Complexity of Regularization RBF Networks
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index of approximation complexities, and more direct
comparisons of different approximation methods.
Abstract One solution of the learning problem is provided by
radial basis function (RBF) neural networks [3,4], which
We attempt to unify and compare a class of algorithmsextrapolate f from examples by effectively assuming a
for learning input-output (i-o) functiong from examples. prescribed smoothness, or possibly other a priori
Our general approach involves parsing information about information. An information complexity theory for RBF
f into a priori and a posteriori information, with each networks estimates how many examples are needed to
represented by a probability measure on the spéice  oBpproximatef to a given tolerance. Such a theory has been
candidate functions. A consequence is that complexities astudied in [1, 2], in the context of a worst-case formulation
different approximation algorithms for the same problems of error, with an assumption th#t is known a priori to be
will be possible to compare, and optimal algorithms will be contained in a given sét
possible to identify. We illustrate this by formulating an A more general formulation of the learning problem can
information complexity theory for regularization radial be formulated as follows. Assume that there is a function
basis function (RBF) networks. We show ¢he -complexityf : X — Y to be learned through examples
of approximatingf using regularization is equivalent to the
e-complexity of approximatingf  using any consistent Nf=(f@),., )
Bayesian approach. In particular, a Gaussian prior |f random errors are involved so thitz;)  is replaced by
distribution may be assumed for correct computation of allf(l«i) +¢, the relationship betweeX  anid becomes
complexities. probabilistic, and a probability densify dtixY is a
better description of the relationship of input and output.
We will assume here for simplicity that the relationship
1. Introduction betweenX and is determi_nistic_:, so that O._
Most approaches to estimatiffy have in common the
There are currently many areas of mathematics,fact that there is information providedpriori regardingf ,
statistics, and computer science which deal with learningto be used in learningg . In addition, it is assumed some
theory, which effectively involves the extrapolation of additional data abouyt are given (generally in the form of
functions from partial information or examples. examplesN f ). These data ameposteriori information.
The theory of learning in neural networks has the goalThe learning algorithm must make the best guegs at from
of extrapolating an input-output (i-0) functign  from partial the two types of information. More generally, we can
information consisting of examples ¢f Given a set of formulate a priori information as some kind of prior
data points, the many ways of extrapolating a funcfior) knowledge aboutf(z) . This prior knowledge can be
from these imply a need for a study of how suchthought of as a probability distributiq,y  on the spate
methodologies fit into a larger framework. In this paper we of all possiblef .
will discuss approaches to this problem, and attempt to On the other hand, ara posteriori  probability
place several approximation procedures into a widerdistribution up, onF is implied by the informatioN f
context. Through this we hope to develop an approach tarhe densityupo(f) will be assumed to depend only on the
comparing approximation errors of different methodologies, finite collection of numbers (), ..., flz). A

and hence the complexities of findiag -approximations of distribution of this type, which depends on a finite number
i-o functions. A sub-goal is the formulation of a normative



of variables, is known as@linder distribution (or cylinder B
measure). f= chGj(:v), 1)
The job of an inference engine is to combine the J

robability distribution an in the best way in order . . . . . .
probability Hhpr .d'?" y whereG; might be ridge functions, radial basis functions or
to estimatef . To estimafe itis also necessary to assume a

penalty for errors. The most general assumption is that thigther. functlons computed_by the hidden Iayer, with the
has a forni/(f, f) wherg is the sought function, And iScoefﬁuents computed using backpropagation or other

the estimate of . A reasonable algorithm for estimafing algorlthms. An implicit a priori stgmphon Is that _can be
T . . written in the form (1). This is often effectively a
will minimize the expected risk, which must be carefully

defined. given that two equally valid brobabilit measuressmoothness assumption, since a finite number of neurons
- 9 quatly P y with a smooth activation functioil  will produce smooth

t work. S 3
are atwor approximationsf. Indeed, it7;(z) are RBF's, we know
optimal approximations (1) explicitly minimize Sobolev
2. The parsing of approximation methods: some norm.

examples

4. Maximum likelihood approaches These estimatg

eﬁecl_t?e:arr;ngrotzsr??sl Ix:u%ei)rtrgr?tnyogllﬁ:rtf)nctzlazgq ;’hegeusing an approximatiory  which is consistent with the
lective app 'mp goall ity information NV f , and whose probability is the largest under
within a coherent framework, and to analyze and compar

their complexities of approximation within this framework. the a priori measuréyy(f) - restricted{tp: N f = y}.

We include some examples of successful Iearnmgs_ Regularization (radial basis function) approacheldere

algorithms and indicate their parsing of a priori and a L ) .
o ; . . the a priori information consists, for example, of the fact
posteriori information. Since the latter generally consists of

L i that f is smooth, i.e., that its Sobolev ndjtrhf|| is small
examplesN f , it is not specified here unless necessary. “Z'hereA _ _A+1,with-A the Laplacian)
all of the examples below, it is possible to identify » ' P '

reasonableu, anggo , though this is not done here for 'I_'he algorlthm fo_r choosingi involves minimization of
brevity a weighted combination

. H\(f) = INT = ylI> + MIATIl,
1. Interpolatory approach (worst case approach) in . o )
continuous complexity theory Here generally, a priori Where Nf =y is the a posteriori information (data) from
information consists of the fact thatc /; , where is athe f to be learned. The minimizing , under some
balanced convex set of functions in a normed linear spacestandard assumptions, is evaluated by a neural network
Optimal algorithms approximate center of $&tn Ny which computes a linear combination of radial basis
through an algorithmp(N f) ~ f. functions (RBF's) of the form

2. Average case approach in continuous complexithe a f= Zcﬂ'K(Z° z;).
priori information is that the functioff to be learned is !
drawn from a given probability distributiodup(f) on @ This method can also be reformulated probabilistically in

normed linear spacé’ . The algorithm for choosjng the context of the prior and post probability densifigs
selectsf to be the average @fip(f) conditioned onand_p, .

Nf=wy. |If ppr is a Gaussian measure then an optimal
learning algorithm is thepline algorithm [5], which gives 6. Vapnik-Chervenenkis (V-C) approactGiven nested

an approximation t¢g  of the form family {V,} of candidatea priori spaces increasing in size
_ (and complexity) with A , one can take the following
f=oNf)= Zf(%')cuK(wij) approach. If\ is small then the candidate Eety N V)
J

small, so that the selection of approximation

whereC,, = A™* is the covariance operator of the Gaussian

(a generalization of the covariance matrix). Hét€z, ;)

is a radial basis function, i.e., the reproducing kernel for theis from reasonable sized set. The method is to choose a

space with the norfpA f| . sufficiently smallA that the séf, is too small to overfit the
data.

feNTynv,

3. Feedforward Neural Network AlgorithmsThese learn

from examplesV f = (f(z1),..., f(z,)) of an unknown i- 7. Adaptive resonance theory (ART) algorithriihere is a

o functionf(x) , and form an approximation dynamic neural network weight allocation in this procedure
for classifying input vectors. This is a feedforward



network with a second competitive processing stage wher¢here will be several different complexities consistent with a
the hidden neurony; = G;(z)  with highest activation single given RBF regularization network, and no complexity

suppresses all other neurops#y; . Thus, an ARTtheory will be possible.

network computes the function Using probabilistic methods, we will show that aj
w8 ' consistent with the regularization operatbr  yield a single

F@)=(0,...,0,G(2),0,...,0), 2) complexity order, yielding a unique complexity theory for

where the right hand side represents the choice of théhe RBF network with regularization operatbr _

G;(z) = y; with the maximum value indicating membership We also will show that all Bayesian models which are

of the input in a clas€’;. A priori information consists of consistent with the regularization RBF network yield the
the fact that the i-o functiofi*  is approximable in the form S&me complexity of approximation using RBF algorithms.
(2). Choice of a smoothi;(z) is effectively an a priori 1HiS complexity is the same one obtained by assuming a
assumption on smoothness of the separators of clgsses Gaussian prior distribution whose covariance operator is
above. Note we are ignoring here the dynamics of A7

programming an ART network

Other methodologies not mentioned above include: 3. A formulation of regularization networks in Bayesian

terms
* Computa_nonal Iearmn_g theo_ry_ Let # be a Hilbert space, and lgte H be an
* Regression methods in statistics unknown function we seek to identify. Assume we have
* Maximum entropy methodologies informationN f = (f(x1),..., f(zx)) =y, (sometimes
. _DeC|_S|on tree methodologies in artificial called standard information).
intelligence We assume we have the priori information tfiat has

. . . . . small norm with respect to some operator, e.g.,
After placing different algorithms into a single context,

a second step should be to identify and compare - |Af| = small
complexities of different algorithms. Givern>0 , we wish
to compute the information complexity (the numlier o
pieces of information inVf) required to approximgte
within e. A further goal should b&o form a normative
index of such methods according to their (now comparable)a
optimality properties. This step might involve precisely f=argmin{||Nf —y|> + \|Af|*} . ©)
defining optimality within such classes of approaches, and

identifying optimal algorithms from among differing We assume the information

f(for example, A=—-A+1 leads to the assumption of
smoothness fof; see above).

We then minimize a regularization functional to
pproximatef :

approaches. This by no means obviates the need for varied Nf=y (4)
methodologies, but rather allows them to be compared to
each other on the same problems. is exact, and that is given. Then (4) becomes a constraint,

In the next section we illustrate a methodology for and through regularization theory it can be shown that we
comparing complexities. We formulate a relationship should take the. — 0 limit in the optimization problem (3),
between RBF regularization network techniques for which yields
learning, and Bayesian learning methods used in the average . 9
case setting of continuous complexity theory.  We J=argmin{[|Af]": NJf =y} ®)
believe these results are interesting because they formulate a This use of a priori information implies a Bayesian
consistent complexity theory for RBF regularization yiewpoint: there exists an a priori probability measure  on

networks. In particular it follows that the complexity f; whose density af € H is a “function offAf| and
depends only on the RBF network itself, through its yecreases monotonically wilkd f]|.

regularization operatat . _ _ A first guess at an a priori density would be
Our results are obtained through consideration of all
possible Bayesian prior distributions consistent with the dv(f) =h([[AfI)df, (6)

regularization operatod of the RBF network. To define
average complexity (number of examples) required to
approximatef within erroe > 0 , we will first define the
average case error. For this an a priori probability
distributiondppr on the set of possibfe  is required. If the
approximation complexity is dependent on the assymed

with df Lebesgue measure di (at leastif is finite
dimensional). A measur®  consistent with this definition
does not always exist in infinite dimension. However, in all
dimensions, ifA is invertible and~! s trace class, there is
a Gaussian measure éh  consistent with (6)7 If s finite
dimensional with dimensio#h , this measure has the form



1 Above, Ey.y 1, denotes the average over glie H

dpa(f) = W@%HM”ZW- consistent with the informationy , with respect to the
(conditional) measure
The covariance operator of this Gaussian measureis . We emphasize that the results here assume that the
In infinite dimensions such measures are discussed in, e.ginformation N f has the standard form (8) (i.e., consists of
[5]. pointwise evaluations gf  only).

In the general (non-Gaussian) case, we want a measure We then define the average case error to be
v(f) which isconsistentwith the regularization operatot

_ _F 2\1/2
in the sense that it “depends” only pAf||. eWkyy) = Er(Ilf = J(Ne )77,
A general a priori measure  satisfying this condition yhere the expectation is taken over all  with respeet to
can be constructed as follows. Define the sets Finally, for givenk we choose the information operagr
H,={f€H:||Af| =c}. of cardinalityk which gives the smallest error for the worst

y, and measure the error:
Measure theoretically, we have

e(k) = inf supe(Ny, y).
H=yH = Hx R, (7) Ny

_ . . ~This represents the minimum errefk)  of estimating the
with R* the nonnegative reals and the subscript on the rightyorst function f , using the best information operatar
denotinge =1 . We want measures which are “constant’consisting of; exampleg(x1), ..., f(zx).
on eachf. . For any Borel measure supported on the  The ¢ -complexity comf) is defined as the minimum

domain ofA , define number of examples required to obtain an error lessethan
ve=v(-|H,) comp,(e) = inf{k € N|e(k) < €}.

to be the conditional measurewof Hp

Note that the Gaussian measyrg with covariance l}loyv t_vve reltate kcom;(eA) with — the theofy of
A~? has the property (as in the finite dimensional case) thaf€9t!arzation  networks. Ssume we are given a
regularization operatod and a regularized estinfatg,

its conditional density.. is the unique uniform measure on ) - X )
eachH, . of f obtained from (5) above, using the best information

By (7) (analogously to the finite dimensional case), anyOPeratorV = Ny . For a given a priori measpge= v, we
measuredv(f) whose density depends only] drf || haglefine the RBF regularization netwark -complexity by
uniform conditional measures. = pi4 (0'5) and some . - 21/2

_ e ¢ compeg(e) = inf{k € N|E - flI? <e}.
marginal measure,, OR'.  The measufge  (together Reg(€) { s reqr = JI7)77 < €}
with the uniform measures. ) uniquely define the measur
v on H , which is the general form of armpriori measure on
H is consistent with the regularization assumptions. In
addition, it is consistent with the regularity assumptions

stipulate that,,, be decreasing (since we want prObabi"tytoregularization assumptions arising from the operator

decrease with increasing valuesa/| . ) above. Thus the a priori probability distribution — will be

Henceforth we assume the measurg has a f'_mteassumed to have uniform density on the sets
mean. We can now exactly compute the information

complexity comp(e) of approximating  to errer> 0. He ={flIAf]l = c},

This is defined as the minimum numbkr of examples . . ] ) .
(21,...,2) which yield an average error of less than (seeWIth a decreasing marginal density,  (see above) which
[5 é]) 7 has a finite mean.

With this as the general form of an a priori measgure
we have the following theorem, whose proof is omitted for
y=Nif = (f(z1),---, f(@K)) (8)  brevity:

of cardinalityk , we define the best estimgtgV,,y)  fof

8ve wish to compare thiss -complexity with the -
complexity obtained from the average case (Bayesian)
approach with continuous complexity theory, using any
priori probability density v  consistent with the

Specifically, for given

Theorem: The ¢-complexity of the regularization

by approximation problem with regularization operatér s
TN — arqinf(E 2 equal to the average case (Bayesian) -complexity for any
fNer) % Eren =710 measurey  which is consistent with . This in turn is

-~ equivalent to the average case -complexity for the
i.e., the functionf which minimizes the squared error.



Gaussian measure: 4 with covariance operator’.

Specifically, we have [4] C.A. Micchelli and M. Buhmann, “On radial basis
approximation on periodic gridsMath. Proc. Camb. Phil.
COMpeg € )= O( comp(e)) = O( comp,(¢)) ( P Soc.112 1992, pp. 317-334.

We remark that the last complexity in (9) can be [5] Traub J., G. Wasilkowski, and H. Wozniakowski,
computed using known techniques in continuous complexitylnformation-Based ComplexityAcademic Press, Boston,
[5]. 1988.

_ [6] Traub, J. and H. Wozniakowskh General Theory of
4. Conclusions Optimal Algorithms Academic Press, New York, 1980.

We conclude that informatiom -complexities can be
computed for regularization networks on the basis of any a
priori assumptionu,,  consistent with the regularization
operator A , and that the complexities which obtain are
independent of this choice g

This allows the definition of a “regularization
complexity” compeg € ) which depends only on the
regularization operatof

Equivalently, what is necessary to define global
information complexities is the regularization assumption
that “|Af|| should be small”; all complexities consistent
with this assumption can be computed from the average
case setting using a Gaussian prior.

Finally, we conclude with

Proposition:  Under the same measure, maximum
likelihood estimation also gives the same -complexities as
in the theorem.
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