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Abstract—Gene expression (microarray) data have been used
widely in bioinformatics. The expression data of a large
number of genes from small numbers of subjects are used
to identify informative biomarkers that may predict or help in
diagnosing some disorders. More recently, increasing amounts
of information from underlying relationships of the expressed
genes have become available, and workers have started to
investigate algorithms which can use such a priori information
to improve classification or regression based on gene expres-
sion. In this paper, we describe three novel machine learning
algorithms for regularizing (smoothing) microarray expression
values defined on gene sets with known prior network or metric
structures, and which exploit this gene interaction information.
These regularized expression values can be used with any
machine classifier with the goal of better classification. In this
paper, standard smoothing (denoising) techniques previously
developed for functions on Euclidean spaces are extended to
allow smoothing of microarray expression feature vectors using
distance measures defined by biological networks. Such a priori
smoothing (denoising) of the feature vectors using metrics on
the index space (here the space of genes) yields better signal to
noise ratios in the data. When tested on two breast cancer
datasets, support vector machine classifiers trained on the
smoothed expression values obtain better areas under ROC
curves in two cancer datasets.
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I. INTRODUCTION

In computational biology, genome-wide microarray ex-
pression profiles have proved to be informative for phe-
notype classifications, for example classifications involving
disease diagnosis, prognosis, and etiology [1], [2], [3]. Some
technical challenges in the use of such information include
problems related to feature selection and noise reduction.
Feature selection, in the context of phenotype classification,
aims to select a small group of features (e.g. genes) as
biomarkers which can help eliminate irrelevant information
by restricting to these most informative features (e.g. highly
differentially expressed genes), in addition to triggering
further biological/clinical investigation of the disorder mech-
anism [4], [5], [6], [7], [8]. Nevertheless, the tremendous
amount of noise residing in the expression profiles limits the
performance of classification. This is due to the randomized
character of the microarray tissue selection and hybridization
process, as well as measurement noise and other factors. In

addition, because a biological disorder is usually caused by a
smaller number of genes, irrelevant genetic correlations due
to the dynamics of biological processes mask the disease-
related biomarkers under a huge amount of information
(the problem of too many genes), with limited improvement
through the use of regular feature selection methods.

Recently, methods for denoising gene expression data
have drawn attention from researchers. In addition to meth-
ods using posterior information (which is internal to the
data), some techniques take into account prior information
(external to data) involving previously known genetic rela-
tionships. Of particular interest are metric-type or ‘distance’
relationships among genes. Such prior relationships are
usually represented in the form of networks or graphs to
indicate similarity among genes based on gene ontology
annotations [9], biological pathways [10], membership in
protein modules [11], etc. Gene expression patterns can then
be denoised by imposing expression similarity on groups of
highly related genes. Along this approach, different methods
have been used to obtain denoised expression features [12],
[13], [14], [15], [16]. Techniques involving adaptations of
more functional and numerical analytic approaches have
involved spectral decompositions of gene expression func-
tions [17] and graph wavelet-based denoising of gene ex-
pression functions [18].

In this paper we advocate a multifaceted approach
which adapts various denoising methods used in statistics
(e.g., [19]) and numerical analysis [20]. The denoised fea-
ture vectors can help the later implementation of machine
learning algorithms and improve the classification/regression
performance. In particular, we focus on representing the
expression feature vector z = (z1, . . . , zn) (zj = expression
value of gene vj) as a function f(v) over a space V
consisting of genes or their indices. We then adapt analytic
smoothing techniques to functions on V , for example, by
defining on V a global metric based on network information
from the graph G = (V,E) [21], [22]. We apply analogs
of the above-mentioned analytic tools, e.g., locally constant
regularization [23], kernel smoothing [24], and support
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vector regression smoothing [25] to denoising microarray
expression features, to illustrate a more general regulariza-
tion method for feature vectors in machine learning (ML).
The regularized (pre-processed) expression features can then
be used in training and prediction in standard ML algo-
rithms. As an application we use this method to pre-process
expression feature vectors used in support vector machine
(SVM) classification of two breast cancer datasets [6], [26]
involving prediction of cancer metastasis. Comparing this
to the same classifiers using raw (unregularized) expression
features, the SVM using denoised expression can improve
the area under the prediction ROC curve by 19.6 and
8.6 percentage points, respectively, on the two metastasis
datasets.

In contrast to other microarray denoising methods (e.g.,
PAM [27]), such algorithms use prior knowledge on gene-
gene relationships (in a gene space V ) to smooth the values
of their expression feature vectors, while most previous
methods have used information from the expression feature
space Z itself. More importantly, by considering Z as
a function space on V , this approach to ‘smoothing’ of
expression feature vectors (in Z) using network relationships
enables adaption to the gene space V and more generally to
any space which is the index set Ω of ML feature vectors
of various smoothing/denoising techniques which have been
successful in Euclidean spaces. Among these methods, some
kernel-based methods (kernel smoothing and support vector
regression) can also be shown to be scalable, in that multiple
prior networks can be integrated transparently. Though here
we use a single network (based on protein-protein interac-
tions) to demonstrate the idea and its implementation, the
method can be expanded to multiple networks using standard
machine learning kernel combination methods.

II. METHOD

A. Overview of the Methodologies

We assume our biological machine learning (ML) problem
is to estimate the conditional probability P (Y = 1|z), given
the observed expression feature vector z = (z1, . . . , zn).
Here Y = 1 or −1 indicates, e.g., disease or normal (or case
and control) phenotypes, respectively. We remark that our
focus is on the unsupervised denoising of expression feature
vectors z (i.e., without reference or knowledge of the label
Y ), rather than on the classification problem, which is down-
stream from our unsupervised procedure. Depending upon
the selection of subsequent ML classification algorithms,
this approach can be used to pre-process feature vectors
for various ML tasks, including multi-class classifiers and
regression predictors.

Our model assumes the observed expression value zj of
gene vj consists of signal plus noise, i.e.,

zj = f(vj) + εj

where f(·) is the underlying target (e.g. gene expression)
function to be approximated, while εj represents noise, i.e.,
any additional signal. We assume the εj are independent and
identically distributed (iid).

Formulating the recovery of f as a regression-like prob-
lem requires an analog of a distance metric on the underlying
(gene) space V , characterizing relationships of genes vj in
V . In this paper, we will use the above-mentioned a priori
network relationships to derive a prior distance metric on
the underlying space V (the index set of genes on which the
features are defined) independently of the feature vectors z
defined on it. In particular, we use the network structure
G = (V,E), where the vertices vj ∈ V are genes (or
their protein products) and edges ej ∈ E (edges) are a
set of interactions between genes (or proteins). Examples
of such networks are protein-protein interaction (PPI) net-
works [11], metabolic pathways [10], transcriptomes [28],
and any gene co-expression networks [30]. Under a distance
metric derived from such a graph G, strongly connected
gene pairs (usually connected through multiple network
routes) will be closer to each other than weakly connected
genes. The biological content of such a distance metric can
include measurement of functional similarity, membership
in a metabolic process or regulatory module, co-expression
in other experiments, and other network-derived information.
The denoising of observed expression feature vector is based
on the intuition that f(vi) is similar to f(vj) if vi and vj are
close to each other. More generally, such a regularization can
also be done on any index set V of the feature vectors in an
ML algorithm, assuming V admits some a priori (network
or metric distance) relations on it.

B. Methodologies

This section presents mathematical details from the pre-
vious section, (and is separate from the biological/machine
learning content of this paper). We want first to derive a
metric (distance measure) among genes in the space V , from
the network relationship. One intuitive metric is the geodesic
distance on the graph G (i.e., the length of the shortest path
connecting two vertices). With such a distance d defined
on the gene space V , we can group genes into disjoint
clusters Vk (1 ≤ k ≤ K) with similarity in clusters corre-
sponding, e.g., to functional or regulatory modules or other
characteristics contained in the network G. Each cluster
defines a neighborhood, while the total number of clusters K
controls the sizes of neighborhoods. An expression feature
vector f(v) can then be regularized using local averaging.
Thus f(v) (viewed as a function on V ) is projected onto
constants (i.e., averaged) within each cluster to obtain a local
cluster activity, defined by fk = |Vk|−1

∑
j:vj∈Vk

zj . The
expectation is that this locally smoothed (flattened) version
of f(v) can eliminate a good deal of random measurement
and other error in order to improve ML inferences based on
the feature vector f = (f1, . . . , fk) .



With the definition of such a distance metric d and
corresponding neighborhoods on V , we can alternatively
also adopt kernel smoothing [24] techniques from Euclidean
space for a function f on V . Specifically, unlike the above
clustering-based smoothing using equal weights and com-
mon neighborhoods, each gene now has its own set of
neighbors (varying with the gene), with a weight given to
each neighbor determined by its distance to the center gene
and a kernel function K(vi, vj) = k(dij/σ). The resulting
smoothed approximation is

f (vj) =
∑

i K (vi, vj) zi∑
i K (vi, vj)

To avoid computation of the distance metric d, we can
also test graph diffusion kernels [32] and support vector
regression [25] to approximate the underlying expression
function f(v), globally or locally within a gene cluster. In
particular, we have approximated the expression function for
each coexpression cluster [29] Vk by a function from the
family

fk (vj) =
∑

i:vi∈Vk

αkiK (vi, vj) zi + bk

and optimized the objective function∑
j

C · L(fk(vj), zj) + ‖f‖2
K ,

where ‖f‖K represents the norm in the reproducing
kernel Hilbert space with graph diffusion kernel K.
L(fk(vj), zj) = (|fk(vj) − zj | − ε)+ is the loss function
and C is a regularization parameter balancing the weights
between prediction accuracy and smoothness f . Though it
is similar to the second approach mentioned in the form of
the function f (weighted average of neighboring expression
values zi), this approach does not explicitly use the distance
metric d in its computation. Similarly, the distance metric
induced from the graph diffusion kernel K measures the
connectivity between two vertices (genes).

These three approaches have their own advantages.
1) Control of over-denoising: The clustering-based

smoother controls over-denoising with the number of
clusters k. This parameter is more understandable than
the bandwidth σ or functional complexity ‖f‖K used
in the other two methods.

2) Ease of computation: Though in practice the compu-
tation of distance metrics can be very expensive, all
three of the above methods can be computed without
explicit calculation of the metric. In particular, for
clustering-based smoothers, a graph clustering algo-
rithm [31] is used to approximate the best clustering
quickly. And diffusion kernels [32] can also be cal-
culated for the kernel-based methods without solving
for the distance metric. Beyond that, however, support
vector regression is more computationally expensive.

3) Flexibility of approximation: Note that support vec-
tor regression is more flexible than the averaging-
based methods, since it uses a family of functions to
approximate locally the expression function f for each
patient. When noise is low along with the risk of over-
fitting, the support vector regression estimate is able
to capture more of the signal structure.

III. APPLICATION

The best way to test the effectiveness of the above
denoising is to train a fixed classification algorithm on
the original and denoised expression feature vectors, in
order to compare the algorithm performances. We expect
that using regularized feature vectors improves classifica-
tion performance comparing to using raw feature vectors.
We used two breast cancer datasets from high-throughput
gene expression studies by Wang, et al. [6] and van de
Vijver, et al. [26], together with outcome information on
metastasis. Because the computational cost to derive the
geodesic distance is significantly large, we only assessed
the clustering-based smoothing (Approach 1) and support
vector regression (Approach 3) to demonstrate the concepts
of our methods. A protein-protein interaction network G
compiled from multiple databases [11], [33] was used to
provide a priori information of functional relationship for
the construction of the denoising operators discussed above.
The total number of genes in the raw datasets contains more
than 5000+ genes.

We tried different numbers of clusters for the clustering-
based smoother above. As expected, the performance on
both datasets first improves as cluster size decreases, and
then deteriorates as k increases (this non-monotonicity
property of denoising accuracy is studied mathematically
in [21]). Three measurements of performance used. AUROC
and AUPRC are defined as areas under the ROC curve
and the precision-recall curve, respectively. They assess
the performance by measuring both power and prediction
errors. ACC90 measures the prediction accuracy when the
cut-off obtains 90% sensitivity. It is a common statistic
used in disease prognosis. The best SVM classifier used
on clustering-smoothed expression data is more accurate
than SVM using raw gene expression features. For example,
the area under the ROC curve is improved by clustering
smoothing from 53.4% to 73.0% and from 66.0% to 71.2%
for Wang’s dataset and van de Vijver’s dataset, respectively.
Details are listed in Table I.

We tested support vector regression on the same datasets
with the assistance of the LIBSVM [34] package (ε-SVR).
To limit over-denoising, we controlled for low local com-
plexity of the estimated expression function f . We also
defined coexpression sub-clusters [29] to control the require-
ment that the complexity needed within each cluster be low.
For the Wang dataset, the performance of SVR was com-
parable to cluster smoothing. In the van de Vijver dataset,



SVR further improved the area under the ROC curve from
71.2% to 74.6% (See Table II). Even though SV regression
fits a better local expression function than averaging, it needs
more data points for training. That explains why the optimal
number of clusters for SVR method is smaller than for
cluster-based smoothing.

No. Clusters Wang van de Vijver
AUROC AUPRC ACC90 AUROC AUPRC ACC90

64 0.658 0.450 0.470 0.687 0.371 0.472
(0.014) (0.019) (0.027) (0.014) (0.015) (0.024)

128 0.680 0.462 0.477 0.705 0.399 0.520
(0.015) (0.021) (0.023) (0.013) (0.019) (0.023)

256 0.692 0.475 0.526 0.689 0.398 0.490
(0.019) (0.026) (0.029) (0.016) (0.022) (0.030)

512 0.684 0.487 0.502 0.686 0.375 0.489
(0.019) (0.031) (0.029) (0.021) (0.023) (0.038)

1024 0.708 0.500 0.527 0.712 0.403 0.520
(0.019) (0.032) (0.029) (0.019) (0.026) (0.026)

2048 0.730 0.522 0.567 0.500 0.270 0.311
(0.017) (0.029) (0.024) (0.038) (0.026) (0.026)

RAW 0.534 0.362 0.430 0.660 0.346 0.535
(0.044) (0.032) (0.035) (0.027) (0.028) (0.020)

Table I
PERFORMANCE OF CLUSTERING-BASED SMOOTHER ON WANG AND

VAN DE VIJVER BREAST CANCER DATASETS. NUMBERS WITHOUT
PARENTHESES ARE MEAN VALUES OF THE PERFORMANCE MEASURES
OVER 200 5-FOLD CROSS VALIDATIONS. NUMBERS IN PARENTHESES

ARE STANDARD DEVIATIONS OF THE PERFORMANCE MEASURES.
AUROC AND AUPRC ARE AREAS UNDER ROC CURVE AND

PRECISION-RECALL CURVE, RESPECTIVELY. THEY ASSESS THE
PERFORMANCE BY BOTH POWER AND PREDICTION ERRORS. ACC90

MEASURES THE PREDICTION ACCURACY WHEN THE CUT-OFF OBTAINS
90% SENSITIVITY. IT IS A COMMON STATISTIC USED IN DISEASE

PROGNOSIS. THE ROW INDICATED BY RAW REPRESENTS THE SVM
TRAINED ON UNADJUSTED EXPRESSION FEATURE VECTORS. FOR ALL

VALUES OF k TESTED, THE DATA SMOOTHED BY ALGORITHM 1
IMPROVES THE PERFORMANCE OF THE CLASSIFIER.

No. Clusters Wang van de Vijver
AUROC AUPRC ACC90 AUROC AUPRC ACC90

1 0.618 0.405 0.456
(0.013) (0.014) (0.024)

64 0.672 0.503 0.476 0.706 0.441 0.468
(0.018) (0.025) (0.033) (0.017) (0.025) (0.032)

128 0.698 0.519 0.52 0.738 0.456 0.527
(0.018) (0.026) (0.032) (0.017) (0.024) (0.035)

256 0.716 0.526 0.565 0.741 0.465 0.536
(0.017) (0.024) (0.030) (0.017) (0.025) (0.033)

512 0.71 0.515 0.567 0.746 0.478 0.552
(0.016) (0.023) (0.027) (0.015) (0.026) (0.030)

1024 0.701 0.494 0.558 0.74 0.48 0.536
(0.015) (0.022) (0.027) (0.013) (0.025) (0.022)

2048 0.676 0.47 0.521 0.718 0.441 0.532
(0.019) (0.026) (0.031) (0.015) (0.026) (0.018)

RAW 0.54 0.364 0.434 0.661 0.351 0.535
(0.040) (0.030) (0.035) (0.023) (0.026) (0.020)

Table II
PERFORMANCE OF SUPPORT VECTOR REGRESSION ON WANG AND

VAN DE VIJVER BREAST CANCER DATASETS. NUMBERS WITHOUT
PARENTHESES ARE MEAN VALUES OF THE PERFORMANCE MEASURES
OVER 200 5-FOLD CROSS VALIDATIONS. NUMBERS IN PARENTHESES

ARE STANDARD DEVIATIONS OF THE PERFORMANCE MEASURES.

IV. CONCLUSION

In this paper we have presented outlines of three new
algorithms for smoothing (denoising) high throughput mi-
croarray expression data, all based on the principle of un-
supervised regularization (preprocessing of feature vectors)
using a priori information (in this case from biological
networks). The conversion of network information into
distance metrics in gene space has also allowed further
study of more advanced smoothing/denoising techniques on
expression data. When applied on two breast cancer datasets
in predicting metastasis, the machine classifiers trained with
such denoised expression features achieved better perfor-
mances than those trained with raw expression features. In
particular, areas under ROC curves were improved by 19.6
and 8.6 percentage points in two data sets using denoised
expression features.

Conventional classification analyses effectively assume
that gene expressions are independent, and treat them as
individual features for building classification or regression
models. Network information allows introduction of inter-
gene metrics into consideration, which more generally en-
courages a search for modularized sets of biomarkers to
supplement or replace individual gene biomarkers. Because
genes in the same functional modules have similar denoised
expression values, feature selection will be more likely
to identify groups of genes in the same modules as a
result. In addition, derived distance metrics on gene space
can also be useful in quantifying gene interactions. Other
statistical principles, such as canonical correlations and
principal component analysis, are also good candidates for
extension into gene space; such additional work could lead
to the development of more advanced modular biomarker
identification algorithms.
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[23] W. Härdle, Applied Nonparametric Regression (Econometric
Society Monographs). Cambridge University Press, January
1992.

[24] M. P. Wand and M. C. Jones, Kernel Smoothing (Chapman &
Hall/CRC Monographs on Statistics & Applied Probability).
Chapman and Hall/CRC, December 1994.

[25] V. Vapnik, The Nature of Statistical Learning Theory (Infor-
mation Science and Statistics). Springer, November 1999.

[26] M. Parrish, D. Atsma, A. Witteveen, A. Glas, L. Delahaye,
T. Van Der Velde, H. Bartelink, S. Rodenhuis, E. T. Rutgers,
and e. a. Friend, S H, “A gene-expression signature as a
predictor of survival in breast cancer,” The New England
Journal of Medicine, vol. 347, no. 25, pp. 1999–2009, 2002.

[27] R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu, “iag-
nosis of multiple cancer types by shrunken centroids of gene
expression,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 99, no. 10, pp. 6567–
6572, May 2002.

[28] V. Matys, E. Fricke, R. Geffers, E. Gossling, M. Haubrock,
R. Hehl, K. Hornischer, D. Karas, A. E. Kel, O. V.
Kel-Margoulis, D.-U. Kloos, S. Land, B. Lewicki-Potapov,
H. Michael, R. Munch, I. Reuter, S. Rotert, H. Saxel,
M. Scheer, S. Thiele, and E. Wingender, “TRANSFAC(R):
transcriptional regulation, from patterns to profiles,” Nucl.
Acids Res., vol. 31, no. 1, pp. 374–378, 2003.

[29] K. Yeung, M. Medvedovic, and R. Bumgarner, “Clustering
gene-expression data with repeated measurements,” Genome
Biology, vol. 4, no. 5, pp. R34+, 2003.

[30] B. Zhang and S. Horvath, “A general framework for weighted
gene co-expression network analysis.” Statistical applications
in genetics and molecular biology, vol. 4, no. 1, 2005.



[31] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts
without eigenvectors a multilevel approach,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 29,
no. 11, pp. 1944–1957, 2007.

[32] R. I. Kondor and J. D. Lafferty, “Diffusion kernels on graphs
and other discrete input spaces,” in ICML ’02: Proceedings of
the Nineteenth International Conference on Machine Learn-
ing. Morgan Kaufmann Publishers Inc., 2002, pp. 315–322.

[33] S. Razick, G. Magklaras, and I. M. Donaldson, “irefindex: A
consolidated protein interaction database with provenance,”
BMC Bioinformatics, vol. 9, no. 1, p. 405, 2008.

[34] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support
vector machines, 2001.


