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Abstract

Several results are proved which characterize the rate at which wavelet and
multiresolution expansions converge to functions in a given Sobolev space in the
supremum error norm.  Some of the results are proved without assuming existence
of a scaling function in the multiresolution analysis.  Necessary and sufficient
conditions are given for convergence at given rates in terms of behavior of Fourier
transforms of the wavelet or scaling function near the origin.  Such conditions turn
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1. Introduction and definitions
 The computational efficiency of wavelet expansions is related to their multiresolution

form and other well-studied properties.  Wavelets are local in time and frequency, and a
wavelet basis for  consists of translations and dilations of one or more functions.3 ² ³� �l

Given a multiresolution expansion, it is natural to ask how fast the worst error of such an
expansion decreases when applied to functions in a given class, or equivalently how fast the
associated error operators converge to zero.

In this paper we state a number of equivalent conditions for given pointwise (sup norm)
convergence rates of expansions of functions in Sobolev spaces, stated in terms of the
wavelet, scaling function, symbol of scaling function, and projection operators associated
with the multiresolution analysis (MRA).  Our proofs expolit two facts.  The first is that
convergence rates of error operators for multiresolution analyses in given normed spaces are
more natural to study using so-called associated homogeneous spaces, because of their
better scaling properties.  The second is that under assumptions more general than r-
regularity, the reproducing kernel associated with a projection operator is bounded by an 3�

radially decreasing convolution kernel.  We assume only that the scaling function or
weighted wavelets are bounded by an  radial decreasing function.  We emphasize that our3�

convergence rates for projection operators continue to hold if we do not assume existence of
a scaling functions or wavelets for the MRA
 The present results apply to multiscale expansions including those using Haar and
Daubechies wavelets, nonorthogonal wavelet expansions, and best approximations using
spline functions.  Our results hold for our spaces i.e., they  genericallymaximally, do not
hold for larger spaces of wavelets or the functions being expanded, if either one or the other
is fixed.  Some of the results in this paper have been announced previously [KKR2, KR ].�
Operating under minimal hypotheses, we provide proofs here of results whose proofs were
omitted or tersely sketched in the above announcements.  While this paper is self-contained,
we refer the reader to [KKR2, KR2] for preliminary results not included here.
 Our results differ somewhat from Jackson-type theorems in Fourier analysis and
characterizations of function spaces by convergence rates of their wavelet expansions (e.g.,
[Ma, Me]).  In Fourier analysis convergence rates are determined by smoothness of
functions being expanded.  In wavelet expansions, rates of convergence are jointly
determined by smoothness of the expanded function , and characteristics of the wavelet (or�
scaling function).  We attempt to pin down this dependence, focusing in this paper on
limitations imposed by the wavelet or scaling function itself.  This falls closer to the intent
of the Strang-Fix type results of approximation theory [SF] in focusing on properties of the
approximating function  as well as smoothness of .  There  must satisfy specific� ��
conditions for given approximation orders even if has infinite smoothness and compact�
support.  It is shown in [Wa] that wavelet expansions of sufficiently smooth functions
converge at rates commensurate with the differentiability of the wavelet.  Such results are
sharpened here into necessary and sufficient form, in  dimensions and for larger classes of�
scaling functions and wavelets.  Finally, we note results exist which provide  [BDR, JZ]3�

and supremum norm error bounds for shift-invariant spaces.
 A classical multiresolution analysis (MRA; [Ma], [Me], [D2]) is a decomposition of
32

n( ) into a sequence of closed subspaces V ,l�
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Ã= � = � = � = � = Ã ² À ³c� c� � � � , 1 1a

such that

� �²%³ � = ²�%³ � = �� �b�if and only if  for all . (1.1b)

In addition it is assumed

�
��

�

t

= ~ ¸�¹ ² À; 1 1c)

�
��

�
� �

t

= ~ 3 ² ³l (1.1d)

where overline denotes closure; and V  is closed under integer translations,0

� �²%³ � = ¬ ²% c �³ � = ² À� �, 1 1e)

for k .� td

 Finally, it is usually assumed in an MRA (though we do not assume this a priori) that
there exists L ( ) such that� l� 2 d

¸ ²%³ � ²% c �³¹ = À� �� ���t�   form an orthonormal basis for (1.1f)

 Such a  is a .  Our convention is that a multiresolution analysis is a� scaling function
sequence of orthogonal projections  onto the above spaces  which satisfies (1.1a-¸7 ¹ ¸= ¹� �

d), and existence of  will be assumed only when specified.�

 Let W  be the orthocomplement of V  in V , i.e., W  = V   V , so V  = V W .i i i+1 i i+1 i i+1 i im l
From existence of  it follows (see, e.g., [D2]) that there are basic wavelets (x)� �¸ ¹�

� $�  

(with  finite) such that (x)  2 (2 x - k)  (j , k ) form an orthonormal$ � � t tjk
jd/2 j d� �� � �

basis for a fixed W , and form an orthonormal basis for L ( ) as j, k vary.j
2 dl

 By (1.1a) and (1.1b), there exist h  such that¸ ¹k ��t�

� �²%³ ~ � � ²�% c �³ À�

��

��
t�

. (1 2)

The function

� ² ³ � � �� �

��

c��h� �
t

�

�

, (1.3)

is the  of h , and is easily shown to satisfysymbol ¸ ¹k k�td

     � � � � �^ ^( ) = m ( /2) ( /2).0

Our convention for Fourier transforms is

� < � � �V � ² ³ � ²� ³ ²%³� �%c�°� c� h%�
l

�

�

;
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we will write � �h % ~ %À
 The most direct construction of multidimensional wavelets is through tensor products of
one dimensional multiresolution analyses (see, e.g., [D2]).  In general we write, as a wavelet
basis for L ( ), the collection , with  an indexing set containing 2  - 12 d d

jk j ,k ,l � $¸ ¹� t t � $� � �d

elements.
 A general construction of so-called -regular wavelet bases in multiple dimension is�
given in [Gr, Me,Wo], where the scaling function  is assumed r-regular.  Note that in this�

algorithm, the assumption of r-regularity may be weakened somewhat, in particular with
respect to the requirements of rapid decay at infinity for the scaling function .�

 Whichever construction is used (see [D2], Ch.10; [Me], [Gr]), our results hold for any
set whose translations and dilations form an orthonormal basis for L ( ).  We will¸ ¹� l�

� 
2 d

assume our wavelets  and scaling functions  are in , and that they are radially� �� 3�

bounded by decreasing  functions (the details are given below).3�

Definitions 1.1:  A function f(x) on  is if f depends on |x|.  A real radial function isld radial 
decreasing if f(x)  f(y) whenever |x|  |y|.  A function f(x) is in the class [RB] (c.f.� �
[GK1,2]) if it is absolutely bounded by an L  radial decreasing function (x), and1 �

� l � �� ÀL ( )   (Note since  is defined at the origin,  must be bounded).1 d

 Let P  and Q , respectively, be the orthogonal projections from onto V  and W ,n n n n3 ² ³� �l

with kernels (when they exist) P (x,y) and Q (x,y).  Define .  An operator  is inn n 7 ~ 7 ;�

[RB] if it has a kernel , with [RB].O; ²%Á &³O � 2²% c &³ 2² h ³ �
 Given f  L ,� 2

(  the of f is defined by the sequence P f .i) multiresolution approximation ¸ ¹n n

(  the of f isii) wavelet expansion 

�
�Â�Â

�� ��

�

� �� ²%³ � �� , (1.4a)

with a  the L  expansion coefficients of , where denotes convergence in jk
2� � � 3 À�

(  the  of f isiii) scaling expansion

� �
� ���Â�Â

� �� ��� ²%³ b � ²%³ � �� �
�

� � , (1.4b)

where the b , a  are L  expansion coefficients of f. We say that such sums converge in ak jk
2�

given sense (e.g., pointwise, in L , etc.), if they do so in a semi-order-independent way.p

Specifically our convention is that sums are calculated such that the range (largest minus
smallest) of j values for which the sum over k,  is incomplete remains uniformly bounded.�

 Finally we define a scaling function of the MRA  to be any function  whose¸7 ¹� �

integer translates generate the space , the range of  (we do not assume existence of a = 7� � �

a priori for an MRA).  Since  uniquely determines a symbol  (equation (1.3)), we� �� ² ³�

define any symbol arising from a  corresponding to  to be a symbol of� ¸7 ¹�  ¸7 ¹À�

  Our results on sup-norm convergence norm extend a body of results (e.g., see [Wa,
Ma, Me, SP, BR, JZ]).  Mallat [Ma] was the first to sharply measure decay in  of L� 2
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approximation error, i.e., f - P f for -regular wavelets, resulting in a characterization� � �n L  2

of Sobolev spaces in terms of error decay rates of wavelet series.  Our results measure 3B

error, yielding best possible conditions allowing given convergence rates.

Definition 1.2:  The Sobolev space of order  is 

H    L ( ): f   f ( ) 1 + | |  d  <  .^s 2 d
s

s� � � � � � O O BF Gn�  !l � � �� �

The homogeneous Sobolev space is:

H    L ( ): f    f ( ) | | d  <  .^
h
s 2 d

h,s
2s � � � � � � O O BF Gn �l � � ��

Note H  is incomplete in this norm since it is restricted to .  In Fourier space, it is as
h 3 ² ³� �l

dense subspace of the complete weighted L  space of measurable f  with f < .^2
h,sall � � B

This space is advantageous in that its norms change simply with of scale.  By our restriction
that the functions be in , in fact for ,  and  consist of the same  functions,3  � � / / 3�   �

�

with quite different norms.

Definition 1.3:  An (MRA)  or wavelet family  yields ¸7 ¹� �� pointwise order of
approximation or convergence² ) s in H  if for any f H ,  the order approximation P fr r th � � �

satisfies

+ +, � � P²0 c 7 ³�P ~ 6²� ³Á ² À ³� � BB
c� 1 5

as  tends to infinity. �  It yields  order of approximation in if  is the largest numberbest    s /�

such that (1.5) holds for all If the supremum of the numbers for which (1.5) holdsf H� À  �

is not attained we denote the best order of convergence by More generally the wavelets Àc   
�� yield pointwise order of approximation (convergence) s if for any function f in a
sufficiently smooth Sobolev space  the equality above holds./�

 Note that by Proposition 2.6 statement (1.5) is equivalent to

+ +, � � * � P�PÁ� �B
c� 

for � � /�À

 In practice (according to the proof of Theorem 1 below) f is sufficiently smooth if
f H .  This is natural since some statements do not make sense for less smooth� s+d/2

functions.  For example, if the allowed Sobolev exponent were s + d/2 -  for some  > 0,� �

then for small s functions in H  might be discontinuous and the above statements coulds+d/2-�

not hold.
 We assume our wavelets satisfy (x) [RB], the class of radially bounded decreasing� �
3� functions, and/or that our scaling functions are in [RB].  This class of wavelets includes
r-regular wavelets (see [Me]) for any r  0.  The assumptions are needed for appropriate�
L  and a.e. convergence properties of wavelet expansions [KKR1].p
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 All the conditions in Theorem 1 below are equivalent, and some (where indicated)
require existence of wavelets and/or scaling functions.  The wavelet and scaling function
assumptions are independent.  The conditions focus on the relation of the wavelet's
smoothness to convergence rates of wavelet expansions.  Note  if and only if�²%³ � / 

�

�² ³ � 3 ²O O � ³ÀV � � �� � 

Theorem 1:  Given a multiresolution analysis with either i a scaling function  ( ) [RB],� �
( ) [RB]  ( ) ii basic wavelets satisfying or iii a kernel for the basic projection P��²%³ �
satisfying |P(x,y)| K(x - y) with K  the following conditions a to d are� � [RB],  ( ) ZZZ

equivalent for s (existence of a scaling function  for the MRA is not assumed in parts > d/2 �

(a)-(c'') ):
( ) a The multiresolution approximation yields pointwise order of approximation s - d/2 in
H , where  denotes dimension.s �
(a )  The multiresolution approximation yields pointwise order of approximation r - d/2 inZ

H for all r s with r>d/2r  ( ).�
( )  a The multiresolution approximation yields best pointwise order of approximationZZ

s - d/2 in Hs.
( )  a The multiresolution approximation yields best pointwise order of approximationZZZ

r - d/2 in H for all r (with ).r   s� � � �°�
( )   b The projection I - P : H   L  is bounded, where I is the identity.n h

s ¦ B

 If there exists a family  of basic wavelets corresponding to P  with¸ ¹ ¸ ¹��
n

��(x)  (regardless of existence of a scaling function)� [RB] :
(c) For every such family of basic wavelets and each , , the dual of � �� � / / Àc  

� �

(c ) For every such family of basic wavelets and for each Z � ,

�
| |< 

2 -2s

� �

� | ( )|  | |  d  < 1 6
^
� � � � B ² À �³

for some (or for all) including    > 0 (  = ).� � B
(c )  For some such family of basic wavelets, (1 6a) holds.ZZ À
If there exists a scaling function  corresponding to P (with or without a family of� ¸ n¹ 
wavelets):
(d)  For every scaling function corresponding to P� � ¸ ¹[RB] n

�
| |<  

d/2 -2s

� �

 ( 1 - (2 ) | ( )|) | |  d  < 1 6^� � � � � B À �³²

for some (or all)  > 0 (including  � � = ).B
( )   (1 6 ) d For some scaling function  corresponding to P , holds.Z � ¸ ¹n À �
( )  [RB] d  For every scaling function corresponding to PZZ � � ¸ ¹n

� �
| |<  0

2 -2s

� �

 | ( + 2 )|  | |  d  < 1 6^

M£

� � � � �M B À �³²

 Note that for full generality of the statement of this theorem, the order of proof of the
above equivalences includes a direct proof of the implication (b) (c).  Explicit proof of¬
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this (as opposed to following a different route in the equivalences - see below) is relevant to
the case in which we have orthonormal wavelets, but possibly no scaling function.  Our
direct proof of (d) (a) will be relevant for the case where there is an MRA, but no¬
orthonormal wavelets which satisfy the  radial bound conditions required in our proofs;3�

this allows existence of wavelets and scaling functions to be independent.
  When a scaling function and wavelet family constructed from this scaling function as in
[Me, Gr] (see below) satisfy the same  radial bounds as the scaling function, Theorem 13�

can be more easily proved through the sequence (d) (c) (a) (b) and (a) (d).  To¬ ¬ ¯ ¬
be specific, the implication (d) (c) can be proved more easily if a wavelet basis ¬ ¸ ¹��

�

constructed from the scaling function (see [Me, Gr, D2]) happens to satisfy our radial bound
conditions.  Note that for this latter order of proof the radial bound requirement on wavelets
is necessary even though the equivalence (a) (d) does not otherwise rely on the existence¯
of a wavelet basis, radially bounded or not.  Existence of such wavelets in general (though
without guarantees on radial bounds) is proved in [Wo].  If such wavelets satisfy radial
bound conditions, we can use that  for some periodic  function ,� � � � �� � �² ³ ~ � ² ³ ² ³ 3 ��

and that , from which we can deduce (d) (c) through a simple argument.�
�

�O� ² ³O ~ � ¬� �

 We have chosen not to make such assumptions (i.e., the automatic radial boundedness
of  following from that of ) in the theorem, and hence our order of proof, which thus� ��

must include explicit proofs of (b) (c) and (d) (a).  We will exclude details of the¬ ¬
additional elements of proof for this longer and more general sequence of implications in
order to limit the paper's length, and so only sketch the proof of Theorem 2.15 (covering the
proof of (b) (c)), and sketch the portion of the proof of Theorem 3.7 giving (d) (a).¬ ¬
 We remark H  is the “critical” space for order of approximation s , in that it is thes c �°�
lowest order Sobolev space in which this approximation order can occur.
 Condition (b) can refer to any or to all n, since  are equivalent under scale7�

transformations.
 Let = 0,1 be the -vectors with entries from the pair 0,1 .  Let- ¸ ¹ � ¸ ¹d 

- � - ±¸�¹Z ,

and recall  is defined in (1.3) (see also Definition 1.1).� ² ³� �

Theorem 2:  If m ( ) is a symbol of a multiresolution analysis corresponding to a sequence0 �

of projections as in Theorem 1 the following conditions are equivalent to those in Theorem, 
1:

(e)  For every symbol m  corresponding to P ,0 n( )� ¸ ¹

�
| |<  

0
2 -2s

� �

 (1-|m ( )| ) | |  d  < 1 6� � � B À �³²

for some (or all)  > 0 (including  � � = ).B
(e )  For some symbol m corresponding to P , (1 6 ) holds.Z  ( ) 0 � ¸ ¹ À �n

( )  Every (or some symbol m  corresponding to P  satisfies� ¸ ¹ZZ ) ( )0 n�
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�
| - |< 

0
2 -2s

� �� �

 |m ( )|  | - |  d  < � � �� � B ²1 6À �³

for some (or all)  > 0 (including  = ) � � B and for every .� � - Z

 Again the above hold for multiresolution expansions, scaling expansions, and wavelet
expansions if defined.

Remarks:

1. The above conditions are related to Strang-Fix conditions [SF], which relate H  and Ls B

orders of convergence of spline expansions to moment and other conditions, and our
theorem is effectively an extension of the so-called Condition A in [Str].  A significant
difference is that our results yield fractional orders of convergence.
 Fractional convergence orders are in fact possible for multiresolution expansions.
Indeed, in Theorem 1 it is shown order of convergence of a wavelet expansion is
determined by the asymptotics of the wavelet's (scaling function's) Fourier transform near
the origin.  To show any convergence order is possible, it suffices to construct scaling
functions with arbitrary asymptotics near the origin (not just those corresponding to integral
orders s  of convergence). c �°�
 
2.  Alternatively, condition (c) above is equivalent to | |   L ( ), with | |" � l "-(1/2)(s) 2 d� �
defined by operator calculus.  This is a singular integral condition on  itself (e.g., [Ste]).�

Thus

� " �� � = | |  ,s/2 

for some L ( ).� l� � 2 d

 For  and  an even integer, the standard assumption that for some � ~ �  ~ � � ��

| (x)|  C(1 + |x|) , 1 7� � ² À ³-k-1-�

implies ([KR2]) that (c) in| (x)| C(1 + |x|)  for integers   k.  So it can be shown �( ) - -1-M M� M ��

Theorem 1 is equivalent to the moment condition

  x  (x) dx = 0 for  0    k - 1.� M � � M �

The latter is equivalent to other versions of the Strang-Fix conditions [SF].

3.  Condition (1.6b) is related to -regularity.  Using Proposition 2.7 in [Me] we can�
conclude from our theorem pointwise convergence of order  for r-regular� b � c �

expansions in one dimension, for all  > 0.�

4.  The  range in the theorem cannot be extended.  Indeed if  then  � �°�
0 c 7 ¢ / ¦ 3 B cannot be bounded, as shown in a remark below.  On the other hand for
 � �°� � � conditions ( ) and ( ) of the above theorem always hold.  Indeed this is clear byZ Z
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the boundedness of  and .  Since the statements of the above theorems certainly make� �

sense for all  (but are false for ), the proofs of the conditions on  and  � �  � �°� � ��

must be delicate enough that they fail when   The points of failure are indicated in � �°�À
the proofs below.

5.  The scaling factors of 2 in the spaces V  is not crucial; the arguments hold for otherj

scalings, as long as a multiresolution analysis of the full function space results (see [Au]).

 Our strategy when wavelets are assumed to exist is to form of the kernel of , given by7�

P (x,y) =      (x) (y).n

 

j<n;k;
jk jk

�
�

� �� �

A similar expression in terms of the scaling function  will also be useful.�

 Finally, the present results are best possible  results in the scales of Sobolev spaces.3B

Note we assume both functions to be expanded and wavelets and scaling functions are in
3 À�   This corollary follows immediately from  Theorems 1 and 2:

Corollary 3:  ( )  a Given the Sobolev space H  as the space of functions  to be expanded, �
the homogeneous space H is the maximal space of possible wavelet functions  (if theyc 

�  ��

exist) for which Theorems 1 and 2 holdÀ
( )  b Given the Sobolev space  as the space of functions f  to be expanded, is the/ / c 

�

maximal space of the function  (if  exists) for which Theorems 1 and 2 hold.� c ²� ³ V� � ��°�

( ) c Given H  as the maximal space (i.e., smallest ) to which the  (or ) c �°�
�  � c ²� ³� � ��

belongs, the maximal Sobolev space of expanded functions f  for which Theorems 1 and 2
hold (i.e., for which we have order or best order of approximation ) is  c �°� / À 

 For completeness in section 5 we show convergence rates of wavelet expansions,
though they must be exponential in almost all spaces, can be arbitrarily slow within this
constraint.

2. Rates of convergence and wavelets
 We restate needed results from [KKR1];  and  denote the scaling function and basic� �

wavelet of a multiresolution expansion.  Statements are in  unless indicated otherwise.ld

Lemma 2.1 [KKR1]:   (i) [RB], (x,y)  If the scaling function then the kernel P� � ��
k�td

 (x-k) (y-k) � � satisfies

|P(x,y)|  (x - y),� 20

where , i.e., is a bounded radial decreasing L  function.  Convergence of this2 �0
1[RB]

sum is uniform on  and the sum is the L  kernel of Pl2d 2
0.
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(ii) (x)  [RB]   If , then Q(x,y)      (x - k) (y - k) converges uniformly and� � �� �

t �

�� � � 

k ;� d

absolutely on , and is bounded.  This is the kernel of the orthogonal projection Q  ontol2d
0

W .0

 A Lebesgue point  of a function  is a generalized continuity point near which f does% �
not deviate too much from the value f(x):

Definition 2.2:  The point x is a  of the measurable function f(x) on  if f isLebesgue point ld

integrable in some neighborhood of x and

lim   |f(x) - f(x + y)|dy = 0,
0 V(B )�S

�

�
�

B�

where B  denotes the ball of radius  about the origin, and V is volume.� �

 Continuity points are also Lebesgue points, though the Lebesgue set can be much larger
than the continuity set.  Lebesgue points have full Lebesgue measure on .l�

Theorem 2.3 : [KKR1] )   (i Assume only that the scaling function  of a given�

multiresolution analysis is in i.e. that it is bounded by an L radial decreasing´RB],  1

function.  Then for an f L ( ) its multiresolution approximation� p dl  (1 p ), � � B
converges to f pointwise almost everywhere.
(ii)  [RB] (1.4b) If , for all , then also the scaling  (if  1 p ) and wavelet� � �� � � � B
(1.4a) ( L ( )if 1 p< ) expansions of any f  converge to f pointwise almost� B � p dl

everywhere.  If further  and  are (partially) continuous, then both of these expansions� ��

additionally converge to f on its entire Lebesgue set.
(iii)  If we assume only (x) for all , then the wavelet (for 1� �� ln (2 +|x|) [RB] p< )� � B
and multiresolution (for 1 approximations of any f converge to f� � B �p ) L ( ) p dl

pointwise almost everywhere if further the  are (partially) continuous, then the wavelet;  ��

and multiresolution expansions converge to f on its Lebesgue set.
(iv) The last two statements hold for orders of summation where, at any stage, the range of
the values of j for which the sum over k and  is partially complete always remains �

bounded.

Definition 2.4:  Two functions ( ) and ( ) are , ( ) ( ), if there exist� � � �h h h � hequivalent
positive constants c  and c  such that for every  in their domain,1 2 �

c ( )  ( )  c ( ).1 2� � �� � � � �

 The L -Sobolev norm is equivalent to a more convenient one.  The homogeneous norm2

(Def. 1.2) has better scaling properties, and a relationship is:

� � � � � � � � P�Pf  f  +  fs h,s 0
/ 
�

for . � �
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Definition 2 5:  À Let  be the space  endowed with the equivalent norm  above./ / P h P
�  

/
�
 

 If  is Fourier transform, then (f(ax)) = a f ( /a).  Letting^< < �-d

f (x) = 2 f(2 x), 2 1n
nd/2 n ² À ³

we have

 f   =  | |  (2  2  |f (2 )|)  d  ^� �n h,s
2 2s nd/2 -nd -n 2
 � � �

     = 2  f  .2ns 2
h,s� �

 A key to our discussion is that convergence rates are closely related to the behavior of
Fourier transforms of wavelets and scaling functions (and more generally any dilated and
translated expansion functions) near the origin.  This behavior translates to that of the
kernels P  and Q  of the projections onto V  and W .  We inverse Fourier transform thesen n n n

kernels and define

P (x, ) = P (x,y);  Q (x, ) = Q (x,y),~
n ny y� < � <c� c�

� �
�

where the subscript indicates the inverse Fourier transform is in y.  It is easy to verify the
transforms converge everywhere and are continuous in , since under the assumption�

� � 7 ²%Á &³ 8 ²%Á &³ �[RB] it follows  and L , uniformly in x.  The same conclusions� �
1
y

hold for  if [RB] (see [KKR1]).8 ²%Á &³ �� �

 We effectively study the distance of the kernel  to the delta distribution7 ²%Á &³�

�²% c &³ /  � �°�³ in  (  to prove our results (this viewpoint is taken in [Wa]).  Considerc 

the error

� , � � ²% c &³ c �n n H L   = P (x,y)� s¦ B

where (x - y) is viewed as a convolution “kernel” applicable to functions in sufficiently�

smooth Sobolev spaces.  Strictly speaking the latter norm is that of the operator ,0 c 7n

since  does not exist as a function.�

 The error  is bounded in , but has no kernel in  and  since that of I is a delta, 3 3 % &�
� �

distribution.  In Fourier space the kernel is well defined:

  E f = f,
~

n n, <

where  has a kernel   (2 ) e  - P (x, ), with
~ ~

, , ²%Á ³ ~
�

n n
-d/2 ix

� � � ��

7 ²%Á ³ ~ 7 ²%Á ³ ~ ²� ³ 7 ²%Á &³� � ÀV~
–  � � �

c�°� � &� � � �� �

 Now we equate convergence orders and statements about operator norms:

Proposition 2.6:  Given a Banach space  and a normed linear space , and a sequence of( )
operators  the sequence has order of approximation i.e., for all ; ¢ ( ¦ )Á ²�³Á � � (Á� �+ + + +²0 c ; ³� � * ²�³ 0 c ; � * ²�³À� � �)

Z� � if and only if the operator norm 
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Proof:  Consider the operators   The second condition above states( � ²0 c ; ³° ²�³À� � �

that  are uniformly bounded.  By the uniform boundedness principle, this occurs if and(�

only if + +²0 c ; ³ ° ²�³� )f � is bounded in for every , completing the proof� � � ( À

 Define the scaling operator   Then , and:�²%³ ~ �²�%³À = ~ :=� �c�

7 ~ :7 : ~ : 7 : À� �c� �
c� � c�  We have also

P (x, y) = 2 P (2 x, 2 y). 2 2n 0
nd n n ² À ³

Let  and let E  = I - P  denote the error operator for ; let  � � = , � , Àn n � �

Lemma 2 7: À The sequence  is nondecreasing, with limit� P, P P,Pc�²�°�c ³
� / ¦3

� / ¦3 B
 

�
B

(which could be infinite).
 :  For , define .  Note  as well asProof � � / � ²%³ ~ � �²� %³ P� P ~ P�P ��°� �

� � � �,

P� P ~ � P�P ², � ³²%³ ~ � ²,�³ ²� %³À� �Á �Á � �
� ��°� �, and   Thus

P � P ~ � P,�P ÀE   � � 3 3
��°�

B B

Let  and( � P,P/ ¦3 

�
B

� � ~ ~ À
P, P

�

P, � P P,�P

� P� P b P� P P�P b � P�P
�

� / ¦3
�

�²�°�c ³
� �/ ��/

� � 3 3

�²�°�c ³ c� 
� / � � / �

 B

�
  

B B

  

� �

sup sup4 5 4 5
This last expression shows that  is a nondecreasing sequence bounded above by ¸� ¹ (� ��t

(since the sets  and  are defined to be the same).  Hence  converges (possibly to/ / �  
� �

+ ) and B � � (Àlim
�¦B

�

 Conversely, let  (so  by definition).  Then by definition of ,� � / � � 3 � �
� �

P,�P ~ � P, � P � � � P� P ~ � � P� P b P� P

~ � P�P b � P�P Á

3 � � 3 � � � � / � �
c��°� c� c� 

/
�

� / �
c� 

B B
 

 

�

 

�

4 5
4 5

for each .  Let  to conclude that .  Hence� � ¦ B P,�P � P�P � ( � � À3 / � �
�¦B �¦B

B  

�
lim lim

 Recall an operator  is in [RB] if it has a kernel  with ; O; ²%Á &³O � 2²% c &³ 2² h ³

� [RB].  Since and  norms are equivalent we have by the Lemma:/ /
�  

Proposition 2 8: À  Assume and let Then7 ~ 7 �  � �� [RB] .  

(a)   The error E  = P satisfies the scaling identityn n0 c

� � � � � ² À ³E 2 E  ,n H L H L
-n(s-d/2) 

s s
h¦ ¦B B 2 3

with the equivalence uniform over n if the right side is finite., 

(b)  2 3If the right side of ( ) is infinite thenÀ
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        .
E

n
� �

�
¦ BSB

n H L
-n(s-d/2)

s¦ B

 Thus if (2 3) is finite for some n,À

C  2 E  < E  < C  2 E  .1 H L n H L 2 H L
n(d/2-s) n(d/2-s) � � � � � �s s

h h
s¦ ¦ ¦B B B

 Taking (a) and noting (b) of Proposition 2.8 when E = , we obtain:� � BH Ls
h¦

B

Theorem 2.9 :  ²² ³ ¯a (b) in Theorem 1) Consider a multiresolution analysis with
reproducing projections P onto V which are in and let s > A necessary andn n  [RB],  0.  
sufficient condition that this multiresolution analysis yield pointwise approximations of
order s in H is that be bounded, with P the projection onto V - d/2  : H   L  ,s s

h 00 c 7 ¦ B

and  0 the identity.

Remarks:  1.  Since P is an operator on L , Theorem 2.9 technically states  maps2 0 c 7
H L  into L , though since L   H  is dense in H , the statements are equivalent.s+d/2 2 2 s s

h h hq qB

2.  Since s  is allowed in Theorem 2.9, this also formally describes situations in� �°�
which pointwise approximations are guaranteed to diverge at the rate O(2 ) for somen(d/2-s)

functions f.  This may apply to some multiresolution expansions, but for wavelet
expansions s   is vacuous, since in this case : H   L  is never bounded.� �°� 0 c 7 ¦s+d/2

h
B

Indeed we assume the basic wavelet  is bounded, so Pf L  for f L .  On the other� � �B 2

hand there exist unbounded functions in H  and hence H  for s  .  Hence for s s
h
 � �°� �

�°� ²7 c 0³� � it is impossible for  to be bounded for all f  H  and the hypothesis of thes
h

theorem is never satisfied in this case.

We can in fact prove a more general theorem.  For this we need:

Definition 2.10:   Let A be a normed linear space (NLS) of functions on a vector space ?
with norm .  Define the   by� h � � h �a a,hassociated homogeneous norm

� � � � ² À ³
SB

f   =   lim  f(cx) / (c) 2 4ca,h a�

where (c) is a positive function (if it exists) for which the limit (2 4) exists for all f A,� À �
and is nontrivial for 0.  An NLS  for which there exists  such that� £ ( ²�³�+ + + +�²�%³ ~ �²%³ � � �� �(c)  for all  is a space.homogeneous

 The norm (2.4) is uniquely defined up to a constant multiple for all , if any  yielding� �

a homogeneous norm exists.  Indeed if  and  are two such functions the ratio of the� �1 2

resulting norms will be  lim (c)/ (c).  If , then  is the of cSB
²�³ ~ � � (À� � �1 2

� scaling factor 

 Note  need not be a pure power of .  If | ,�²�³ � �²%³ � O�²%³O ²O % b �³ �%+ + 
 ln

+ + � ��²�%³ ~ � O�²%³O ²O ²%°�³ b � �% � � � O�²%³O �% ²� ¦ B³Ác� c�ln ln| )  
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so , and �²�³ ~ � � � ~ � Àc�
�Á� �ln + + + +

 We remark that associated homogeneous norms exist for all L -Sobolev spaces ,p 3�
 

1 p , and that for  we have (c) = c .� � B Lp
s �  -d/p

Theorem 2.11:  Let A and be any homogeneous Banach spaces of functions on , with  B ld

scaling factors k  and k .  Then a necessary and sufficient condition for a multiresolutionA B

analysis P  to yield approximations of order  = to the space B¸ � �n¹ � ) (
c� from the space A 

is that : A  B 0 c 7 ¦ be bounded.

Proof:  Letting , ~ 0 c 7� �

 + + + + + + + +, ~ : ,: ~ : ,: � ° �� (¦) (¦) (
� c� � c�

��(
)sup

  .~ : ,� ° : � ~ � � ,� ° �sup sup
��( ��(

� � � c�
) )( ) ((+ + + + + + + +

Thus if  is bounded we get approximations of the desired order.  Conversely if, ~ 0 c 7
, , is unbounded then so is , and so by Proposition 2.6 we fail to have any order of�

convergence.

 Thus order of approximation between homogeneous spaces is entirely determined by the
scaling factors (if they exist) of the two spaces A and B.
 We now consider what properties of the basic wavelet  imply order  convergence�  
using Theorem 2.9.  The correct condition will be that  be in the dual space .� / ~ / c 

� �
i

Note that

(2 ) ( (x)) = 2  e  (2 ) (2 ). 2 5
^

� < � � � �d/2 -jd/2 -i2 k d/2 -j
jk
� � �-j

² À ³

Theorem 2.12 ((c) (a)):  [RB] ¬ Let  and assume and  for all � �°� ²%³ � � /� �� � c 
�

�.  Then the MRA yields pointwise order of approximation  in . c �°� / 

 Proof:  Suppose  for each , and .  Then� �� � / � � /c  

Oº� Á »O � P�P P P ~ � P�P P P Á� � �� � �
�Á� �Á�/ / / /

c� 
 c  c 

� � � �

by the formula (2.5) and a simple dilation argument.  Since [RB],�� �

sup
!� ��l t

�
�

�
�

� O ²! c �³O � ( � BÀ�

Hence for each , each , and each ,� t l� � % � �

f f� �
��

�Á� �Á�
c� ��°� �

/ /

��

c�² c�°�³
/ /

t

� � � �

t

�
�

º� Á » ²%³ � � P�P P P � O ²� % c �³O

� � ( P�P P P À

� � � �

�

 c 

� �

�

 c 

� �

Therefore
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P²0 c 7 ³�P � º�Á » � � ( P�P P P

� �� P�P ( P P

� B / /

�~�b� �~�b�

B B

��

�Á� �Á�

B

c�² c�°�³

c�² c�°�³
/ /

� � � � �k k
�

� t �

� � �
�

�

�
�

� � �

�

 c 

� �

c c 

� �
,

as desired.

Corollary 2.13 ((c) (b)):  [RB]¬ The projection  is bounded if 0 c 7 ¢ / ¦ 3 ��
 B
� �

and  for each .� �� /c 
�

 Proof:  Theorems 2.9 and 2.12.

We now prove (b) implies (c) via:

Lemma 2.14:  Let g be complex-valued functions of an integer argument n for eachi (n) 
1 with  for at least one i Then there exists a vector  such that� � M B

SB
i , lim sup |g (n)| =  .  

n
i v

if we define (n) = (g (n),  ,g (n)), then for any vector ,g c1 Ã M

      lim sup | (n)| < 
nSB

h Bc g

only if  = 0.c vh
 Proof:  Let (n) = (n)/| (n)|, and let  be a limit point of the sequence (n).  Then ifh g g v h
c v h v hh £ ¦ h

SB
  0, we would have for a subsequence n  such that (n )    ,  |c (n )|>  for

k
k k k �

some positive .  Thus we would have�

lim sup | (n)| =  lim sup | (n)|| (n)|   lim sup | (n)| = ,
n n nSB SB SB

h h � Bc g c h g g�

yielding the desired result.

 In the next theorem note (x) H  is a condition on  as a linear functional.  This is� �� s
h
*

equivalent to bounds on the Fourier transform of , which dictate the proof's approach.�

Recall P = P  is the  orthogonal projection onto V .  Announcements of this result have0 03�

appeared in [KKR1, KR2]; here we include the complete technical details.
 The proof of Theorem 2.15 below is sketched (see remark at end of Section 1).

Theorem 2.15  ((b) (c) in Theorem 1): s > d/2 [RB] ¬ � Let  and assume for all .� ��

Then if P  H   L is bounded, H the dual space of H0 c ¦:  (x) ,  .s s
h h

B � �
* s

h

  Proof:  Assume H = H  for some .  Assume  takes values from 1 to� � $ ��1
*

¤ �s -s
h h 1

M � ² ³ *V and without loss assume  = 1.  Then there is a sequence f , with  in and� �1 � � �
B

+ + 
� ~ � ³ ¦ B
c

SB� �Ás 
1

n n such that ( f ( ) d     + .  The sequence f  can be chosen so the
^ ^ ^

n� � � �

integrand above is positive for all n.  Let Q (x, ) be the Fourier transform in  of Q (x,y)^
0 0� &
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�  Q(x,y), which exists as a function by the bounds in Lemma 2.1.  Using (2.5) we can
show (all L  norms are in x)B

� � ² À ³� Q (x, y) f (y) dy  = 2 60 n B � A �� �f (- )  (- ) (x, ) d^ ^
n

 

� � � � �
�

� �
B

where

A �� �(x, )  e  � � 

k

-i k ��(x - k)

is the Zak transform of .��

 We now show the L  norm in (2.6) becomes infinite as n .  Note we haveB ¦ B
assumed that  [RB] L  (recall functions in [RB] are bounded), but that�� � � 2

� � � � �1
n

^ ( ) f ( ) d      . 2 7^
n¦ B ² À ³SB

It is not difficult to see we can choose f ( ) to be a sequence of C  functions whose support^
n 0� B

does not contain the origin (though the origin may be in the limit of the supports of f ).^
n

Assume without loss there is a subsequence n  such that¸ ¹k

� �� � � � � � � �1
n n

^
_

( ) f ( ) d    | ( ) f ( )| d^ ^^
_

k k� �

for all ; otherwise we could change indexing of the 's so this is the case, and then adjust� �

the phase of the f  so that ( )f ( ) is everywhere positive.  Now re-index so the new
^
_

^
n n

1
k k� � �

sequence  is the sequence ¸� ¹ ¸� ¹ À� � � ��

 In addition it can be shown easily that there is a set  of x with positive measure such.
that (x,0)  0.A £1

 Since f ( )|  L  are uniformly L -bounded in n for any fixed >0 (as they have^
n | |>

2 2� �� � �
norm 1 in ),/ 

�

 lim ( ) f ( ) d  = 2 8n
^
_

^
SB

B ² À ³�
| |<  

1 
n

� �

� � � �

for any >0.  Also for any x and , the Zak transform (x, ) is continuous in  at  = 0,� � � � �A�

since it is a Fourier series  with coefficients in  (since L [RB]� �M � q ³À1 1

 Consider linear combinations

   ( ) =  c  ( )^ ^
� � � �c � 

�

�
�

with  = (c , c , , c ).  Define the vector function ( ) = , , ( ), and consider^ ^ ^c 1 2
1Ã ÃM

M� � � � �6 7
the integral ( ) (x, ) f ( ) d , where the inner product in the integrand is between the^ ^
� � � � �hA n

vectors ( ) and (x, ) ( , , )(x, ).�̂ � � �A � A Ã A1 M
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 It follows from Lemma 2.14 and equation (2 8) that the set of vectors  such thatÀ c

 lim sup
n

 |  ( ) f ( ) d^
SB

O £ B�
| |<

c n
� �

� � � �

must all satisfy a linear relation of the form  = 0, where  is a nontrivial vector.v c vh
 We can then show that for some  of positive measure, x  implies (x,0). � � . hld v A
£ � .0. Thus for x  

   lim sup f ( )  ( )  (x,0) d  = .
n

^ ^
SB

O A O B� �n

 

� � � �
�

� � ² À ³2 9

It is easy to show there exists a set  of positive measure such that for x ,. � . � .1 1

O h O Àv A (x,0)  > >0 for some fixed >0� �

 Consider now   (w , w , , w ), withwn n n n
1 2� Ã M

     w   ( ) f ( ) d .^ ^
n n
� �� � � � � �

We henceforth assume the vector  is constructed as in Lemma 2.14, as a limit point of thev
directions of the vectors , i.e., of /| |.  We claim for x , there is aw w w wn n n

   
n 1

� � � .
subsequence n  such that¸ ¹k

    | (x,0)| > wwn n
1

k k
hA �

for  as above.  Indeed,      for an appropriate subsequence, since  is a limit point
k

� w v vnk
� ¦

SB
of .  Thus for large kwnk

�

| (x,0)| = | (x,0)|| | >  | |  w w w w wn n n n n
1 

k k k k k
h h ��A A � �

(recall that is positive by our assumptions).  Equivalently for $ % � .�
�

�
�

| f ( )  ( )  (x,0) d  |  >  f ( )  ( ) d 2 10^ ^^ ^� ��n n

 
1

k k� � � � � � � � �
�

� �A À ² À ³

 Consider now the full integral in (2 6) (now including the variation in ),À �

� �f ( )  ( )  (x,- ) d .^ ^
n

 

k � � � � �
�

� �A ² À ³2 11

With some additional arguments it can be shown that (2.10) holds as well if the left side is
replaced by (2.11), for  in another set  of positive measure.% .�

Thus for % � .�

 | f ( )  ( )  (x,– ) d |     .^ ^
k

� �n

 

k � � � � �
�

� �A ¦ B
SB

Thus by (2.6)
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� � � A � ¦ B
SB

� � �Q (x, y) f (y)  = f ( )  ( )  (x,- ) d       ,^ ^
k

0 n  n

 

k kB B� � � � �
�

� �

so that Q = , since f  = 1 for all n .  By scaling therefore for all n,� � B � �0 H   n H ks s
h hk¦ LB  

    Q =  .� � Bn H   s
h ¦ LB  

 Now consider the projection P  = P  + Q .  We have1 0 0

� � � �(P  - I) f  = (P  - I) f  + Q f ,1 n 0 n 0 nk k kB B

so that if (P  - I)f  is bounded in k, then by the above equation (P  - I) f  is� � � �0 n 1 nk kB B

unbounded in k.  Thus by scaling invariance (P  - I)  =  (since the two norms� � B0 H L  s
h¦

B

are infinite or finite together).  This completes the proof.

Combining Theorems 2.8 and 2.15:

Corollary 2.16 :  ²(a) (c ) in Theorem 1)¯ Z For s>0 a necessary and sufficient condition
for order s convergence in  of wavelet expansions with basic wavelets c �°� /  �

satisfying is that for all � ��²%³ � [RB] 

  | ( )|  | |  d  < 2 12
^�

| |<  

2 -2s

� �

�� � � � B À² ³

for some (or for all)  > 0 (including  = ).� � B

This follows because for L , (2.12) states that H .� �� �2 -s
h

Remarks: 1. Note this result is intuitively expected for s close to 0, since then order s
convergence naturally requires f H , since otherwise need not even be continuous.� �s+d/2

2.  Order  convergence in this Theorem (and the other parts of Theorem 1) applies to any 
summation order in which scale j wavelets are added before scale j + 1 wavelets.  This is
best seen from the fact that not only I - P  satisfies the bounds in the proof of Theorem 2.15,j

but also any part Q (x,y) =  (x) (y) of Q .  Precisely, we have that the normjK jk jk jk K
�

� � �

Q : H   L  is bounded uniformly in the choice of the set K, using arguments identical0K
s
h ¦ B

to those for I - P  in the first part of the proof (sufficiency) of Theorem 2.15.      j

 This statement easily extends to the statement that the present results hold for any order
of summation in which the range of values of j for which the sum over k and  is partially�

complete always remains bounded.

3.  Proofs of conditions on scaling functions
 We now translate condition (2.12) into one on the scaling function .  First under our�

hypotheses,
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�
ld 

�(x) dx = 1 3.1)²

if  is multiplied by a possible phase constant.  To see this note that under the assumption�

� � �, [RB], the function (x - k) is uniformly bounded in x through an�  ²%³ � � 

k�t�

argument using the radial bound (x) for (x), and the fact that the sum can be bounded by� �

a constant times (x - y) dy < .  Thus by dominated convergence for 
 � tB M � �

� ��
l lt

d dd  

 

k

� � �(x )s(x) dx  =  (x) (x - k) dx  = 1. 3.2c M ² ³
�

Similarly for any with �jk � � �

�
ld 

jk� (x) s(x) dx = 0. 3.3² ³

It is not hard to show that s L  is uniquely identified by (3.2) and (3.3).  Thus� B

s(x) =  (x - k)  3.4
( ) d

� 

 

k

�
�

� ² ³
�

& &
l�

since this satisfies (3.2, 3.3).  Also by dominated convergence

� � �� �� � �(x) dx =     (x - k) dx  =     (x - k) dx ,
  

k kC C� �t td d

with C the unit cube x  | 0 x 1 .  By this and the complex conjugate of (3.4)¸ � � � ¹ld
i

� � 
 
�
� �

(x) dx =   dx = ,
(y) dy (y) dyC

� �

so (x) dx  = 1, and after possible multiplication of  by a phase (3.1) holds, andO O
 � �2

�
�

^(0) = . 3.5
(2 )

�
² ³

d/2

Let  = 0,1  be all vectors with entries consisting of 0,1 .  The following is an- ¸ ¹ ¸ ¹d

extension of a standard one dimensional fact:

Lemma 3.1:  If  is a scaling function for a multiresolution analysis, then�

  | (  + 2 )|  = (2 ) .^�
M�td

� � � �M 2 -d 

Furthermore for any F� � ,
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  | (  + )|  = (2 ) .^�
M� b2

2 -d 

t �d

� � � �M

Thus:

Lemma 3.2:  If  is a scaling function for a multiresolution analysis, then ^� �(0) = (2 )� -d/2

and for  (2 ) = 0 0.�̂ �M M £

 This follows from (3.5), and Lemma 3.1.Proof:  

Corollary 3.3:  If  is a scaling function from a multiresolution analysis�

 | ( +2 )| C((2 ) - | ( )|)^�
M� M£td; 0

2 -d/2 � � � � � �M �

for some C� �.

 By Lemma 3.1Proof:  

 | ( +2 )| = (2 ) - | (^�
M� M£td; 0

2 -d � � � � �M V �)| .2

     = (2 )  + | ( )| (2 ) - | ( )|6 7 4 5� � � � � �-d/2 -d/2 V

      C (2 ) - | ( )|� V6 7� � �-d/2 

since  is bounded.�V

 If  is a scaling function for a multiresolution analysis, the coefficients  are� ¸� ¹k k�td

defined by

� �(x)  =   2 (2x-k) 3 6d 
 

k

k�
�td

� ² À ³

Fourier transforming (3.6)

� � � � � � �^ ^ ^( )  =  e ( /2) = m ( /2) ( /2)� 

k

k 0
-ik /2 

�t

�

d

� ² À ³3 7

Thus

m (0) = 1 3.80 ² ³

 Then
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   (2 )  =   | (  + 2 )|^� � � �-d 2�
M�td

M

     =   |m ( /2 + )|  | ( /2 + )|^�
M�td

0
2 2� � � � �M M

     =          |m ( /2 + )|  | ( /2 + )|  .^� � 

2
0

2 2

� t ��- M� bd

� �� � � �M

     =  (2 )     |m ( /2 + )|  ,� � ��-d 2
 

0�
��-

yielding

� 

0
2

��-

 |m (  + )|   =  1 3.9� �� ² ³

a.e. for .  Together with (3.8), this shows m ( ) assumes its maximum value of 1 at � l � �� d
0

= 0.  In the third equality above we have used the 2  - periodicity of m in all coordinate� 0

directions, and in the last we have used Lemma 3.1
 For the following theorem we need a general version of the Poisson summation
formula [SW, Theorem VII.2.4].  Given f(x) L ( ) (using our Fourier transform� 1 dl

conventions)

� �  

k l

d/2 2 ixl 

� �t t

�

d d

 f(x + k)  =  (2 )    f (2 l)e  , 3.10^� � ² ³

with f  the Fourier transform of f.^

Proposition 3.4:  For , an operator with kernel  is bounded if � 9 9²%Á &³l : H   L  s
h ¦ B

and only if R in the variable , uniformly in (x,y) H  , � �À�ÀÁ-s
h & %

� O9 ²%Á ³OO O � � * � BÁV� c� � � �

for almost all where is the Fourier transform of in % 9²%Á ³ 9 &V,   .�

 Assume first R: H   L  is bounded.  To show |R(x, )| | | d is^Proof:  s 2 -2s  
h ¦ B 
 � � �

uniformly bounded in x, we have
   R  =  ess sup       sup |Rf(x)|

x    f = 1  
� �

� �
H L

h,s

s
h¦

B

      =  ess sup  |R(x, )|  | |  d
x    

^6 7
 � � �2 -2s
1/2

since in the norm of a function (in this case  viewed as a function of ) is the9²%Á ³V � �

supremum of its values on functionals in the unit ball of the dual space.

 Conversely if R(x,y) H  essentially uniformly in x, then R: H   L  is bounded^ � ¦-s s
h h

B

by the Schwartz inequality:

 R(x, ) f (– ) d   |R(x, )|  | | d  |f ( )|  | | d^ ^^ ^� � � � �
 
 
� � � � � � � � �B B
2 2 -2s 2 2s
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      = |R(x, )|  | | d  f .^� � � �
 � � �2 -2s 2
h,sB

Recall , ~ , ~ 0 c 7 À�

Corollary 3.5:  The MRA P  has order of approximation s - d/2 in H if and only if the¸ ¹n
s 

error in the variable , uniformly in x., &(x, ) H  & � ², ²%Á ³³ �
�

< ��
-s
h

 Proof:  This is an immediate corollary of Proposition 3.4 and Theorem 1.

Equivalently (recall  is defined before Proposition 2.6):,²%Á ³
�

�

Corollary 3.6:  The MRA P  has order of approximation s  in H if and only if¸ ¹ c �°�n
s 
 |  is essentially bounded in x.,²

�

x, )| |  d  � � ��O -2s

 We remark that the following theorem has at least two proofs, one taking advantage of
relationships between the Fourier transforms of the scaling function  and wavelets � ��

(with the additional assumption that the latter are radially bounded)   Both proofs haveÀ
approximately equal complexity, and we include that which does not rely on existence of
wavelets.

Theorem 3.7 : ((a) (d) in Theorem 1)¯  Let  be the scaling function of a multiresolution�

analysis, and assume A necessary and sufficient condition for order� � [RB] d/2.  Á  �
s convergence in  of the multiresolution approximation with scaling function  isc �°� / �

that  satisfy�

 (1 - (2 ) | ( )|) | |  d  < 3.11^�
| |<  

d/2 -2s

� �

� � � � � B ² ³

for some (or for all)  > 0.�

 Proof :  Assume first that (3.11) is satisfied.  We only sketch a proof of the
implication that we have order  convergence (see remark at end of Section 1).  By c �°�
Theorem 2.8 we need to show   I - P  is bounded from H  to L .  By Corollary 3.6, it, �0 0 h

s B

suffices to show  is essentially bounded in .  Since , we
 � O, ²%Á ³O O O % , ~ 0 c 7� � �
�

� � �
� c� 

consider the kernel of ; recall that the kernel in Fourier space –  is the7 7 ²%Á ³ ~ 7 ²%Á ³� � �
V �

� �

Fourier transform of  in :7²%Á &³ &

7 ²%Á ³ � ²7 ²%Á &³³ ~ ²% c �³ ²& c �³V c

~ ²� ³

~ A

� & � &

�

c�°�

� < < � �

� � �

� � �

: ;�
� � 

k

i(y+k)  (x - k) (y) e dy 

(x, ) (- ),^

�
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where (x, )   (x - k) e  =  (x + k) e  is the Zak transform of .  A �� � � �� �  

k k
-i k i k� � Thus

, ²%Á ³ , 0
�

� �� , the kernel of  in Fourier space, is (  denotes the identity)

, ²%Á ³ ~ 0 ²%Á ³ c 7 ²%Á ³ ~ ²� ³ � c A²%Á ³ ² ³
� � V V

c
� �

c�°� �%� � � � � � �– –�

Define � � � � �(x)  (x)e , so (w) = (w - ).  Using the Poisson formula and recalling^ ^� i x�

- ~ ¸�Á �¹�, it can be shown

A � b ² ³(x, )      (x k) e 3.12� �� 

k

i k

�t

�

d

         = (2 ) e    m (  - /2)     (  - /2) e .^� �� � � � �d/2 -i x 2 ix
  

0
2

� �

� t �

� �
�- �� b

�

d

�

Note that  is continuous in  for each , since its Fourier series has coefficientsA²%Á ³ %� �

� �²% b �³ M À A²%Á ³ in   Further, the functions  are easily shown to be uniformly continuous�

in , in the parameter , since [RB].� �% �
 Another calculation then shows

A A ² ³(x,– ) ( )  - (2x,– /2) ( /2) 3.13^ ^� � � � � �

=  (|m ( /2)|  - 1) ( /2) (2x,– /2)^
0

2� � � �A

     + m ( /2) ( /2)   m (   /2)  (2x,– /2- )^
0 0

0
� � � �� � � ���

�£

b A

Some additional calculations using the relationship of  and  show� ² ³ ² ³� � � �

�
| |<  

0
2 -2s

� �

(|1 - m ( /2)| ) | |  d  < . 3.14� � � B ² ³

 Using (3.9) we can then show

� |m ( /2)|   | |  d  < 3.150
2 -2s�� � � �b BÀ ² ³

Combining  (3.13)  (3.14), and (3.15)  (L  norms are in x only), a calculation givesÁ B

6 7

| |<

2 -2s
1/2

� �
� �O � � A c ²� ³ � � � A c ²� ³ � O Oc�% �°� c�% �°�

B B(x,– ) ( ) - (2x,– /2) ( /2) | d^ ^� � � � � � � � � �

     (|m ( /2)|  - 1) ( /2) (2x,– /2)  | |  d^� O O � A � O8 9

| |<  0

2 2 -2s
1/2

� �
� � � � � �B

+ m ( /2) ( /2)    m (   /2)  (2x,– /2 )  | |  d^: ;
 �
| |< 0 0

0

2 -2s

1/2

� �
�

O O O b O � A c � O� � � �� � � �� � �
£

B

 <B
since (x, ) is uniformly bounded in x and , as are  and A � ÀV� � � �

 Defining
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F( )  e (x,– ) ( ) - (2 ) | | ,^� � � � � �� � A �6 7c c
B

ix d/2 -s�

we remark for future reference (part II of this paper) that this function is continuous in ,�

being the supremum in  of a collection of functions which are uniformly continuous in % �

(see remark before (3.13)).
 We have by the above

�
| |<  

-s 2

� �

| F( ) - 2 F( /2)| d < .� � � B

Since (x, ) and ( ) are both uniformly bounded in x and  and , it follows in fact^A  � �°�� � � �

that

) � B ² ³� �
ld

|F( ) - 2 F( /2)| d < . 3.16� � �-s 2

Through some technical arguments we can then show from this that .  Thus- � 3 ² ³� �l

� � A � BÀe (x,– ) ( ) - (2 ) | |  d  < ^c
B

i x -d/2  2 -2s� � � � � � �

 Thus by Corollary 3.6  is bounded, and thus by Theorem 2.9 the, ¢ / ¦ 3�
 B
�  

multiresolution expansion with scaling function  has order of convergence s .� c �°�
 To prove the converse, assume

�
| |<  

d/2 -2s

� �

(1 - (2 ) | ( )|) | |  d  = 3 17^� � � � � BÀ ² À ³

By (3.12)

(2 ) e  - (x,– ) ( )^� � � �-d/2 ix� A

    = (2 ) e  1 -  (2 ) (2   ) e ( )  .^ ^� � � � � � �-d/2 ix d 2 ix  
 

� �

t
: ;�

��

�

d

� b

The second factor is

1  -    (2 ) (2   )e ( ) =^ ^� 
d 2 ix  

��

�

t

�

d

� � � � � �� b

    =  1 -  (2 )  | ( )|   -   (2 )  ( ) (2   )e .^ ^ ^8 9 �� � � � � � � � �d 2 d 2 ix
 

0�£

�� b �

Letting  denote the unit cube in ,* l�
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� � f f8 9 �
� f f8 9 �e

* �£

� c� 
�

�
�

�£

�% c c � b O O

~ c b

| |<

-d/2 d 2 d/2 2 ix
 

0

| |<

-d/2 d 2
 

0

� �

�

� �

(2 ) 1 (2 ) | ( )| (2 ) ( ) (2 )e d^ ^ ^

(2 ) (2 ) 1 (2 ) | ( )| (2^

� � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � �

) ( ) (2 )  d^ ^

(2 ) ( ) (2 )  d^ ^

3 18

d/2

| |<

 

0

d/2

� b O O

� ²� ³ � b O O

² À ³

e
� �e e

�
c� 

� c� 

�£

�

� �

Note the first equality follows from the Parseval equality for Fourier series, since the %
integration (once the and  integrations are interchanged) is the square of the -norm of a% 3� �

Fourier series in .%
 On the other hand by 3 17 , factoring the difference of squares below and using² À ³
Lemma 3.1,

²� ³ ² O ² b � M³O O O ~ ~ BV� � � � � � � � � � �� � c� c� 

O O� O O�M£�

� ��
� � � �

) d  (1 - (2 ) | ( )| )| |  d ,^d 2

so comparing with (3.18), (since  and is continuous)� �V V²�³ £ �

� � f f
* O O�

�% c� 
�

�% � A O O ~ BÀ
� �

�(2 )  - (x,– ) ( )  d  ^� � � � � �-d/2

The above is an  norm over the unit cube  in  of a periodic function in , and so the3 * % %�

3 ÀB norm of the function is also infinite
 Therefore the pseudodifferential operator

, ²%Á ³ ~ � c A�

�
�%� � � � �(2 )  (x,– ) ( )^-d/2 �

satisfies

j j� O, ²%Á ³O O O � ~ BÀ ² ³�

�
� c� 

B

� � � 3.19

Applying proposition 3.4, we conclude the corresponding operator  is, ¢ / ¦ 3�
 B
�

unbounded, so by Theorem 1, we do not have order  convergence in . c �°� / 

Theorem 3.8 :   ((d) (e)) ,¯ � �For real  and! �

�
| |<  

d/2 -t

� �

 ( 1 - (2 ) | ( )|) | |  d  < ^� � � � � B

if and only if
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�
| |<  

0
2 -t

� �

 (1 - |m ( )| ) | |  d  < 3 20� � � B À² ³

 Assume the first condition above.  Then (see (3.7))Proof:  

|m ( )|  - 1 =  (2 ) | (2 )|  - 1  -  |m ( )|  (2 ) | ( )|  - 1 , 3 210 0
2 d 2 2 d 2� � � � � � � �6 7 6 7V V ² À ³

which immediately yields the second condition (upon factoring the differences of squares
on the right of (3 21)).À
 Conversely assume the second condition in the statement holds.  We have

6 7 6 71 -  (2 ) | (2 )|   - 1 - (2 ) | ( )|   =  (2 ) (| ( )|  - | (2 )| ) 3 22� � � � � � � � � � �d 2 d 2 d 2 2V V V V ² À ³

    =  (2 ) (| ( )|  - |m ( ) ( )| )� � � � � �d 2 2
0V V

    =  (2 ) (1 - |m ( )| ) | ( )| .� � � �d 2 2
0 V

The factors in the integrand of (3 20) are positive À since  assumes its maximum value� ² ³� �

of 1 at , as shown earlier.  Thus� ~ �



| |<  

d 2 d 2 -t
� �

 |( 1 - (2 ) | ( )| ) - ( 1 - (2 ) | ( /2)| ) | | |  d  < .^ ^� � � � � � � � B

 Defining F( ) ( 1 - (2 ) | ( )| )| |  d ,^� � � � � �� d 2 -t



| |<  

-t
� �

 | F( ) - 2 F( /2) |  d   < .� � � B

Proceeding now as in (3.16), we define G( ) F( ) and get:� �� � �¸ � ¹| | 2� � ( ), 

�  |G( ) - 2 G( /2)|  d   < .� � �-t B

Let G ( ) be L  functions which increase monotonically pointwise to G, such thatn
1�

|G ( ) - 2 G ( /2)|  |G( ) - 2 G( /2)|;n n
-t -t� � � ��

these can be constructed with some simple arguments.
 Now we have:

 G ( ) - 2 G ( /2)   G ( )  - 2 G ( /2) 3 23� � � � � � � ² À ³n n 1 n 1 n 1
-t -t� � � �

      =  1 - 2  G ( ) .4 5d-t
n 1� ��

Since the left side of (3.23) is bounded uniformly in n by dominated convergence, it follows
the same holds for the right side, and again by dominated convergence G( ) L , i.e.,� � 1
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( 1 - (2 ) | ( )| )| | L ,^� � � �d 2 -t 1�

as desired.
 We note that Theorem 3.8 establishes the equivalence of statements (d) and (e) in
Theorems 1 and 2 when ! ~ � À

4.  Proof of Theorems 1 and 2

 With the results of Sections 2 and 3 we can now prove Theorems 1 and 2 :
  The equivalence of (a) and (b) of Theorem 1 is in Theorem 2.9.  TheProof: 
implication (c) (a) is proved in Theorem 2.12, while (b) (c) is Theorem 2.15.  The¬ ¬
equivalence of (c) and (c') is easily established.  Since the equivalence of (c) and (b) in fact
is shown to hold for any given family of wavelets, it follows (c ) is equivalent to (b).  ThatZ Z

(d) and (d ) are equivalent to (a) has been proved in Theorem 3.7.  The equivalence of Z Z²� ³
and follows from Lemma 3.1, since²� ³ZZ

� ��
�

| |<  | |<  0

2 -2s -2s

| |<  

-2s

� � � �

� �

 | ( + 2 )|  | |  d    | |  d^

  | |  d

M£

c� �

c�°� c�°�

� � � � � � � � � �

� � � � � � �

M ~ ²²� ³ c O ² ³O ³V

~ ²²� ³ c O ² ³O³²²� ³ b O ² ³O³V V �.

 Let us now prove (a)  (a ).  Clearly we need only show (a)  (a ).  This follows¯ ¬Z Z

easily if we assume the equivalence of  and  or .  If we do not assume the existence²�³ ²�³ ²�³
of a set of wavelets or a scaling function, we can proceed as follows.
  Thus assume that the multiresolution approximation yields pointwise order of
approximation s - d/2 in H .  Then by the parts of the Theorem already proved, I - P:  H s s

h
¦ �°� � � L  is bounded.  To show order of convergence r - d/2 in H  for r s, we needB r

to show I - P: H   L  is also bounded for such r.  The latter follows from decomposingr
h ¦ B

Fourier transforms of functions f H  as f  = f  + f , where f ( ) is zero for | | 1, and^ ^ ^ ^� �r
h 1 2 1 � �

f ( ) is zero for | | 1/2.  Uniform boundedness of I - P: H   L  on functions of the^
2

r
h� � � ¦ B

form f  with f 1 is easy to show, since for such functions the norm  is^
1 1 h,r h,s� � � � h �

dominated by .  Further, uniform boundedness of I - P: H   L  on functions of� h � ¦h,r
r
h

B

the form f  with h,r norm less than 1 also holds, since this class of functions is uniformly^
2

bounded in H  for r > d/2, and so is uniformly bounded in C .  Writing (I - P)f  = f  - Pf ,r 0
2 2 2

clearly the identity is uniformly bounded on H L  for the sub-class of functions f , andr
2¦ B

in addition P, having a radially bounded kernel, is also uniformly bounded between the
same spaces.  The latter follows from the fact that functions of the form f  with H  norm2

r

less than 1 are also uniformly bounded in L , so that, since P has a kernel which is boundedB

by an L  convolution kernel, Pf  for such f  are uniformly bounded in L .  Therefore, it1
2 2

B

follows that in H  for d/2<r s, I - P is uniformly bounded, and therefore that we haver
h �

order of convergence r - d/2  in H  for r in this range.r
h

 To prove that (a) and (a ) are equivalent it suffices to show that in H  for s > d/2, theZ Z s

order of approximation, if it is s - d/2, cannot be better than s - d/2.  However, if the



28

expansion has order of approximation s - d/2, then by previously proved parts of the
theorem, E: H   L  is bounded, so by Proposition 2.8 the best order of approximation ins

h ¦ B

H  is s - d/2.  That (a ) follows from (a ) can be shown by an argument identical to thes
h

Z ZZ ZZ

above proof that (a ) follows from (a).Z Z

 Finally the equivalence of ( ) of Theorem 2 with (d) of Theorem 1 follows from�
Theorem 3.8, and the equivalence of (d ) with ( ) of Theorem 2 is apparent.  TheZ ZZ �
equivalence of ( ) and ( ) in Theorem 2 follows from (3.9), in the form� �Z ZZ

    1 - |m ( )|  =  |m (  + )| ,0 0
2 2

 

0

� � ���
�£

together with a change of variable in the integral of ( ).�ZZ

 This completes the proofs of the two theorems.

5.  Arbitrarily slow convergence

 We show here that there exist functions whose wavelet expansions converge arbitrarily
slowly.

 Consider in one dimension f(x) =  , and which is smooth everywhere.J x  for |x| < 1
0 for |x|>2

�

Recall

P f  = P (x,y) f(y) dy = 2 P (2 x,2 y) f(y) dy  = P (2 x, y) f(2 y) dy.n n 0
n n n n -n²%³ � � ��

so that at ,% ~ �
, �²�³ � ²0 c 7 ³�²�³

~ 7 �²�³

~

� �

�

�

�

 

P (0, y) f(2 y) dy

 =  + P (0, y) f(2 y) dy,

�
8 9� �

-n

I J  

-n

n n

where I  = (-2 , 2 ) and  J  = (2 , )  (-2 , ).  Nown n
n n n nB r B


 
 

I -2  -2

-n -n -n2 2

n

n n

n n P (0,y) f(2 y) dy  = P (0,y) (2 y)  dy  = 2   P (0,y) y  dy.� � �
� � �

 For simplicity we assume the scaling function  has compact support, so the same is�

true of  P(0, y).  Thus the integral over I  will be O(2 ).  Since  has compact� �
-n� 7 ²�Á &³

support, the integral over eventually vanishes, and we have error at the point 0 given by1�

6²� ³Àc�� Since  can be arbitrarily small, convergence can be arbitrarily slow.�

 As a final remark we note that because the scaling relation between  and is the, ,� �-1

same as that between  and , convergence must be exponential, i.e., , , P, P� �b� � (¦3B

vanishes exponentially in , whenever the Banach space  has a norm with the� (
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homogeneous space property  ( , which is the case withP�²�%³P � � P�²%³P � ¦ B³�

almost all spaces currently of interest.
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