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Abstract

We attempt to unify and compare a class of algorithms
for learning input-output (i-o) functions  from examples.�
Our general approach involves parsing information about
�  into a priori and a posteriori information, with each
represented by a probability measure on the space  of-
candidate functions.  A consequence is that complexities of
different approximation algorithms for the same problems
will be possible to compare, and optimal algorithms will be
possible to identify.  We illustrate this by formulating an
information complexity theory for regularization radial
basis function (RBF) networks.  We show the -complexity�

of approximating  using regularization is equivalent to the�
�-complexity of approximating  using any consistent�
Bayesian approach.  In particular, a Gaussian prior
distribution may be assumed for correct computation of all
complexities.

1.  Introduction

There are currently many areas of mathematics,
statistics, and computer science which deal with learning
theory, which effectively involves the extrapolation of
functions from partial information or examples.

The theory of learning in neural networks has the goal
of extrapolating an input-output (i-o) function  from partial�
information consisting of examples of .  � Given a set of
data points, the many ways of extrapolating a function �²%³

from these imply a need for a study of how such
methodologies fit into a larger framework.  In this paper we
will discuss approaches to this problem, and attempt to
place several approximation procedures into a wider
context.  Through this we hope to develop an approach to
comparing approximation errors of different methodologies,
and hence the complexities of finding -approximations of�

i-o functions.  A sub-goal is the formulation of a normative

index of approximation complexities, and more direct
comparisons of different approximation methods.

One solution of the learning problem is provided by
radial basis function (RBF) neural networks [3,4], which
extrapolate  from examples by effectively assuming a�
prescribed smoothness, or possibly other a priori
information.  An information complexity theory for RBF
networks estimates how many examples are needed to
approximate  to a given tolerance.  Such a theory has been�
studied in [1, 2], in the context of a worst-case formulation
of error, with an assumption that  is known a priori to be�
contained in a given set .-�

A more general formulation of the learning problem can
be formulated as follows.  Assume that there is a function
� ¢ ? ¦ @  to be learned through examples

5� ~ ²�²% ³ÁÃ Á �²% ³³� �

If random errors are involved so that  is replaced by�²% ³�
�²% ³ b ? @� �� ,  the relationship between  and  becomes
probabilistic, and a probability density  on  is a� ? d @
better description of the relationship of input and output.
We will assume here for simplicity that the relationship
between  and  is deterministic, so that ? @ ~ �À��

Most approaches to estimating  have in common the�
fact that there is information provided a priori regarding ,�
to be used in learning .  In addition, it is assumed some�
additional data about  are given (generally in the form of�
examples ).  These data are  information.5� a posteriori
The learning algorithm must make the best guess at  from�
the two types of information.  More generally, we can
formulate  information as some kind of priora priori
knowledge about .  This prior knowledge can be�²%³

thought of as a probability distribution  on the space �pr -

of all possible .�
On the other hand, an  probabilitya posteriori

distribution  on  is implied by the information .�po - 5�

The density  will be assumed to depend only on the�po²�³

finite collection of numbers   A�²% ³ÁÃ Á �²% ³À� �

distribution of this type, which depends on a finite number



of variables, is known as a distribution (or cylindercylinder 
measure).

The job of an inference engine is to combine the
probability distributions  and  in the best way in order� �pr po

to estimate .  To estimate  it is also necessary to assume a� �
penalty for errors.  The most general assumption is that this
has a form  where  is the sought function, and  is<²�Á �³ � �

the estimate of .  A reasonable algorithm for estimating � �
will minimize the expected risk, which must be carefully
defined, given that two equally valid probability measures
are at work.

2.  The parsing of approximation methods: some
examples

 Learning theory includes many different and very
effective approaches   An important goal is to classify theseÀ

within a coherent framework, and to analyze and compare
their complexities of approximation within this framework.
We include some examples of successful learning
algorithms and indicate their parsing of a priori and a
posteriori information.  Since the latter generally consists of
examples , it is not specified here unless necessary.  In5�
all of the examples below, it is possible to identify
reasonable and , though  this is not done here for� �pr po

brevity.

1.  Interpolatory approach (worst case approach) in
continuous complexity theory    : Here generally, a priori
information consists of the fact that , where  is a� � - -� �

balanced convex set of functions in a normed linear space.
Optimal algorithms approximate center of set - q5 &�

c�

through an algorithm �²5�³ � �À

2.  :  The aAverage case approach in continuous complexity
priori information is that the function  to be learned is�
drawn from a given probability distribution  on a� ²�³�pr

normed linear space . The algorithm for choosing - � 
selects  to be the average of  conditioned on� � ²�³�pr

5� ~ &.  If  is a Gaussian measure then an optimal�pr

learning algorithm is the [5], which givesspline algorithm 
an approximation to  of the form�

� ~ ²5�³ ~ �²% ³* 2²%Á % ³� �
�

� ��

where  is the covariance operator of the Gaussian* ~ (�
c�

(a generalization of the covariance matrix).  Here, 2²%Á % ³�
is a radial basis function, i.e., the reproducing kernel for the
space with the norm .P(�P

3.  : These learnFeedforward Neural Network Algorithms   
from examples  of an unknown i-5� ~ ²�²% ³ÁÃ Á �²% ³³� �

o function , and form an approximation�²%³

� ~ � . ²%³Á�
�

� � (1)

where  might be ridge functions, radial basis functions or.�

other functions computed by the hidden layer, with the
coefficients computed using backpropagation or other
algorithms.  An implicit a priori assumption is that  can be�
written in the form (1).  This is often effectively a
smoothness assumption, since a finite number of neurons
with a smooth activation function  will produce smooth/

approximations   Indeed, if  are RBF's, we know�À . ²%³�

optimal approximations (1) explicitly minimize Sobolev
norm.

4. :  These estimate   Maximum likelihood approaches �

using an approximation  which is consistent with the�
information , and whose probability is the largest under5�
the a priori measure  restricted to � ²�³ ¸� ¢ 5� ~ &¹À�pr

5.  :  HereRegularization (radial basis function) approaches
the a priori information consists, for example, of the fact
that  is smooth, i.e., that its Sobolev norm  is small� P(�P

(here , with  the Laplacian).( ~ c b � c" "

 The algorithm for choosing  involves minimization of�
a weighted combination

/ ²�³ ~ P5� c &P b P(�P�
� � ,

where  is the a posteriori information (data) from5� ~ &

the  to be learned.  The minimizing , under some� �
standard assumptions, is evaluated by a neural network
which computes a linear combination of radial basis
functions (RBF's) of the form

� ~ � 2²%Á % ³�
�

� � .

This method can also be reformulated probabilistically in
the context of the prior and post probability densities �pr

and .�po

6.  Vapnik-Chervenenkis (V-C) approach:  Given nested
family  of candidate  spaces increasing in size¸= ¹�  a priori
(and complexity) with , one can take the following�

approach.  If  is small then the candidate set � 5 & q =c�
�

small, so that the selection of approximation

� � 5 & q =˜ c�
�

is from reasonable sized set.  The method is to choose a
sufficiently small  that the set  is too small to overfit the� =�
data.

7.  Adaptive resonance theory (ART) algorithms:  There is a
dynamic neural network weight allocation in this procedure
for classifying input vectors   This is a feedforwardxÀ



network with a second competitive processing stage where
the hidden neuron  with highest activation& ~ . ²%³� �

suppresses all other neurons .   Thus, an ART& £ &� �

network computes the function

� ²%³ ~ ²�ÁÃ Á �Á. ²%³Á �ÁÃ Á �³i
� , (2)

where the right hand side represents the choice of the
. ²%³ ~ &� � with the maximum value indicating membership
of the input in a class   A priori information consists of* À�
the fact that the i-o function  is approximable in the form� i

(2)   Choice of a smooth  is effectively an a prioriÀ . ²%³�

assumption on smoothness of the separators of classes *�

above.  Note we are ignoring here the dynamics of
programming an ART network

Other methodologies not mentioned above include:

Î  Computational learning theory
Î   Regression methods in statistics
Î   Maximum entropy methodologies
Î   Decision tree methodologies in artificial

intelligence

After placing different algorithms into a single context,
a second step should be to identify and compare -�

complexities of different algorithms.  Given , we wish� � �

to compute the information complexity (the number  of�
pieces of information in  required to approximate 5�³ �

within .  A further goal should be � to form a normative
index of such methods according to their (now comparable)
optimality properties. precisely  This step might involve 
defining optimality within such classes of approaches, and
identifying optimal algorithms from among differing
approaches.  This by no means obviates the need for varied
methodologies, but rather allows them to be compared to
each other on the same problems.

In the next section we illustrate a methodology for
comparing complexities.  We formulate a relationship
between RBF regularization network techniques for
learning, and Bayesian learning methods used in the average
case setting of continuous complexity theory.  We
believe these results are interesting because they formulate a
consistent complexity theory for RBF regularization
networks.  In particular it follows that the complexity
depends only on the RBF network itself, through its
regularization operator .(

 Our results are obtained through consideration of all
possible Bayesian prior distributions consistent with the
regularization operator  of the RBF network.  To define(
average complexity (number of examples) required to
approximate  within error , we will first define the� � ��

average case error.  For this an a priori probability
distribution  on the set of possible  is required.  If the� ��pr

approximation complexity is dependent on the assumed ,�pr

there will be several different complexities consistent with a
single given RBF regularization network, and no complexity
theory will be possible.

Using probabilistic methods, we will show that all �pr

consistent with the regularization operator  yield a single(
complexity order, yielding a unique complexity theory for
the RBF network with regularization operator .(

 We also will show that all Bayesian models which are
consistent with the regularization RBF network yield the
same complexity of approximation using RBF algorithms.
This complexity is the same one obtained by assuming a
Gaussian prior distribution whose covariance operator is
(c�.

3.  A formulation of regularization networks in Bayesian
terms

Let  be a Hilbert space, and let  be an/ � � /
unknown function we seek to identify.   Assume we have
information ,  (sometimes5� ~ ²�²% ³ÁÃ Á �²% ³³ ~ &� �

called standard information).
We assume we have the priori information that  has�

small norm with respect to some operator, e.g.,

P(�P ~ small

(for example,  leads to the assumption of( ~ c b �"

smoothness for see above).�Â
We then minimize a regularization functional to

approximate :�

� ~ ¸P5� c &P b P(�P ¹arg min . (3)� ��

We assume the information

5� ~ & (4)

is exact, and that  is given.  Then (4) becomes a constraint,&
and through regularization theory  it can be shown that we
should take the  limit in the optimization problem (3),�¦ �

which yields

� ~ ¸P(�P ¢ 5� ~ &¹Àarg min  (5) �

This use of a priori information implies a Bayesian
viewpoint:   there exists an a priori probability measure  on�

/ � � / P(�P whose density at  is a “function of”  and
decreases monotonically with P(�PÀ

A first guess at an a priori density would be

� ²�³ ~ �²P(�P³ ��� , (6)

with  Lebesgue measure on  (at least if  is finite�� / /
dimensional).  A measure  consistent with this definition��
does not always exist in infinite dimension.  However, in all
dimensions, if  is invertible and  is trace class, there is( (c�

a Gaussian measure on  consistent with (6).  If  is finite/ /
dimensional with dimension , this measure has the form�



� ²�³ ~ � ��
�

²� ³ ²(³
�

�
( �

c P(�P
/2 det

.
�

�

�

The covariance operator of this Gaussian measure is .(c�

In infinite dimensions such measures are discussed in, e.g.,
[5].

In the general (non-Gaussian) case, we want a measure
�²�³ which is consistent with the regularization operator (
in the sense that it “depends” only on P(�PÀ

A general a priori measure  satisfying this condition�

can be constructed as follows.  Define the sets

/ ~ ¸� � / ¢ P(�P ~ �¹À�  

Measure theoretically, we have

/ ~ r / ~ / d ² ³
���

� �
b  , 7l

with  the nonnegative reals and the subscript on the rightlb

denoting .  We want measures which are “constant”� ~ � �

on each .  For any Borel measure  supported on the/� �

domain of , define(

� �� �~ ² h O/ ³

to be the conditional measure of  on .� /�

Note that the Gaussian measure  with covariance�(
(c� has the property (as in the finite dimensional case) that
its conditional density  is the unique uniform measure on��
each ./�

By (7) (analogously to the finite dimensional case), any
measure  whose density depends only on  has� ²�³ P(�P�

uniform conditional measures  on , and some� �� �(~ /
�

marginal measure  on   The measure  (together� l �� �
bÀ

with the uniform measures ) uniquely define the measure��
� on , which is the general form of an / a priori measure on
/  is consistent with the regularization assumptions.  In
addition, it is consistent with the regularity assumptions
stipulate that  be decreasing (since we want probability to��
decrease with increasing values of )P(�P À

Henceforth we assume the measure  has a finite��
mean.  We can now exactly compute the information
complexity comp  of approximating  to error �² ³ � � �À� �

This is defined as the minimum number  of examples�
²% ÁÃ Á % ³� �  which yield an average error of less than  (see�

[5, 6]).
Specifically, for given

& ~ 5 � ~ ²�²% ³ÁÃ Á �²% ³³� � � (8)

of cardinality , we define the best estimate  of � �²5 Á &³ ��

by

�²5 Á &³ ~ ², P� c �P ³Á�

�
��5 &

�arg inf
�
c�

i.e., the function  which minimizes the squared error.�

Above,  denotes the average over all , � � /��5 &
�
c�

consistent with the information , with respect to the&
(conditional) measure .�

We emphasize that the results here assume that the
information  has the standard form (8) (i.e., consists of5�
pointwise evaluations of  only).�

We then define the average case error to be

�²5 Á &³ ~ , ²P� c �²5 Á &³P ³ Á� � �
� �°�

where the expectation is taken over all  with respect to .� �

Finally, for given  we choose the information operator � 5�

of cardinality  which gives the smallest error for the worst�
&, and measure the error:

�²�³ ~ �²5 Á &³inf sup
5 &

� .

This represents the minimum error  of estimating the�²�³

worst function , using the best information operator � 5�

consisting of  examples � �²% ³ÁÃ Á �²% ³À� �

The -complexity comp  is defined as the minimum� �² ³

number of examples required to obtain an error less than :�

comp inf�² ³ ~ ¸� � O �²�³ � ¹À� h �

Now we relate comp  with the theory of�² ³�

regularization networks.  Assume we are given a
regularization operator  and a regularized estimate ( � regÁ�

of  obtained from (5) above, using the best information�
operator .  For a given a priori measure , we5 ~ 5 ~� � �pr

define the RBF regularization network -complexity by�

comp .  reg reg,² ³ ~ ¸� � O, ²P � c �P ³ � ¹� h �inf � �
� �°�

We wish to compare this -complexity with the -� �

complexity obtained from the average case (Bayesian)
approach with continuous complexity theory, using any
priori probability density  consistent with the�

regularization assumptions arising from the operator (
above.  Thus the a priori probability distribution  will be�

assumed to have uniform density on the sets

/ ~ ¸�OP(�P ~ �� }, 

with a decreasing marginal density  (see above) which��
has a finite mean.

With this as the general form of an a priori measure ,�

we have the following theorem, whose proof is omitted for
brevity:

Theorem:  The -complexity of the regularization�

approximation problem with regularization operator  is(
equal to the average case (Bayesian) -complexity for any�

measure  which is consistent with .  This in turn is� (
equivalent to the average case -complexity for the�



Gaussian measure  with covariance operator �(
c�( À

Specifically, we have

comp ( ) comp comp 9reg � � �~ 6² ² ³³ ~ 6² ² ³³ ² ³� �(

We remark that the last complexity in (9) can be
computed using known techniques in continuous complexity
[5].

4.  Conclusions

We conclude that information -complexities can be�

computed for regularization networks on the basis of any a
priori assumption  consistent with the regularization�pr

operator , and that the complexities which obtain are(
independent of this choice of .�pr

This allows the definition of a “regularization
complexity” comp ( ) which depends only on thereg �

regularization operator .(
Equivalently, what is necessary to define global

information complexities is the regularization assumption
that “ should be small”; all complexities consistentP(�P

with this assumption can be computed from the average
case setting using a Gaussian prior.

Finally, we conclude with

Proposition:  Under the same measure maximum�Á
likelihood estimation also gives the same -complexities as�

in the theorem.
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