information, and the output is a prediction of what will occur at a future time.
The complexity of building such a network is a crucial issue, since it has been shown that neural

networks are if given enough information and hardware, they can predict complete any, i.e.,  i-o function �
with arbitrary accuracy (see, e.g., [11, 23]).  The complexity of building a network consists largely of two
parts, that of learning the function  to be predicted (information complexity), and that of constructing the�

network which will perform the approximation to  (neural complexity); see below.�

The purpose of this paper is to present new results on learning and performance complexities of neural
systems for implementing input-output (i-o) relations.  We consider general versions of three-layer
feedforward neural networks of radial basis function (RBF) type, with activation functions which may be
different for each neuron.  The results are new for all classes of activation functions, including RBF functions
typical of artificial network architectures and ridge functions common in biological models.

We now briefly present the context of these results.  The mathematical study of feedforward neural
networks starts with completeness questions, which ask whether any function in a class  can be computed-

by some network in a given category .  Here  might be a class of networks whose middle neurons D D &�
compute radial basis functions (RBF's) (fig. 2 below) or ridge functions (described below) of the input
vectors .  Completeness issues were studied from around 1985 to 1990 with great interest and a% � l�

number of comprehensive positive results (see, e.g., [7, 11, 23]).
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Neural complexity theory addresses the next natural question once completeness is established, What is
the size (complexity) of neural networks required to -approximate functions  in ?  Equivalently, how� � -

difficult is it to build a network which performs a given task?  Active study of complexity for networks began
in the early nineties  after completeness issues had been settled through around 1990.  A number of excellent
foundational works, including those of Poggio and Girosi ([12, 13, 25-27]), Micchelli and Mhaskar ([16-
21]), Chui and Li ([4-6]), and Barron ([ have studied the 1,2]) performance or neural complexity (numbers of
neurons needed) of these networks, if basic elements compute functions of reasonable “smoothness” (small
Sobolev norm).  In classical computer science completeness and complexity theory take on the forms of
theory of computation computational complexity theory and , respectively.

Complexity theory of neural networks can be separated into learning complexity (how much work needs
to be done to learn ) and performance or neural complexity (how many neurons will be needed to�

implement a good approximation  to .  Neural p  questions, as indicated above, relate to�²%³ �²%³ erformance
the existence of (sufficiently simple) networks capable of computing a class  of desired i-o functions.-

N deals with whether (and to what accuracy) networks can learn the i-o function  whicheural learning theory �

they are to predict from series of examples , with  an array of5� ~ ²�²' ³Á �²' ³ÁÃ Á �²' ³³ ¸% ~ ' ¹� � � � �

example input vectors.  (Most real-world i-o functions are known only through examples).  The complexity
of learning has up to now dealt largely with questions of complexity of algorithms such as backpropagation
and the Boltzmann machine.

A complete complexity theory of neural networks needs to address both learning and performance as
network-related complexity issues.  Learning complexity is measured here as information complexity, which
is the number of examples of  required to approximate  within a given tolerance .  Performance� � �

complexity is measured as , which is the number of neurons necessary to approximate neural complexity �

within .�
We show here that in general contexts, the relationship between information and neural complexity can

be simply parsed, so the two questions can be studied separately before their interaction is analyzed.  The two
parts of the complexity question for neural networks pose difficult mathematical and phenomenological
problems, and the fact that they can be largely separated can be very helpful.

We thus initially separate complexity theory for networks into two scenarios.  The first occurs when we
know exactly the i-o function  which is to be approximated, i.e., have full information.  Here the question is,�

how complex a network do we need to express  to tolerance ?  The second occurs when it is assumed we� �

have unlimited computational resources (as many neurons as we need), and ask how many examples of  we�

need for its -approximation.�

Information complexity [14] can be considered the “second half” of neural complexity theory dealing
with information issues, the basic element of learning.  While study of neural complexity has had a good start
(see above references), information complexity is still in its initial stages.  The interaction of the two is our
concern here.

2.  Preliminaries and definitions

We restrict ourselves to networks of the form in Fig. 1 below.  Each node is a neuron in this artificial
network, with each vertical column a layer.  The activation level of neuron  in layer  is  (we will also let� � %��
% % ~ ²% ÁÃ Á % ³ ��� � �� �� denote the neuron itself).  We define  to be the vector of activations in layer , and
assume feedforward vector functions  map the activation vector  into , i.e., � ¢ ¦ % % � ²% ³ ~ % À� �c� � � �c� �

� �l l

We initially assume general forms for the , and define to be the  output component of the� � ²% ³ ~ % �� �� �
!�

( )�b� �

vector function .��
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Fig. 1:  A multilayer neural network with  layers; feedforward connections completely connect� ~ �

each layer to the next.  Input is  and output is .% %� �

A major goal of studying artificial feedforward networks is to find what input-output functions  can�²%³

be approximated by compositions , given the  are drawn from various parametric�̃ ²%³ ~ � kÃk� ²%³ �� � �

families.  These include so-called   with :  a monotone sigmoidridge functions� ²%³ ~ �²% h � c ³ � ¦�� � l l

function which increases from 0 to 1.  They also include radial basis functions (RBF's) ,� ²%³ ~ .²% c ' ³�� �

generally radial functions localized at points .  Since all computational and other tasks can be formalized as'�
input-output tasks, theoretically any problem in intelligent action can be formulated as that of approximating
a desired input-output function  by , with input  and output appropriately coded in .˜�²%³ �²%³ % �²%³ l�

Because of theorems proving universal approximation properties of even simple networks, the stakes
have been raised to the extent that many approximation questions (both in terms of approximability and
complexity of approximation) are now formulated for simple three layer networks of the form in Fig 2 below.
Many types of desired outputs can be encoded in a single number, and multi-output networks can be reduced
to concatenations of single-output networks.  Thus there is an assumption of only one output neuron ,�

computing strictly additive output

� ~ $ & ~ $ 2²% c ' ³Á� �
� �

� � � � (1)

with  a fixed localized function centered at .  The units  are denoted as hidden units.& ~ 2²% c ' ³ ' &� � � �

     
Fig. 2: A three layer model network; there is complete connectivity from each layer to the next.

There are important reasons why such networks are learning complexity-optimal in certain types of i-o
function approximations; this is explained to an extent in [14,15].

Alternatively, three layer networks are also studied in the more biologically oriented form
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� ~ $ & ~ $ �²% h � c ³� �
� �

� � � � ² ³2

with  the above ridge functions.  Our results are appropriate to a general three layer network�

� ~ $ & ~ $ � ²%³� �
� �

� � � � (3)

with  a dictionary of activation functions.  Such networks can implement nonlinear: ~ ¸� ²%³¹� �

approximations of desired i-o functions ; in approximation theory and matching pursuit such�

approximations have been of recent interest ([3,8-10]).

3.  Neural complexity and information complexity

It should be noted that the approximation (3) epitomizes the parallels between feedforward neural
network theory and approximation theory which began to be noticed in the late eighties.  Indeed, it shows
effectively that feedforward neural nets are analysis-equivalent to approximation theoretic paradigms.  The
two fields have taken parallel paths even when they have not interacted, and the issues here involve a neural
network formulation of some of the more interesting problems currently in complexity-theoretic
approximation theory, those involving matching pursuit and nonlinear approximation.

The artificial neural network paradigm, freed from requirements that activation functions  must� ²%³��

necessarily have biologically motivated forms, now stands to extend the standard RBF architecture, which
may be necessary in a number of contexts.  Specifically we assume that the network in Fig. 2 is endowed so
each hidden neuron  can compute a function  of whatever form necessary to “get the job done”.  In& � ²%³� �

this case neural and approximation theoretic complexity combine in the following question:

Question 1:  Given a dictionary : l l~ ¸� ²%³¹ � ¢ ¦� ��0 �
� � of functions , what is the neural

complexity (number of hidden neurons ) of the smallest neural network which can approximate a given i-o&�
function  within error  in a given error measure?�²%³ � ��

This question has been studied in approximation theory ([9,10]) and wavelet and statistical theory
(matching pursuit; see [3,8]).  Results from these areas translate into interesting ones for neural networks with
general computable activation functions   The notion of information complexity used here (involving� ²%³À�

the number of function evaluations  needed to approximate the i-o function ) carries over from� ²%³ ��

computer science and continuous computational complexity theory [28,29] , and does not involve counting² ³

the Turing bit operations of more classical computational complexity.  See [9,10] for mathematical
discussion of this question in the context of nonlinear approximation.

The second half of this question is

Question 2:  What is the information complexity of function approximation in the above context?  That
is, given partial information about the i-o function , what is the smallest number of examples�

5� ~ ²�²% ³ÁÃ Á �²% ³³ �� �  from which we can approximate  within  (for the moment assuming unlimited�

neural resources)?

Question 2 is central to neural network theory, since examples are generally the only source of
information about .�

The above questions have been dealt with reasonably successfully in nonlinear approximation theory and
continuous computational complexity theory, respectively.  The interaction of the two complexities
determines how hard it is to build a network which implements an i-o function:

Question 3:  How do information complexity and neural complexity interact in determining the difficulty
of building a neural network implementing a given i-o function  to a given tolerance ?�²%³ �

This is the question dealt with here.  It is shown next that question 3 can be reduced to questions 1 and 2
through a decoupling of information and neural complexities.



5

4.  Interaction of the two complexities

Neural and information complexities interact simply, as the following theorems (whose proofs are
omitted for brevity) demonstrate.  To more easily quantify the interaction, we work with the error of
approximation , which is the inverse function of the -information complexity .� � �²�³ �² ³

We first consider neural complexity.  For a network with  neurons, a network using the dictionary�

: ~ ¸� ²%³¹� ��0  computes functions of the form

�²%³ ~ $ � ²%³�
��1

� �

for subsets  of cardinality  (here .  Let  be the set of functions obtainable in this form, so1 � 0 � % � ³l D�
�

D� is the set of neural networks of neural complexity  (here  measures the number of hidden units).� �

We formally define neural and information complexities of approximating a given i-o function  by � �²%³

as follows.  Let  be a class of functions which we know  belongs to a priori.  For example if  is assumed- � �

smooth,  might be a class of functions of restricted Sobolev (smoothness) norm- ~ ¸�²%³ ¢ P�P � �¹/ 

P h P - ¸- ¹ -/ � �  ([28,29]).  Alternatively  might be one of an increasing sequence of spaces , with  chosen
because it contains a sufficiently rich class of functions which nevertheless is not too large (i.e., does not
overfit sample values ; see [30,31]).  Such classes are measured by their so-called VC-dimension.5�

We assume our error is measured by a norm  which defines a normed linear space  containing .P h P - -�

We assume the information we have about  consists of examples   More� 5� ~ ²�²% ³ÁÃ Á �²% ³³À� �

generally we can allow other types of linear information about , of the form�

5� ~ ²3 �ÁÃ Á3 �³Á� �

with  bounded linear functionals from a given class  (which may consist of all functionals or a subset of3� B

them).  In the present context we are interested in information from examples, and so we would normally
restrict  so that always consist of function evaluations (note that examples of  are normallyB 3 � ~ �²% ³ �� �

evaluations of  at specific values of the input data ; see [28,29]).� %�
For given  and information , let  be error of guessing  only from the information� � - 5� �²�Á Á5³ ��

5� ~ ²3 �ÁÃ Á3 �³ ²5�³ � 5�� � , using a given reconstruction algorithm  to best approximate  from , so�

�²�Á Á5³ ~ P� c ²5�³PÀ� �

If we consider the most difficult  to approximate, we define� � -

�² Á5³ ~ �²�Á Á5³� �sup
��-

 (4)

as the worst case error of using the fixed algorithm  with fixed information .  We then choose the best � 5 5

and  by defining�

�²�Á �³ ~ �² Á5³           inf
5¢-¦ Â ¢ ¦l � l D� �

�

�

to be the minimal error in approximating functions  that can be made by using information� � -

5� ~ ²�²% ³ÁÃ Á �²% ³³ � � ³À� � � of cardinality , and a neural network with  neurons (in class   This is theD

smallest error using  pieces of information and  neurons.� �

We can now define the neural and information complexities as

� ²�³ ~ �²�Á �³neur inf
�

which is the minimal error assuming  neurons and unlimited information, and�

� ²�³ ~ �²�Á �³info inf
�

,

which is the minimal error assuming  pieces of information  and unlimited neural� �²% ³ÁÃ Á �²% ³� �

resources.
The neural and information complexities, as usual, are the inverses of the above functions:
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�² ³ ~ ¸� ¢ � ²�³ � ¹

�² ³ ~ ¸� ¢ � ²�³ � ¹

� �

� �

inf

inf

neur

info .

They represent the minimal neural and informational complexities of approximating a function  with� � -

error � � �À

We are interested in the relationship of these two complexities, and in particular their interaction.  Since
inverting functions is not hard, we will study the relationships of the errors, ,  , with joint error� ²�³ � ²�³neur info

�²�Á �³À

We then have:

Theorem 1:  The neural and information complexities of function approximation by a neural network
interact in a simple way to determine the joint complexity of approximation.  Specifically,

max²� ²�³Á � ²�³³ � �²�Á �³ � �� ²�³ b � ²�³info neur info neur

As a consequence, it is possible to characterize the joint information and neural complexity of a general
network for performance of a given task in terms of the two complexities individually:

Corollary 1:  In order to construct a network in the class  with error at most , it isD D �~ r � �

necessary to use at least  neurons and  examples, and it is sufficient to use  neurons and �² ³ �² ³ �² ³ �² ³� � �� ��

examples, where  and  are any numbers satisfying � � � �b � � �À

If we choose  we have� �~ ~ �°�

Corollary 2:  In order to approximate any function  from the class  with error , it is necessary� - � ��

to use at least  neurons and  examples, and sufficient to use at most  neurons and �² ³ �² ³ �² °�³ �² °�³� � � �

examples.

To this extent (up to constant factors in arguments of complexity functions) the study of the joint
complexity effectively decouples into the separate study of information complexity and of neural complexity.

5.  Example

We will briefly mention an example of an application of such results.  There is currently great interest in
using parametric neural methods to predict consumer purchasing patterns.  Indeed, the amount of information
on consumers today via Internet interaction protocols is daunting (the appropriateness of such information
collection is not discussed here).  Suppose we wish to predict for a given consumer the expectation  of,²?³

the general random variable  representing the purchases he or she will make from our web site over the?

next year.  We may assume that this depends parametrically on a number of known quantities, including
values  of purchases for this consumer over the last year at other web sites .  In order to� ÁÃ Á �  ÁÃ Á  � � � �

model the i-o function  (with , we might wish to know the number�²%³ ~ ,²?O � ÁÃ Á � ³ % ~ ²� ÁÃ Á � ³³� � � �

of examples of this function and the size of the network required to estimate it within error , measured, say,�

in mean square norm.  We should mention that since the function  is not measured deterministically, use�²%³

of examples   (here  in determining , using a library  of5� ~ ²�²% ³ÁÃ Á �²% ³³ % ~ ²� ÁÃ Á � ³³ �� � � �� �� :

RBF's ([25-27]), must be done in a model including error terms, i.e., one in which observation  is� ²% ³i
�

related to its expected value  by�²% ³�

� ²% ³ ~ ,²?O � ÁÃ Á � ³ b Ái
� �� �� ��

with  a random error term.  Such modifications to standard RBF techniques are not difficult in RBF models��
including error terms [24], if we assume Gaussian independent errors .  Once the function (and its��
smoothness parameters) are modeled (determining the RBF class we will use), it is possible to find lower and
upper bounds for the information complexity function  using methods of continuous complexity theory�² ³�

(see [28,29,14]).  Similarly, it is possible to find the neural complexity function  for the presumed class�² ³�

- � of  (see [9,10,16-21]).  For brevity we avoid the details of how this can be done in such a parametric
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model, but remark that there are reasonable ways of choosing the class , say, as a ball in a Sobolev space in-

cases where a given degree of smoothness is reasonable for the class.
Using the information and neural complexities obtained above, we can use Corollary 2 to determine

upper and lower bounds on numbers of neurons and examples which will be necessary to find an -estimate�

of the desired function .  We remark that there exist constructive algorithms for using information of�

cardinality  and a network of size  to approximate  (see [25-27] for the RBF cases).� � �

Bibliography

[1] Barron, A.R. Universal approximation bounds for superposition of a sigmoidal function, IEEE Trans.
Information Theo.  (1993), 930-945.39

[2] Barron, A.R. Approximation and estimation bounds for artificial neural networks, Machine Learning
14 (1984), 115-133.

[3] Bergeaud, F. and Stephane Mallat, Matching pursuit: Adaptative representations of images and sounds,
Computational and Applied Mathematics  (1996), October 1996.15

[4] Chui, Charles and Xin Li, Approximation by ridge functions and neural networks with one hidden
layer,   (1992), 131-141.J. Approximation Theory70

[5] Chui, Charles, Xin Li, and Hrushikesh Mhaskar, Neural networks for localized approximation,  Center
for Approximation Theory Report 289, 1993.

[6] Chui, Charles, Xin Li, and Hrushikesh Mhaskar, Limitations of the approximation capabilities of neural
networks with one hidden layer,   (1996), 233-243.Advances in Computational Mathematics5

[7] Cybenko, George, Approximation by superposition of sigmoidal functions, Math. Control, Signals, and
Systems 2 (1989), 303-314.

[8] Davis, G., Stephane Mallat, and M. Avelaneda, Adaptive greedy approximations, J. Constructive
Approximation 13 (1997), 57-98.

[9] DeVore, R., and V. Temlyakov, Nonlinear approximation by trigonometric sums, J. Fourier Anal.
Appl.  (1995), 29-48.2

[10] DeVore, R. and V. Temlyakov, Nonlinear approximation in finite dimensional spaces, J. Complexity 13
(1997), 489-508.

[11] Funahashi, K., On the approximate realization of continuous mappings by neural networks, Neural
Networks  (1989), 183-192.2

[12] Girosi, Federico, Regularization theory, radial basis functions and networks, in From Statistics to
Neural Networks  Theory and Pattern Recognition ApplicationsÁ , V. Cherkassky, J.H. Friedman, and
H. Wechsler, eds.,  Springer-Verlag, 1994.

[13] Girosi, Federico, M. Jones, and Tomaso Poggio, Regularization theory and neural network
architectures,   (1995), 219-269.Neural Computation7

[14] Kon, Mark and Leszek Plaskota, Information complexity of neural networks, to appear, Neural
Networks

[15] Kon, Mark and Leszek Plaskota, Neural networks, radial basis functions, and complexity, in Statistical
Physics Proceedings, Bialowieza, 1997, 322-335.



8

[16] Mhaskar, Hrushikesh, Approximation of smooth functions by neural networks; in Dealing with
complexity: A neural network approach, K. Warwick et. al., eds, ,Perspectives in Neural Computing
Springer Verlag, London, 1998, 189-204.

[17] Mhaskar, Hrushikesh, Neural networks for optimal approximation of smooth and analytic functions,
Neural Computation  (1996), 164-177.8

[18] Mhaskar, Hrushikesh, Neural Networks and Approximation Theory,  (1996), 721-Neural Networks 9
722.

[19] Mhaskar, Hrushikesh N. and Charles A. Micchelli, Approximation by superposition of sigmoidal and
radial basis functions,   (1992), 350-373.Advances in Applied Mathematics13

[20] Mhaskar, Hrushikesh N. and Charles A. Micchelli, Dimension independent bounds on the degree of
approximation by neural networks,  (1994), 277-284.IBM J. Research and Development 38

[21] Mhaskar, Hrushikesh and Charles Micchelli, Degree of approximation by neural and translation
networks with a single hidden layer,  (1995), 151-183.Advances in Applied Mathematics 161

[22] Packel, Edward and Henryk Wozniakowski, Recent developments in information-based complexity,´
Bull. Amer. Math. Soc. 17 (1987), 9-36.

[23] Park, J. and I. Sandberg, Approximation and radial-basis-function networks, Neural Computation 5
(1993), 305-316.

[24] Plaskota, Leszek, , Cambridge University Press, 1996.Noisy Information and Complexity

[25] Poggio, Tomaso and Federico Girosi, Regularization algorithms for learning that are equivalent to
multilayer networks,  (1990), 978-982.Science 247

[26] Poggio, Tomaso and Federico Girosi, A theory of networks for approximation and learning, A.I. Memo
No. 1140, M.I.T. A.I. Lab, 1989.

[27] Poggio, Tomaso and Federico Girosi,  A sparse representation for function approximation, Neural
Computation 10(1998), No. 6.

[28] Traub, Joseph, Grzegorz Wasilkowski, and Henryk Wozniakowski, ,´ Information-Based Complexity
Academic Press, Boston, 1988.

[29] Traub, Joseph and Henryk Wozniakowski, , Academic Press,´ A General Theory of Optimal Algorithms
New York, 1980.

[30] Vapnik, V.N., , Springer, New York, 1995.The Nature of Statistical Learning Theory

[31] Vapnik, V.N. and A. Ya. Chervonenkis, The necessary and sufficient conditions for consistency in the
empirical risk minimization method,  (3) (1991), 283-305.Pattern Recognition and Image Analysis1


