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Abstract  
High throughput technologies, including array-based chromatin 

immunoprecipitation, have rapidly increased in our knowledge of transcriptional 
maps—the identity and location of regulatory binding sites within genomes.  Still, the 
full identification of sites, even in lower eukaryotes, remains largely incomplete. In 
this paper we develop a supervised learning approach to site identification using 
support vector machines (SVMs) to combine 26 different data types.  A comparison 
with the standard approach to site identification using position specific scoring 
matrices (PSSMs) for a set of 104 Saccharomyces cerevisiae regulators indicates that 
our SVM-based target classification is more sensitive (73% vs 20%) and has double 
the precision (positive predictive values of 90% and 45% respectively). 

We have applied our SVM classifier for each transcriptional regulator to all 
promoters in the yeast genome to obtain thousands of new targets, which are currently 
being analyzed and refined to limit the risk of classifier over-fitting.  For the purpose 
of illustration we discuss several results, including biochemical pathway predictions 
for Gcn4 and Rap1.  For both transcription factors SVM predictions match well with 
the known biology of control mechanisms, and possible new roles for these factors are 
suggested, such as a function for Rap1 in regulating fermentative growth. 

We also examine the promoter melting temperature curves for the targets of 
YJR060W, and show that targets of this TF have potentially unique physical 
properties which distinguish them from other genes.  The SVM output automatically 
provides the means to rank dataset features to identify important biological elements.  
We use this property to rank classifying k-mers, thereby reconstructing known 
binding sites for several TFs, and to rank expression experiments, determining the 
conditions under which Fhl1 and the factor responsible for expression of ribosomal 
protein genes is active.  After identifying these conditions, we can see that targets of 
Fhl1 are differentially expressed in them, as compared to expressions of average and 
negative set genes.  SVM-based classifiers provide a robust framework for analysis of 
regulatory networks.  Processing of classifier outputs can provide high quality 
predictions and biological insight into functions of particular transcription factors.  
Future work on this method will focus on increasing the accuracy and quality of 
predictions using feature reduction and clustering strategies.  Since predictions have 
been made on only 104 TFs in yeast, new classifiers will be built for the remaining 
100 factors which have available binding data. 

Background  
Understanding transcriptional regulation is one of the key challenges of the 

post-genomic era.  Transcription factors control the expression of their target genes by 
binding specific sequences of bases, typically 10-15nt in length, in a region upstream 
of transcription initiation.  Sequences bound by a TF are not identical to each other 
and only represent a preferred pattern of nucleotides within a binding motif. The 
complete regulation of a gene will often depend on the cooperative or antagonistic 
effects of several transcription factors with potentially overlapping binding sites. 
Thus, the regulatory code for a gene is composed of a pattern of degenerate motifs 
concealed within the promoter.   

Many methods for predicting additional target sites for a TF have been 
proposed.  Given a set of genes known to be regulated by a certain factor and a set 
known not to be coregulated, supervised learning tools such as support vector 
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machines (SVM) can be used to categorize new genes.  Unsupervised methods begin 
with less well-defined information, for example a set of co-expressed genes from a 
microarray study which are thought to contain some set of common but unknown 
patterns.  New patterns can then be discovered by statistical overrepresentation or by 
local search algorithms such as Gibbs sampling. Several unsupervised techniques for 
predicting binding sites have been reported [1-8], and an excellent review of current 
motif-discovery methods is available [9].  Founding work in TF binding site 
representation involved the use of position specific scoring matrices (PSSMs) [10-13], 
which contain the frequency of nucleotide bases at each position in a possible binding 
site, or motif.  New predictions are sites which match the PSSM based on a score 
threshold[10].  Later, clusters of predicted binding sites have been shown to be 
predictive of whether a gene is a target of a regulator or not[14-17]. 

The approach reported here is a supervised pattern classification scheme 
designed to integrate a large number of heterogeneous data sources in order to more 
accurately predict the association of a transcription factor and its target.   In particular, 
we explore the use of support vector machines, which are able to incorporate high-
dimensional data sets (many features). SVM classifiers have previously been used for 
the prediction of protein homology[18], secondary structure[19], and sub-cellular 
localization[20].  As sequence classifiers they have also been useful in predicting 
translation start sites[21], mRNA splice sites, and signal peptide cleavage sites[22].  
More broadly they show good performance in the identification of normal and 
cancerous tissue samples[23] as well as prediction of gene function[24]. 

Few groups have published work on supervised classification schemes for 
predicting new transcription factor targets.  We briefly reviewed some of these 
previously (submitted[25]).  One method includes linear discriminant analysis (LDA) 
to select from a set of potentially co-regulated genes those that are most likely to 
share common transcription factors[26].  Another approach uses Bayesian networks to 
learn the combinatorial relationships of TFs and targets that underlie specific gene 
expression experiments[27].  Finally, in an approach similar to ours, SVMs have been 
applied to microarray data in order to predict TF-target associations[28]. 

Although some of these techniques work well, they either do not effectively 
incorporate the large amount of regulatory data available in ChIP-chip interactions or 
they base their classification on only one or two types of genomic data.  Our approach 
easily combines 26 large genomic datasets, adaptively weighting each data source 
based on its ability to correctly classify a training set.  The combination of 
heterogeneous data reduces false positive predictions while maintaining high 
accuracy. Genomic data combination using SVMs has been demonstrated before. 
Protein sequence similarity, protein-protein interactions, protein hydrophobicity, and 
gene expression data were successfully combined to predict the functional group of a 
set of proteins, and the combination of data was shown to significantly outperform 
individual methods[29]. 
 
SVMs: Background 

We consider 26 different datasets sequentially, train a classifier on each, and 
then construct a composite classifier which is a weighted combination of the 26. For 
each training set, we develop an allocation rule for every TF. Let N be the size of the 
training set for a particular TF (the collection of positive and negative examples, i.e., 
genes which do and do not bind it). Each gene has a set of attributes forming a vector 
that contributes to the distinction between positive and negative sets. As an example, 
an attribute vector for a gene could be an ordered list consisting of the number of 
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times each possible 4-mer occurs in the upstream region. The collection of such 
vectors is the feature space F.  Each gene would then be characterized by a 256 
component feature vector. The SVM generates a hyperplane of D = 255 dimensions 
in the feature space separating positives from negatives (d will henceforth be an index 
over the features of the dataset). We write a vector in F as 1 2 3( , , ... )i i i i idx x x x=x , the 
components xid representing, for the example above, the count of the dth

  k-mer in the 
ith

 gene.  Then the equation for a hyperplane has the form 
   f(x) = 0=+⋅ bxw                                                                   (2) 
where x = (x1, x2, …, xd) and ),...,,( 21 dwww≡w . For D = 2, this is a straight line in 
variables x = (x1, x2) with slope -w2/w1 and intercept -b/w1. 

Geometrically w is a vector perpendicular to the hyperplane H, the magnitude 
|wd| of its dth  component weighting the corresponding dimension.  The function f(x) 
is  assumed normalized (through scaling of w) so that the closest (positive, negative) 
pair xi

+ and xi
- have values f(x+) = 1 and f(x-) = -1 respectively.  Then the SVM 

problem is to find w and b such that the attribute vectors of all genes in the positive 
set are above the hyperplane H1 defined by   

1+=+⋅ bxw  
and all in the negative set are below hyperplane H2 defined by 

1−=+⋅ bxw  
and that the margin (distance between H1 and H2) is maximal.  Thus the goal is to find 
a separator that maximizes the margin, or distance between the positive and negative 
classes. This construction is essentially a choice of scaling for w, b, in particular 
requiring that the length |w| be minimal, since this maximizes the margin under the 
above normalization.   Maximizing the margin is a convex optimization problem 
which is generally solved using standard Lagrangian methods[30]. Typically, as in 
our case, perfect separation cannot be achieved.   When error-free decisions are not 
possible the method can be readily generalized to allow any specified amount of 
misclassification, with a suitable penalty function.  

An important aspect of the solution is that the data enter only in the form of a  
kernel matrix K, whose entries Kij are dot products of all pairs xi, xj of feature vectors. 
In the case that all components of the feature vector are truly independent, the 
Lagrangian is a linear function of the elements of the kernel, and the linear dot 
product is used with Kij = xi · xj. When the elements are correlated, the Lagrangian is 
written as a nonlinear function of the inner products of the attribute vectors (see 
below). In particular, the nonlinear dot products are defined for data points by Kij = 
K(xi, xj), where the given positive definite function K(x, y) is known as the kernel 
function.  Such nonlinear products are equivalent to assuming that an unspecified 
higher dimensional feature space F1 exists into which F is mapped and in which the 
separating hyperplane is linear.  This yields a Lagrangian with matrix entries given by 
this alternative dot product.  The implicit choice of F1 is made by changing the type of 
inner product used (see Table 1).  For a more detailed development of SVMs, see our 
Supplementary information or the excellent reference texts[30, 31].  For a detailed 2-
dimensional example see [25].  
 
 

Kernel Parameters Description 
linear none K(x,y)=x·y 
polynomial poly degree d K(x,y)=(x·y+1)d 
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Table 1  - Four common kernels tested 
These are the four common kernel functions, the parameters which must be set by the 
user, and their mathematical description.  
 
 Post-processing can be an essential task in pattern classification problems, 
particularly if one wishes to extract the highest quality predictions from a classifier. A 
naïve way to extract the most significant (positive) prediction from an SVM classifier 
is to select those data points which are most distant from the separator (distance given 
by w·xi  + b for data point i).  The interpretation is that those distant points are most 
unlike the negative set and contain the strongest positive character.  A more 
informative method is to rank data by P(yi =1| w · xi + b); i.e. by the posterior 
probability of a positive classification, given the distance of example xi from the 
hyperplane. Platt observed that these posterior probabilities could be well 
approximated by fitting the SVM output to the form of a sigmoid function[32], and 
developed a procedure to generate the best-fit sigmoid to an SVM output for any 
dataset.  The result is the posterior probability P(yi =1| w · xi + b) for each data point 
in the training set (see [32] for further details).  This probability places a confidence 
level on any new prediction made in the yeast genome and, most importantly, results 
in an ability to identify high-confidence predictions for future experiments. 

Results and Discussion 
After data pre-processing, the analysis begins with the independent evaluation 

of each dataset on each TF.  Several kernel functions are tested and any necessary 
parameters are optimized before a final classifier is constructed (see Methods).  A 
schematic of our procedure is given in Figure 1.  Once parameter optimized classifiers 
are constructed for each TF-dataset pair, all of the datasets, represented by the 
optimized kernel matrices, are combined using a weighting scheme based on their F1 
scores.  The hypergeometric test is used to filter out datasets which do not perform 
better than random (accept p-value ≤ 0.05) for a particular TF.  Accuracy estimates 
for the combined classifier are made using a final leave-one-out cross validation. 

 
Figure 1 
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Figure 1 Flow diagram: synthesizing a single classifier for each TF from 
several data sets. 

A classifier is constructed for each individual TF for each genomic dataset, using 
every one of 4 possible kernel functions (26 datasets × 104 TFs × 4 kernel functions = 
10816 kernels from which SVM classifiers are built).  For each of these classifiers 
optimal parameters are chosen by cross-validation.  For each dataset and each TF, the 
best performing of the four kernel functions is selected, reducing the number of 
classifiers to 2704 (26 datasets x 104TFs).  Finally, the datasets are combined based 
on F1 score of their best performing kernel so that there is only one classifier per TF. 

 
 

Three simple weighting schemes have been tried (see Methods), and the primary 
weight for a method is the ratio of its F1 score with that of the best performing 
method.  The first scheme simply multiplies all kernel matrices by their scaled  F1 
scores and sums them.  The second scheme squares the weights before multiplying.  
This has the effect of decreasing weights of poorly performing methods.  Our third 
scheme uses the squared tangent of the primary weight. This will more severely 
penalize poor performers while boosting the weights of the best methods (e.g., instead 
of weight 1, the best method will have a weight of 2.43).  

We have been able to accurately classify the known targets of many transcription 
factors in S. cerevisiae.   

 
Figure 2 
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Figure 2 SVM Performance 

Performance of each dataset and combined datasets ordered by increasing F1 score. 
Cumulative results for all transcription factors were used to plot the sensitivity, 
positive-predictive-value, and the F1 statistic for each dataset and data combination.  
Dataset abbreviations are given in Table 3.  The combined classifiers, labeled 26st 
(linear weighting), 26sq (square weighting), and 26t (tangent square weighting) on the 
far right, perform better than any dataset alone, with the squared tangent weighting 
giving the best result overall.  Three random datasets also appear in the table, R 
(randomized k-mer counts), RH (randomized 10% selection of each dataset), and RN 
(normally distributed random numbers). 

 
 

 
Figure 2 shows the performance of classifiers generated on each individual 

dataset.  The combination of datasets performs better than any individual type of data, 
but the best single method achieves a sensitivity of 71% and a positive predictive 
value of 0.82.  The combined datasets are labeled STD for weighting based on simply 
the scaled F1 measure, SQU for weighting based on squared, scaled F1 measure, and 
TAN for weighting based on the tangent squared F1 measure, as described in 
Methods.   Other abbreviations can be found in Table 2. Almost all methods perform 
much better than random.  The exceptions are GO term annotation and phylogenetic 
profiles.  For phylogenetic profiles this is not unexpected, since only 30% of the yeast 
genome has an established ortholog in the COG database.  This absence of data means 
that many positive examples can no longer contribute to classification, leading to poor 
performance for most TFs.  The situation is similar for GO term annotation, where 
many genes are poorly annotated or have no known function.   

 
 
Table 2 
 Abbreviation Description  
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1 MOT  Motif hits in S.cerevisiae  
2 CON Motif hits conservation 18 organisms  
3 PHY Phylogenetic profile  
4 EXP Expression correlation  
5 GO GO term profile  
6 KMER K-mers – 4,5,6-mers   
7 S1 Split 6-mer 1 gap   kkk_kkk  
8 S2 Split 6-mer 2 gaps  kkk__kkk  
9 S3 Split 6-mer 3 gaps  kkk___kkk  
10 S4 Split 6-mer 4 gaps  kkk____kkk  
11 S5 Split 6-mer 5 gaps  kkk_____kkk  
12 S6 Split 6-mer 6 gaps  kkk______kkk  
13 S7 Split 6-mer 7 gaps  kkk_______kkk  
14 S8 Split 6-mer 8 gaps  kkk________kkk  
15 M01 6-mer with 1 mismatch (count 0.1)  
16 M05 6-mer with 1 mismatch (count 0.5)  
17 ENT Condition specific TF-target correlation  
18 BIT Nucleotide sparse binary encoding  
19 CRV Promoter Curvature prediction  
20 HC Homolog Conservation  
21 HYD Hydroxyl Cleavage  
22 KPo Kmer median positions from start  
23 KPr Kmer Probabilities (-log pval)  
24 MT Promoter Melting Temperature-20bp window  
25 DG Promoter Melting Delta G profile-20bp win  
26 BND Promoter bend prediction  

Table 2  - Abbreviations of datasets used to generate classifers 
Abbreviations for each dataset and a short description are given. 
 

 
The performance statistics mentioned in Figure 2 are a summary of those for all 

104 combined classifiers.  Since there are 9104 known positives for all regulators, a 
sensitivity of 71% indicates that, considering all 104 classifiers, we recover 71% of 
the known data.  This means that classifiers for some TFs have much higher 
sensitivities or PPVs while other classifiers perform no better than random.    

The most powerful individual classification uses k-mer counts allowing 1-
missmatch per k-mer.  However, the combination of all of the methods shows 
increased sensitivity and precision over all individual methods.  The squared-tangent 
weighting function performs the best overall, reaching a sensitivity of 73% and a 
positive predictive value of 0.89.  Looking only at the top 20 TFs, we see a sensitivity 
and PPV of 88.2% and 0.9 respectively.  Our results show that combining datasets 
increases sensitivity only incrementally over classifiers built on simple k-mer counts 
alone, and that it produces a small improvement in positive predictive value.   Thus, 
combining methods results in the modest reduction of false positive classifications.  

The use of the hypergeometric distribution to test the significance of a dataset 
for each TF allows us to assess how useful a particular data type is for target 
identification.  Figure 3 plots the percentage of TFs for which each dataset has been 
found to be significant at p ≤ 0.05. Overall, sequence based methods (k-mer counts, 



 - 9 - 

mismatch and gapped k-mer counts, and k-mer likelihoods) show the best overall 
coverage, being significant for almost all transcription factors.  Structural descriptions 
of the promoter region differ greatly in their usefulness, varying from DNA curve 
prediction, useful for ~15% of TFs, to melting temperature profiles and free energy 
values, significant for over 60% of TFs tested.   
Figure 3 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Percentage of TFs for which each dataset is significant (p ≤  0.05). 

Percentage of TFs is on the left axis and datasets are numbered along the bottom with 
a key given to the right of the diagram (see Table 3 for descriptions of method 
abbreviations). 

 
 
 
In work with genomic datasets with large numbers of features (e.g., k-mer counts, 

expression measurements) there is always an inherent risk of over-fitting when the 
number of positives and negatives are relatively small.  To give a more practical 
portrayal of our method and prevent an overly optimistic view of the results, it is 
illuminating to compare our results with those obtained from classifiers obtained 
running the same training on random data.  Thus three random datasets have been 
constructed as controls and their results displayed in Figure 2. The first, abbreviated 
R, is simply randomly shuffled k-mer count data.  The second (RH) is created by 
shuffling a composite dataset composed of a random 10% selection of each individual 
dataset.  The third (RN) is a normally distributed random set of numbers with mean 
zero and standard deviation one.     

Although performance is much better than random it is doubtful from these results 
that predictions obtained by applying our classifiers to the entire genome would yield 
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truly reliable targets without further processing.  A simple classification of all 
potential targets with our 104 classifiers returns, on average, ~800 new targets for 
each TF.   The conditional probabilities given as output from Platt’s method[32] 
allows the selection of possible targets[33] at a desired probability threshold.  For 
instance, one can easily select predictions for which the probability of being a positive 
is greater than 0.99.  In some of the examples below, the top targets were selected in 
this fashion and compared to the full set of known positive genes. 

Another method to reduce the risk of over-fitting, which we reserve for our future 
work, is application of sophisticated dimension reduction techniques to discover 
significant features in different datasets based on classifier performance.  Feature 
selection and clustering will allow the most relevant features from different datasets to 
be retained while large portions of redundant and irrelevant information are discarded.  
In some cases this has been shown to increase classifier accuracy.  In other cases, the 
reduction in the complexity of the problem is worthwhile since other learning 
algorithms ,like k-nearest-neighbors or Bayes networks, which are difficult to train on 
large feature sets, could be compared efficiently on the smaller set of features. 

The dynamics of the individual classifiers can also be examined based on 
distributions of sensitivity and F1 score as compared to the random classifier.  Figure 
4a and Figure 4c show the distribution of F1 score and sensitivity respectively for 
normal random data.  Figure 4b and Figure 4d show the same distributions but for 
actual data (26 method combination with tangent weights).  The sensitivities and F1 
scores for actual data have distributions heavily shifted to the right as opposed to 
those for random data.  Although the majority of classifiers are comparatively good, 
several TFs have poor performance, something which warrants further inspection.  
There are 4 classifiers for which the F1 score and sensitivity are zero (YHL020C, 
YNL139C, YER068W, and YER161C).  These factors have comparatively few 
known targets compared to others.  On average these four TFs have 10 targets each 
(one of them has only 3 positives) in their training sets compared to an average of 88 
targets for most regulators.  This low number of positive examples is likely the cause 
of the poor performance.  Figure 5 shows a plot of sensitivity versus TF sorted by 
increasing number of positives for all classifiers.  The general trend shows that 
classifiers having more positives give better performance.  

 
Figure 4 
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Figure 4 Random vs Combined Classifiers 

6a is the distribution of F1 scores for normal random classifiers, 6b the same 
distribution on classifiers made from 26 dataset combinations for all TFs. 6c is the 
sensitivity distribution for normal random classifiers and 6d the sensitivity 
distribution for the 26 dataset classifiers for all TFs.   

 
Figure 5 
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Figure 5 Sensitivity as a function of increasing positives 

Classifiers for each TF were sorted according to increasing number of positives and 
the trend in their sensitivity is shown.  Generally, classifiers with more positive 
examples perform better. 

Biological insights-promoter melting  
 Beyond categorizing genomic datasets as useful or not for classification 
purposes, the significance of a particular dataset has potential biological implications 
for a TF.  To see if this could be explored based on our results, the factor YJR060W 
was chosen for further examination, since the promoter melting temperature profile is 
significant for this TF at p = 0.0037.  Figure 6 shows a plot of the average promoter 
melting temperature curve (calculated using a 20bp window and moving in steps of 
1bp) over all genes in yeast (solid blue), the average curve for genes in this TF’s 
negative set (dashed blue), the average in the TF’s positive set (dashed red), and the 
average in the most significant 33 targets of the TF (solid red).  The top 33 targets 
have Platt conditional probabilities P( positive | distance from separator) ≥ 0.99 and 
are obtained from the predictions made using the combination of all datasets, thus 
representing the best predictions we can make for this TF.  This is equivalent to 
choosing predictions significant with a p-value of 0.01.  These most significant targets 
contain 18 new predictions which are not part of the original positive set. 
Figure 6 
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Figure 6 Melting Temperature Curves YJR060W 

Using a 20bp window for DNA melting temperature calculation, the temperature plots 
are presented for the average over all 5571 yeast genes (solid blue), positive targets 
for YJR060W (dashed red), negatives for YJR060W (dashed blue), and high 
confidence targets (solid red—P(true|distance to separator) ≥ 0.99) determined using 
Platt’s method for probability assignment to SVM output.  Under the graph is an 
indicator displaying hits to the YJR060W consensus sequence in the top 33 targets.  
Consensus hits are distributed throughout the 800bp upstream space. 
 
 Clearly, the positive and negative groups for this TF contain average 
differences in promoter melting temperature.  This difference is magnified when only 
the best targets are examined.  The best 33 predictions have a very different melting 
signature from the negative set and the average yeast gene.  A two-sample t-test was 
used to find the significance of this difference from the average curve.  The purple 
overbar in Figure 4 shows the window positions where the best targets have an 
average value which is significant at p ≤ 0.01.  Almost all positions show a significant 
increase in melting temperature, with the exception of several positions proximal to 
the transcription start site.  Considering that the transcription machinery must unwind 
the helix in this region, it is not unexpected that the melting temperature here would 
be smaller, as this would lower the activation energy needed to dissociate the strands. 

As reviewed in Methods, there is ample support for the idea that melting 
temperature can influence transcription [34], and that torsional strain can affect the 
stability of the DNA duplex[35].  Experiments have also shown that sites susceptible 
to this kind of destabilization correlate well with regulatory regions[36].  In light of 
the high melting temperature of promoter targets of YJR060W, it is possible that 



 - 14 - 

duplex destabilization plays a role in regulation by this TF.  Indeed, experiments have 
shown that YJR060W functions largely in recruiting chromatin remodeling factors to 
proximal promoters[37].  The exact mechanism for this recruitment is not fully 
understood, but it is required for transcription at some promoters and complementary 
to additional binding factors at others[37].  In any case a possible hypothesis is that 
duplex stability is an important mechanism for regulation at these promoters and that 
YJR060W binding affects this stability either by conformational change induced by 
its binding or induced by the recruitment of chromatin remodeling factors.  The 
conformational changes may alter the torsional strain on the DNA and thus affect the 
melting temperature prior to transcription.   

Biological insights-binding site detection 
Our results demonstrate that there is clearly a signal identifying ChIP-chip 

positives from other genes.  Other groups have had less success confirming the 
validity of the ChIP-chip data, and this has led some to consider that as many as 
50%[26] to 60%[38] of the targets produced by ChIP-chip are false positives in the 
assay.  The fact that the high throughput results are chosen to be significant with p ≤ 
0.001 indicates that the transcription factors do in fact bind their targets.  It is 
certainly possible that this binding does not always translate into changes in gene 
expression, that the changes are not large enough to be considered significant, or 
perhaps that the conditions under which binding would result in expression change 
were not tested.  In any case, our classifier appears to pick up the information 
necessary to identify a target gene.  

To find this signal we have looked at the results of various individual datasets 
and extracted the attributes which contribute most to a transcription factor’s classifier.  
Support vector machines are often considered a “black box” method, since their 
results are not as readily interpretable as, for instance, the probability assessment of 
Bayesian classifiers.  Nevertheless, the w vector described above can give an 
indication of which features in the data are important to the classification.  Features 
whose components wi are large correspond to dimensions in feature space where 
positives and negatives are more widely separated.  Thus by examining a single 
dataset, e.g. k-mer counts, it is possible to determine the k-mer(s) most responsible for 
differences between positives and negatives.  To this end, w-vectors from the k-mer 
count dataset have been calculated for each linear TF classifier and examined to 
determine which k-mers had the largest weights.  We compare these k-mers to known 
binding sites for each factor.  Results for the best 10 TFs can be seen in Table 3, 
where the highest ranked k-mers are manually assembled to show their 
correspondence with known binding motifs.  In most cases the k-mers with the highest 
weights match closely the reported binding site for the TF, showing that the algorithm 
is choosing meaningful features for classification.  For example, the DNA binding 
protein Cep1 is known the bind the consensus TCACGTG and regulate cell cycle and 
stress response genes.  The highest weighted k-mer in the classifier is CACGT, and the 
top 4 k-mers all overlap precisely with the known site 
(CACGT,CGTG,TCACG,TCACGT) .  

 
Table 3 

Standard 
ID 

Gene 
name 

Known Motif 
(SGD) 

Kmers labeled by 
rank 

YKL112W ABF1 RTCAYTNNNNACGW 1   CACT 
2 ATCA 
3    ACTAT 
4  TCAC 
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5 ATCAC  
  ATCACT 

YDR207C UME6 TAGCCGCCSA 1    GCCG 
2 TAAG 
3    GCCGC 
5    GCCGCC 
6   AGCCGCC 
7  TAGA 
  TWAGCCGCC 

YBR049C REB1 CGGGTRR 
 

1    TAAC 
2 GGGTAA 
3  GGTA 
4 GGGTA  
  GGGTAA 

YLR182W SWI6  CACGAAAA No match 1,4,5,6,8 
2 AACG    9 GGAA 
3  ACGCG 
7   CGCG 
  AACGCG 

YPR104C  FHL1 TGTAYGGRTG  No match 1-4,6 
5  TGTA 
7   GTACA 
8 ATGTA 
  ATGTA 

YEL009C GCN4 ARTGACTCW 1 ATGA 
2  TGAC 
3  TGACT 
4   AACT 
5    ACTC 
7    ACTCA 
8   GACT 
9 ATGAC 
  ATRACTCA 

YJR060W CEP1 TCACGTG 1  CACGT 
2    CGTG 
3 TCACG 
4 TCACGT  
     TCACGTG 

YOL028C YAP7 MTKASTMA 1     TAGA  
2       GTAA 
3   ATTA 
4 ATATT 
5       CGAA 
6   CTTA 
   AMTTASDAA 

YER111C SWI4 CACGAAAA 
CGC[G/C]AAA 

1,2,3 match TATA box 
4   GCGCA 
5  CGCG 
7    CGAA 
10  GCGA 
   CGCGMA 

YNL216W  RAP1 CAYCCRTRCA 
RMACCCATACAYY 

1 TAAAAT 
2             ATTC 
3             ATTAA 
4     ACCCA     
6          TACA 
7 TAAAG 
8           ACATC 
9             ATTCC 
  TAAARYCCATACATYMM  

 

Table 3  - High ranking k-mer alignment and comparison to known binding site 
Weight vectors for each TF classifier are used to rank all k-mers.  Known TF motifs 
appear in the middle column and high ranking k-mers are assembled in the right column 
showing correspondence with the known motif.  Standard nucleotide abbreviations are 
used. Some less common abbreviations are W = {A or T}, R = Purine, Y = Pyrimidine, 
S = {C or G}, K = {T or G}, M = {C or A}, D = not C.  
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Biological insights-Microarray Expression 
 The ability to identify the primary conditions under which a transcription 
factor exerts control would be a critical component of any focused study of gene 
regulation.  As we have seen the w vector generated on a dataset indicates which of its 
components are most important for discriminating targets.  In the case of gene 
expression classifiers, w elucidates which conditions are discriminatory.  Intuitively, 
these are the conditions in which we would expect to see differential regulation of true 
targets.  Given the predictions made using the combination of all methods, and the w 
obtained from the linear classifier built on expression data alone, we can see whether 
the predicted targets have differential regulation, and identify conditions where the TF 
is likely to act. 
 By the hypergeometric test, expression data is a significant predictor 
(p=6.12e-14) of targets for Fhl1, a forkhead-like TF known to be involved in rRNA 
processing and ribosomal protein gene expression.  The w for this TF’s classifier from 
expression data has been calculated and sorted to determine the conditions having the 
highest weight.  Figure 7 shows a plot of expression values over the top 25 conditions 
for the average yeast gene (solid blue), the average for genes in Fhl1’s negative set 
(dashed blue), the average in the positive set (dashed red), and the average in the most 
significant (P(true) ≥ 0.99) 48 targets of this TF (solid red).  
Figure 7 

 
 
Figure 7 Expression plot of Fhl1 Targets over top 25 discriminative conditions. 

Average expression is plotted over all 5571 yeast genes (solid blue), over the negative 
set for Fhl1 (dashed blue), the positive targets (dashed red), and the most significant 
targets (solid red), P(true | distance from classifier) ≥ 0.99.  The best targets have 
expression significantly different than the average or negative genes.  The chosen 
expression conditions, ranked by w-vector from the expression based classifer, are 
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shown under the graph with numbers indicating the position of the conditions in the 
graph.  These conditions make sense since Fhl1 is regulated by the TOR signaling 
pathway, which is blocked by rapamycin. There is also some support in the literature 
for TOR having a role in meiosis and stress response. 
 

For 23 of the 25 conditions the highly significant targets show expression 
which is different from both the average and the negative sets (t-test p-value ≤  0.01).  
Most importantly, the best 10 ranked conditions contain 6 where yeast cells were 
treated with rapamycin and 2 involving meiosis/sporulation.  This result is satisfying 
since rapamycin treatment specifically inhibits the TOR (Target Of Rapamycin) 
signaling pathway, which is known to activate ribosomal protein expression as well as 
regulate several other pathways in yeast.  Inhibition of TOR directly prevents Fhl1 
from binding at promoter sites, thereby down-regulating expression of ribosomal 
protein genes[39], explaining why Fhl1 targets show differential expression in these 
experiments.    Furthermore, although Fhl1 has not been directly implicated in 
meiosis, TOR pathway kinases are required for meiosis[40], indirectly suggesting that 
Flh1 might be involved.  This is a reasonable suggestion since Fhl1 has been shown to 
alter its activity in response to factors (mainly Sfp1 which is also under TOR control) 
controlling progression to Start in the yeast cell cycle.  Thus the most highly ranked 
experiments seem to correlate well with the real biological roles of the TF, indicating 
that the SVM can correctly rank important experimental conditions. Our method can 
identify differential regulation as an important predictor of target genes 
(hypergeometric test) and use the SVM-based classifier to make testable hypothesis 
about which conditions show biological effects of transcription factor activity. 

Biological insights-PSSM comparison 
We have found that support vector classification performs better than a simple 

weight matrix scan, and the combination of 26 methods outperforms any one method 
by itself.  In some sense, a direct comparison with these PSSMs is not entirely fair 
since a majority of these weight matrices were created by motif discovery procedures 
rather than directed experimentation (such as DNA footprinting).  Also, carefully 
constructed variants of PSSMs, which may take into account motif conservation in 
multiple species or interdependence of bases, can offer state of the art motif detection.  
Unfortunately, sufficient data is not always available to build such detailed models.  
The purpose of our comparison is simply to highlight the improved performance of 
classification methods relative to the commonly available binding site models.   
Figure 8 shows the result of a comparison between simple PSSM scanning using the 
MotifScanner algorithm and predictions by SVM on combined data.  The leftmost 
grouping is a result from scans using PSSMs for all 104 TFs against the positive and 
negative sets on which the SVMs were trained.  A score threshold was chosen for 
each TF so that the specificity on the training set was held to 0.95.  This makes 
comparison to the SVM classifiers more straightforward as overall specificity for the 
SVMs is 0.95.  The grouping on the right restates the performance of the SVMs with 
26 combined datasets on the full set of positives.  The SVM classifiers outperform 
PSSMs in the number of detected positives.  It is clear that loosening the thresholds 
for the PSSMs would allow for better coverage but degrade performance by 
increasing the number of false positive predictions.  Support vector machine 
classifiers offer a good balance between sensitivity and false prediction. 

 
Figure 8 
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Figure 8 SVM vs PSSM scan. 

Left: PSSMs for 104 TFs scanned against positive and negative sets. Overall 
specificity is held constant to 0.95 to match that of the SVM results. 
Right: Overall results for  SVM classifiers trained on weighted combination of 18 
datasets. 

 

Biological insights-Pathway Control 
Finally, we have applied the combined classifier for each TF to all promoters 

in the yeast genome in order to expand the known binding repertoire of each factor.  
On average, each classifier produced approximately 884 new targets.  Although it is 
unlikely that this set is free of false positives, examining the data in the context of 
biochemical pathways can shed light on significant predictions, which can quickly 
elucidate new sites which are good candidates for further study. 

Gcn4 is a transcription factor in yeast known to control genes in the amino 
acid biosynthetic pathway[41], and SVM predictions match well with the known 
biology of Gcn4 control mechanisms.  The final classifier for this TF has an F1 score 
of 0.89, sensitivity of 0.86, and PPV of 0.92.  This TF is a master regulator which has 
known targets in at least 12 amino acid biosynthetic pathways and has been shown by 
gene expression to induce at least 1/10th of the yeast genome[42].  Figure 9 highlights 
some known targets of Gcn4 in methionine/threonine biosynthesis in the aspartate 
family pathway.  Branch-points from this pathway can ultimately lead to the amino 
acids methionine, threonine, lysine, and isoleucine.  This group is of particular interest 
to humans since they are essential and not synthesized in the human metabolism.  
Gcn4 is known to regulate Hom3, Thr1 and Thr4 leading to threonine, lysine, and 
isoleucine.  However predictions by SVM indicate it also directly targets committed 
steps of methionine biosynthesis by binding Met2, Met17, and Met6, which are 
interesting targets for further study.   
Figure 9 
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Figure 9 GCN4 and amino-acid biosynthesis.   

Predictions by SVM match well with the known biology of Gcn4 control 
mechanisms. Pathway map generated taken from the Pathway Tool Omics Viewer at 
SGD[62]. 

 
Previously Gcn4 was known to indirectly influence synthesis of methionine by 

activating Met4, a transcription factor specific to methionine biosynthesis and sulfur 
metabolism[43].  It is feasible that regulation of these enzymes by both Gcn4 and 
target Met4 represents a transcriptional feed-forward loop.  Such loops have been 
described before and can be advantageous to an organism by exhibiting sign-sensitive 
delay, since it may be useful to have a quick response when shifting to an OFF state 
and a slow response when turning back ON[44].   

The Rap1 DNA binding factor is a widely known regulator in the cell cycle, 
acting as a repressor or activator depending on its context.  Rap1 is also a key element 
in the structure of yeast telomeres, where it plays a role in telomere silencing[45].  In 
a seemingly contradictory role, Rap1 has also been shown to regulate several 
glycolytic enzymes, as shown in Figure 10.  The specificity of this glycolytic 
regulation is dependent on a second factor, Gcr2, which binds to the Rap1/Gcr1 
complex but does not contact DNA directly[46].  New predictions by SVM in the 
pathways of sugar metabolism show good correspondence with expectations for Rap1 
(Figure 10).  Most interestingly, the new predictions include both isoforms of the 
enzyme phosphofructokinase.  This step, where fructose-6-phosphase is converted 

isoleucine

lysine 
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into fructose-1,6-bisphosphate, is the crucial step in sugar breakdown where most 
metabolic flux through the pathway is controlled[47].  
Figure 10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 10  Rap1 and glycolytic/TCA cycle reaction.   

Glycolysis leading to acetate and ethanol are shown.  The gray box on the left 
contains a pathway overview of glycolysis, fermentation and the TCA cycle, where 
red connections are known and yellow are predicted.  Rap1 can be seen to regulate 
key control points in glycolysis and the TCA cycle.  Pathway map generated taken 
from the Pathway Tool Omics Viewer at SGD[62]. 

 
Also of significance is the prediction that Rap1 regulates malate 

dehydrogenase in the TCA cycle.  Malate dehydrogenase is unique in the TCA cycle 
in that it has a very small equilibrium constant, meaning that the forward reaction 
from malate to oxaloacetate is highly unfavorable. This is generally overcome during 
aerobic growth since the subsequent reaction is extremely favorable (large free energy 
release).  However, in the absence of oxygen the cell still requires certain 
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intermediates which can now not be made in the normal way.  Running the malate 
dehydrogenase reaction in reverse, a favourable direction, can provide a way to 
synthesize these intermediates[47].  Rap1 is already known to regulate the conversion 
of acetaldehyde to ethanol via alcohol dehydrogenase, and the possible 
complementary control of malate dehydrogenase suggests a possible role for Rap1 in 
regulation of fermentative growth.  

Conclusions  
We have seen that support vector machines can accurately classify transcription 

factor binding sites using a wide range of genomic data types.  Combining various 
information sources can reduce false positives and incrementally increase sensitivity, 
while post-processing of the data to assign posterior probabilities allows the selection 
of high confidence targets.  Although the maximal margin of SVMs is resistant to 
over-fitting, it can be further abrogated by selecting the best features for classifier 
construction.  Feature selection and clustering techniques can be used in future work 
to refine predictions and more efficiently compare the SVM to other learning 
machines (KNN, Bayes, and Random Forest) which don’t easily handle high 
dimensional or correlated data..   

Based on k-mer data, SVMs appear to be isolating appropriate features for 
classification where many known transcription factor binding sites overlap with 
highest ranked k-mers.  Examination of melting temperature classifiers for YJR060W 
demonstrates the unique biological features of targets for that TF.  Similarly, 
expression-based classifiers for Fhl1 show the conditions under which Fhl1 acts on its 
targets, pointing the way to testable hypotheses supported by data in the literature.  
Finally, targets of Gcn4 and Rap1, when put into the context of biological pathways, 
correspond well to published experiments and show the effectiveness of integrated 
classifiers for building system-wide gene regulatory networks.  Future work will then 
involve development of methods to discover biologically significant features in 
different datasets based on classifier performance and intelligent dimension-reduction 
techniques to reduce noise and improve accuracy. 

Methods 
We have tested a variety of sequence and non-sequence based classifiers for 

predicting the association of TFs and genes ([33], submitted for publication).  All 
together 26 separate data sources (each yielding a feature map and kernel) are 
combined to build classifiers for each transcription factor.  The 26 data sources 
comprise a family of sequence-based methods (e.g., k-mer counts, TF motif 
conservation in multiple species, etc), expression data sets, phylogenetic profiles, 
gene ontology (GO) functional profiles, and DNA structural information such as 
promoter melting temperature, DNA bending, and DNA accessibility predictions (see 
Table 2).   

Our positive and negative training sets are taken from ChIP-chip 
experiments[48, 49], Transfac 6.0 Public[50], and a list curated by Young et al., from 
which we have excluded indirect evidence such as sequence analysis and expression 
correlation (http://staffa.wi.mit.edu/cgi-
bin/young_public/navframe.cgi?s=17&f=evidence).  Only ChIP-chip interactions of 
p-value ≤ 10-3 (i.e., a high confidence level) are considered positives [48].  The 
Transfac and curated list represent a manually annotated set which will later be used 
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separately during SVM comparison to PSSM performance.  For the purposes of SVM, 
however, all manually curated and high-throughput sets are grouped together, making 
a total of 9104 positive interactions. 

Negative sets pose a greater challenge since no defined negatives exist in the 
literature; however, since a particular TF will regulate only a small fraction of the 
genome, a random choice of negatives seems acceptable.  In fact, test cases with a few 
TFs show good classification performance with random negatives (unpublished 
work).  Nevertheless, a safer set of negatives would be those showing no binding by 
experiment under some set of conditions.  Along those lines, we have chosen for each 
TF 175 genes with the highest p-values (generally > 0.8) under all conditions tested in 
genomic ChIP-chip analyses[48, 49].   Clearly all experimental conditions have not 
been sampled and this does not guarantee that our choices are truly never bound by 
the TF, but this choice of negatives should maximize our chances of selecting genes 
not regulated by the TF of interest.  

All promoter sequences have been collected from RSA tools, Ensembl, or the 
Broad Institute’s Fungal Genome Anatomy Project[51-53].  For yeast, promoters are 
defined as the 800 base pairs upstream of the coding sequence.  The motif hit 
conservation dataset required promoter regions from 17 other genomes.  Those 
genomes, their sources, and the length of the promoter regions are described in our 
previous report[25].  Sequences are then masked using the dust algorithm and the 
RepeatMasker software[54, 55] where appropriate, to exclude low complexity 
sequences and known repeat DNA from further analysis.  PSSM scans (for datasets 1 
and 2, below) are performed with the MotifScanner algorithm[56].  MotifScanner 
assumes a sequence model where regulatory elements are distributed within a noisy 
background sequence[56].  The algorithm requires input of a background sequence 
model, which in this case is a transition matrix of a 3rd order Markov model generated 
from the masked upstream regions of each genome. MotifScanner only requires one 
parameter be set by the user, i.e. the threshold score for accepting a motif as a binding 
site.  Several thresholds have been tested and the results we have used to create SVM 
kernels are all at a setting of 0.15, which has been found to be a reasonable middle 
ground, making approximately 560 predictions per TF.  Settings beyond 0.2 produce 
too many false hits to be useful.  The PSSMs themselves are obtained from Transfac 
6.0 Public and from[57], which are a mix of experimentally derived motifs and those 
generated by motif-discovery procedures.   
 Datasets using k-mers rather than PSSMs are generated using the  
fasta2matrix[58] program which lists all possible k-mers and counts the occurrence of 
each within a set of promoters.  Gapped k-mers are detected using custom scripts 
written as Matlab m-files. The expression data used include 1011 microarray 
experiments compiled by Ihmels and co-workers, which can be downloaded with 
permission from the authors[59].   
 

Each data set is normalized so that each feature in the training set has mean 
zero and standard deviation one.  Gene Ontology, phylogenetic profile, and TF-target 
correlation data are not normalized since their data are binary.  Finally, since the 
ultimate goal is data integration the number of training examples for a given TF must 
be the same for every dataset used to make a classifier.  When examples are missing 
in a dataset, as is the case with the GO and COG (phylogenetic profiles based on the 
Clusters of Orthologous Groups database) based classifiers, random values sampled 
from the rest of the training set are used to fill in the missing vectors.  
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All classifier construction and validation was performed in Matlab[60] using 
the Spider machine learning library[61].  Mapping of predicted binding targets to 
biological pathways was done using the Pathway Tools Omics Viewer at SGD[62]. 

Description of Analysis 
A separate classifier is developed for each TF based on each independent 

dataset.  The four kernel functions in Table 1 (linear, rbf, Gaussian, and polynomial) 
are tested using leave one out cross validation, and the function with the highest F1 
score (below) is chosen as best for that particular TF-dataset combination. A flow 
diagram of our method can be seen in Figure 1.  Let TP denote the count of true 
positives, FN false negatives, etc.  The F1 statistic is a robust measure that represents 
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If we choose the classifier with the best F1 statistic, each TF now has one 
classifier for each type of genomic data (26 classifiers total).  For every classifier the 
C parameter (the trade-off between training error and margin) must be specified, and 
some kernel functions require a second parameter, e.g., the polynomial degree k for a 
polynomial kernel or a standard deviation σ (which controls the scaling of data in the 
feature space) for a Gaussian or radial basis function (RBF) kernel.  The values for 
these parameters are chosen by a grid-selection procedure in which many values are 
tested over a specified range using 5-fold cross validation.  The ROC score is used to 
choose the best values.  As an example for an RBF kernel a range of C values from 2-5 
to 200 is tested with a range of σ values from 2-15 to 23.  The best combination of 
values is then chosen to make the final classifier. 

The performance of any parameter-optimized classifier is determined using 
leave-one-out cross validation.  Once the best kernel function K(x, y) (with optimized 
parameter values) has been chosen for a particular TF-dataset pair, the next step is to 
combine the datasets to create a composite classifier. To that end, the K(x, y) is used 
to create a kernel matrix for each of the 26 datasets.  Before weighting and combining 
kernels for each data set, all kernel matrices are normalized according to 
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This normalization effectively adjusts all points to lie on a unit hypersphere in 
the feature space F, and the diagonal elements in every kernel matrix the will be 1.  
This assures that no single kernel has matrix values that are comparatively larger or 
smaller than other kernels, so all matrices initially have the same contribution to the 
combination.   

 
Datasets can be combined by adding kernel matrices together; however, an 

unweighted linear combination ignores dataset dependent performance—in fact some 
datasets do not perform better than random for some TFs. To avoid this problem, we 
determine whether the number of true positives predicted using a particular dataset is 
significantly different (p ≤ 0.05) than what would be achieved by random guessing. 
We calculate the probability of observing fewer than g true positives given the 
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training set size N, the total number of known positives L (i.e., TP + FN), and the 
number of positively classified examples, M (i.e., TP + FP). 
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Here p is the probability of drawing x or more true positives at random.  Datasets that 
do not meet the p-value cutoff are eliminated from the analysis for a particular TF.    

Finally, the significant datasets (each represented by a kernel matrix Kij) must 
be weighted based on their performance. Using a scheme (described below) with 
weights equal to the F1 score of each classifier, the underlying 26 kernel matrices are 
scaled and added into a single unified kernel corresponding to the given transcription 
factor.  Once the weighting is complete, an overall leave-one-out cross-validation is 
employed to estimate the error of the combined classifier. 

Three simple weighting schemes have been compared.   In all cases the 
primary weight for a method is determined by computing its ratio with the best 
performing method.  Our first weighting scheme is linear and simply multiplies the 
mth matrix m

ij
m KK = by its scaled F1 score αm  and computes a sum, 

yielding ∑
=

=
26

1m

m
m KK α .  A second scheme is nonlinear and squares the weights of the 

first method before multiplying, yielding ∑
=

=
26

1

2

m

m
m KK α  .  This will not change the 

weight of the best performing method, which will be scaled to 1, but will decrease the 
relative weights of poorer methods.  Our third scheme, which is the most nonlinear, 
takes the squared tangent (an effective sigmoidal function) of the primary weight, 

yielding ( )∑
=

=
26

1

2tan
m

m
m KK α .  This more steeply penalizes poorly performing 

methods while increasing relative weights of the best methods (e.g., instead of weight 
1, the best method will have a weight of 2.43).  

Genomic Datasets 
1 PSSM Motif counts (MOT,Table 2 item 1) 

Position-specific weight matrices (PSSM) for 104 transcription factors have 
been used to scan 800bp promoters in S. cerevisiae for each gene in a training set, and 
the number of hits for each PSSM has been counted.  These counts are the features 
(i.e., components) of 104 dimensional feature vectors.  It is clear that a greater number 
of “hits” by a PSSM in the upstream region of a gene will imply a greater likelihood 
that the TF corresponding to the matrix will actually bind the gene.  For each 
prediction there is a probability that it will be true, P(True|hit).  If a certain upstream 
region of a gene has more than one hit, the probability that the TF binds to the gene 
should increase (Figure 11).  This method aims to better predict TF binding by taking 
into account the number and types of binding motifs in a promoter.  

 
Figure 11 
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Figure 11 Motif Counts 

Having more than one detected binding site for a TF in the upstream region of a gene 
increases the likelihood that the TF truly binds the gene. Higher counts of motifs yield 
fewer predictions; however, as the number of repetitions of a motif increases, the 
probability that the TF binds approaches 1.   
P(k|T) = Probability of motif count k given a set of True binding sites. 
P(T|k) = Probability of finding a True binding site given a motif count of k. Data is 
averaged over 104 TFs. 

 
 
 

2 PSSM Hit Conservation (Table 2 item 2) 
Comparative genomics tools have recently been applied with much success to 

the identification of transcription factor binding sites.  Because most regulatory 
elements are in non-coding regions and show considerable variation in sequence even 
for the same TF, they aren’t easily recognizable.  However, binding sites are often 
preserved through evolution, and thus become apparent in what authors call a 
“footprint” in alignments of orthologous regions from different genomes.  Cis-
element conservation is a powerful way to detect functional non-coding elements, 
and, in this case, are modified and applied to 18 genomes ranging from yeast to 
human.  Conservation of a TF binding site is determined by counting hits of the TF 
probability matrix in orthologous upstream regions from several organisms.  
Orthology information was taken mainly from the Homologene database[63] for all 
organisms except for sensu stricto and sensu lato yeasts, which was obtained from 
Washington University and the Whitehead Broad Institute [51, 64-66]. 

Previous studies have defined conservation as direct nucleotide 
correspondence in aligned orthologous regions.  In previous publications[64] this 
analysis has involved manual inspection and modification of low scoring alignments, 
an approach that would be cumbersome and time consuming with a larger number of 
genomes.  Other authors rely on whole genome alignments of closely related species 
to identify orthologs and conserved upstream regions[65].  This strategy would be 
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difficult if not impossible for genomes farther diverged than the few closely related 
yeast species.  In this analysis, a hit by a PSSM in the upstream region of an ortholog 
is defined as a conserved motif.  In this way, conservation of a potential binding site 
is being measured rather than the exact nucleotide string.  This is because a PSSM 
may identify sequences that are different in nucleotide composition but still match the 
probability matrix.  This is a looser conservation criterion that makes sense 
biologically, since natural selection will act to preserve a binding site, and not 
necessarily an exact nucleotide string. 

The stronger the conservation of a potential binding site, the more likely the 
site is to be real (Figure 12).  The empirical probability of a true site increases to 
100% as the binding site conservation level reaches 15 genomes.  Again, these data 
are assembled into a 104 dimensional feature vector for each gene in yeast.  Each 
feature represents a transcription factor motif and the value of the attribute is the 
number of genomes in which the binding site is conserved.  

 
Figure 12 

 
  

 
Figure 12 Conservation 

Conservation of a TF binding site in several orthologous upstream regions increases 
the likelihood that a potential site is a True site.  Data is averaged over 104 TFs. 

P(k|T) = Probability of site conservation in k genomes given a set of True binding 
sites. 
P(T|k) = Probability of finding a True binding site given that it is conserved in k 
genomes. 
 
 
 
 
 
2 Kmers, Mismatch kmers, and Gapped kmers (Table 2 and 6-16) 
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PWMs may fail to detect binding sites if the binding site collection used to 
generate them is incomplete (in the case of experimental data) or if the motif 
discovery procedure is inaccurate (as may occur in the case of computationally 
generated matrices).  In this case, the distribution of all k-mers in a gene’s promoter 
may be used to predict whether it is bound or not-bound by a TF.  K-mer counts in 
promoters have been used previously with SVMs to predict genes’ functions[24].  
Here, several strategies are used to generate a variety of datasets based on k-mer 
strings.  First, one dataset of feature vectors is created by decomposing all yeast 
promoters into counts of all k-mers of length 4, 5, and 6.  Similarly, 6-mers with 
variable length center gaps (of the form kkk-{x}n-kkk) are counted in each promoter to 
form sequence datasets allowing gaps of size 1 through 8 (Table 2, items 4-11).  This 
allows detection of split motifs such as the binding site for Abf1, 
RTCRYNNNNNACGR.  Finally, we construct two datasets with 6-mer counts 
allowing one mismatch in any 6-mer (Table 2 items 12-13).  A mismatched base pair 
is counted with a value of 0.1 in the first dataset, and 0.5 in the second. 

  Given a set of true positives and true negatives for each TF, the SVM 
classifies genes based on their complete promoter content as represented by these k-
mer distributions.  As we discuss below, k-mer counts are the single best performing 
method for distinguishing transcription factor targets. 

It should be noted that our kernels derived from sequence data are very similar 
to sequence kernels used in previous work.  The k-mer kernel produced from 4,5,and 
6-mers is analogous to the spectrum kernel previously used to classify protein 
sequences[67].  Whereas the spectrum kernel would be calculated separately for k-
mers of length 4, 5, and 6, we have concatenated these features into one kernel.   Also 
proposed for sequence classification, the (g,k)-gappy kernel can represent any g-
length sequence with k gaps[68] much like the gapped sequence kernel used in our 
work.  The difference in this case is that a (g,k)-gappy kernel allows gaps in any 
sequence position while we allow only central gaps splitting a motif into two sub-
strings.  While the gappy kernel may be more appropriate for protein classification, 
the split k-mers used here more resemble transcription factor binding patterns.  
Mismatch kernels similar to ours have also been previously described for 
classification of protein function and detection of remote homology[69].  Finally, 
unlike kernels applied to protein data, the kernels used here take into account the 
reverse complements of each k-mer.  This means, for instance, that the 3-mers 
“AAA”, and “TTT” are counted together as one unit since the presence of one 
necessitates the other on the opposite strand of DNA.     

 
3 GO Annotation (Table 2 item 5) 

GO term annotation can be used to detect possible transcriptional targets.  The 
targets of a transcription factor have often been shown to have similar function and a 
gene’s GO annotation can be used to measure its functional similarity to known 
targets[70].  For this method, all GO Biological Process terms in yeast become 
features for genes, such that every gene will have a binary vector, with a 1 for the 
terms which are annotated to it, and 0 otherwise.  Parent terms of direct annotations 
also receive a 1.  There are 2155 possible terms for yeast, giving a vector of the same 
length.  Since only about one-third of yeast genes are annotated with GO terms, a 
feature matrix generated with GO data is sparse, consisting mostly of zeros.  Imputing 
zeros for genes unannotated in GO can potentially bias the result of the classifier (for 
instance, if many negatives are missing and hence become zero vectors it may be 
trivial to separate these from the positives).  Instead, the binary vector is filled in with 
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random data according to the background distribution of term annotation in the yeast 
genome.  Despite using random data, the vectors are still sparse and the best 800 GO 
terms are selected using the Fisher score criterion during the training of each TF.  The 
Fisher criterion gives high scores to features that have large differences in mean 
between the positive and negative classes in relation to variance.  For a specific 
feature d, calculate the mean and standard deviation of that feature in each class (μd+ 
σd+ and μd- σd-).  The Fisher score for feature d is then 
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This feature selection is performed in the Spider data mining package[71]. 
 
4 Phylogenetic Profiles (Table 2 item 3) 

Co-evolution of a transcription factor’s targets may indicate regulation. A 
phylogenetic profile of a gene is simply the pattern of occurrence of its orthologs 
across a set of genomes.  Genes with similar patterns have been shown to participate 
in the same physical complexes or have similar biochemical roles within the cell[72]. 
It has also been postulated that transcription factors and their targets co-evolve[73].  
Therefore it seems reasonable that a group of commonly regulated genes could share 
a similar pattern of inheritance. Phylogenetic profiles here were parsed from the COG 
database, which contains orthology information between S.cerevisiae and 65 other 
microbial genomes. Each gene in the positive and negative set is represented by a 65 
component binary vector, a component being 1 if the gene’s ortholog is present in the 
corresponding genome, and zero otherwise. As with the GO data, gene attribute 
vectors are binary, containing 65 elements, one for each genome in COG.  Also, since 
many genes have not been annotated to COG groups, it is necessary to generate 
random vectors for missing genes as described for the GO example above. 

 
5 TF-Target Expression Correlation as a Method to Predict Regulation 

Analysis of transcription factor motif-matching outputs shows that false 
positive predictions are numerous even in cases of low sensitivity.  Expression 
analysis provides a means to discover targets missed by sequence based methods.  
Several studies have shown that genes with similar expression patterns are likely to 
share similar regulation and, conversely, genes regulated by the same TF are more 
likely to be co-expressed[70, 74].   

Two strategies are often useful for discovering transcription factor targets 
using expression data.  Often genes are turned on and off as the expression levels of 
their controlling TFs are altered.  Thus one method is to find targets of some TFs by 
finding TF/gene pairs that have correlated expression patterns[6].  A second approach 
involves identifying groups of co-expressed genes, and hypothesizing that this co-
expression is due to co-regulation by the same TF(s)[75, 76]. In the two sub-sections 
below, we describe how each of these strategies can be used to construct data vectors 
for SVM learning.    
5.1 TF-Target Correlations Measured by Profile Entropy Minimization (Table 2 item 
17) 

Since genes may be combinatorially regulated by different TFs under different 
conditions, regulator-target relationships can be diluted in large expression profiles.  
Such relationships will only be discovered if their condition-specific correlation can 
be found. 
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A new approach [77] addresses this problem by searching for the conditions 
under which a regulator’s profile is maximally associated with a target’s profile, 
essentially choosing the set of experiments where the TF most clearly and 
significantly controls the expression of a potential target.  This is accomplished by 
minimizing the Kullback-Liebler entropy between the TF and potential target’s 
expression profiles when looking at different subsets of conditions (thereby choosing 
the set of conditions under which the TF/target have the most significant correlation: 
see references for further details[77]).  In this analysis correlations with a p-value of 
10-10 are chosen in order to extract the most significant regulatory relationships and 
reduce false predictions.  Significant relationships are coded as 1’s in gene’s feature 
vector, so that every gene is described by a binary list whose length is the number of 
TFs (104 in this case). 
5.2 Target-Target Correlations (Table3 item 4) 

For purposes of representing expression correlation, we use normalized log2 
ratios for each gene across 1011 experiments[78].  Each gene’s expression profile is 
normalized to a mean of 0 and standard deviation of 1.  This normalized expression 
profile is then the vector of features used by the SVM to represent any example gene 
(each gene will have 1011 features corresponding to expression coditions).  In this 
case, the dot product between such gene vectors is analogous to a Pearson correlation 
and naturally fits into the SVM framework, which uses dot products to associate 
positive and negative examples.  Given many known targets of a transcription factor 
as positive cases, the SVM can identify a new target based on how closely its 
expression resembles that of the known examples. 

 
6 Sparse binary encoding of promoters (Table 2 item 18) 
 Efforts to encode strings into kernel representations have progressed for many 
applications.  The mismatch, gap, and k-mer kernels mentioned above have been used 
mainly for protein classification, translation initiation site detection, and mRNA splice 
site identification.  Another straightforward sequence representation is the sparse bit 
encoding[21].  In this simple scheme each nucleotide in a sequence is encoded by 4 
bits, only one of which is set to 1.  The nucleotide is identified as A, C, T, or G based 
on the position of the “1” in each such set.  This leaves an 800 · 4 = 3200 dimensional 
vector to describe each example sequence, and the dot product of two vectors results 
simply in the number of nucleotides shared between the two sequences. 
 
7 Promoter Curvature and Bend Predictions (Table 2 items 19 and 26 ) 
 It is well known that sequence-dependent DNA bending can be an important 
aspect of protein-DNA interactions.   Some prominent examples of proteins that 
induce DNA bending are the TATA-binding protein (TBP)[79], catabolite activating 
protein (CAP), and the yeast Mcm1 transcription factor[80].  A specific sequence of 
nucleotides that is more prone to bending into the proper configuration would provide 
a ready-made site for transcription factor binding.  The particular bend and curve 
properties of known target genes may help discriminate them from non-targets.   
 Using the “Banana” algorithm in the EMBOSS toolkit, bend and curvature 
predictions were made along the promoters of all yeast genes.  These were used as 
two separate genomic methods from which to generate classifiers for all 104 TFs one 
based on bend predictions and one based on curve.  Specifically, bending refers to the 
tendency of adjacent base pairs to be non-parallel (twists and short bends of ~3bp), 
whereas curvature refers to the tendency of the double-helix axis to follow a non-
linear path for a distance of several base pairs (broad loops and arcs, ~9bp window).  
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Banana follows the method of Goodsell and Dickerson[81] which is consistent with 
published experimental data[82].  Briefly, base pairs in DNA are typically 
perpendicular to the helical axis, meaning that the curvature and bend of the DNA can 
be roughly described by the vectors normal to each base pair.  Given a sequence and a 
table of the standard roll, tilt, and twist angles between base pairs (based on 
experimental measurements), the Banana algorithm calculates the magnitude of these 
normal vectors at each base pair relative to the previous pair.  Bend is calculated from 
these normal vectors as an average over a 3bp window.  These values become the 
feature vectors for examples in SVM classification based on DNA bend (i.e., each 
window is one feature).  For curvature, an average over a 10bp window is used to 
smooth out variations in magnitudes (for a nucleotide position n, an average is taken 
from n - 4 to n + 4 with the -5 and +5 positions averaged in at half weight, 
determining the value assigned to position n).  After this smoothing step, the 
curvature at n is calculated as the angle between base pairs at positions n - 15 and n + 
15.  This vector of angles is used as the feature vector for a training example in SVM 
classification.  For more details on the method see [81] or reference the EMBOSS 
website (http://emboss.sourceforge.net/apps/banana.html). 
 
8 Homolog Conservation (Table 2 item 20) 

This method is akin to the phylogenetic profiles taken from the COG database 
described above.  Because COG uses a strict definition of orthology, namely bi-
directional best hits within a group of at least three organisms, many genes are not 
allocated to any ortholog group.  The method described here relaxes the definition of 
orthology to allow a profile to be constructed for any gene, while still discriminating 
between well-conserved sequences and weakly conserved sequences[83].  These 
phylogenetic profiles are constructed using BLASTP to compare yeast proteins to 180 
prokaryotic genomes.  The resulting best hit E-values are then discretized by placing 
them into one of six bins based on empirically determined E-value cutoffs.  The bin 
numbers range from 0 (no significant hit) to 5 (very significant).  Thus, a typical 
example gene will have 180 features, each corresponding to a different genome, with 
values ranging from 0 to 5 indicating the strength of the best BLASTP hit of that 
gene’s protein to another genome. 

 
9 Hydroxyl Cleavage –DNA Accessibility (Table 2 item 21) 
 It is possible that strands of DNA sharing little sequence similarity may still 
share common structural motifs.  Transcription factors may seek out these structural 
cues for binding, thereby identifying conserved structural motifs when no strong 
consensus sequence can be detected.  Experiments show that hydroxyl (OH) radical 
cleavage is an effective probe for DNA structure, in that strand breaking mirrors the 
accessible surface areas of the sugar-phosphate backbone[84-86].  A database of DNA 
sequences and their hydroxyl cleavage patterns has been published[85].  This database 
allows accurate prediction of backbone accessibility for any sequence by sequentially 
examining every 3-mer in a sequence and looking up its experimental cleavage 
intensity as measured by phosphor imaging of cleaved, radio-labeled DNA separated 
by electrophoresis[84].   
 Predictions of this sort are generated for all sequences in the yeast genome and 
the individual 3-mer cleavage intensities along each promoter serve as feature vectors 
for TF-target classification by SVM.  This method should prove useful in identifying 
potential targets when k-mer counts and other sequence based methods fail. 
 



 - 31 - 

10 Kmer median positions from start (Table 2 item 22) 
 A potential transcription factor binding site may be functional only when 
within a certain distance from other binding motifs or from the start site of 
transcription.  When such positional constraints exist, they can be used to filter out 
sites which would otherwise become false positive predictions.   
 For each k-mer in a sequence, we record its median distance from the 
transcription start.  This dataset will be useful in classifying targets for a transcription 
factor only if the factor shows positional bias in promoter binding.   
 
11 K-mer likelihoods (Table 2 item 23) 
 Although k-mer counts may describe promoter composition, the abundance of 
non-informative sequences may hide the few k-mers which meaningfully contribute to 
class separation.  Those k-mers which are statistically over-represented in a promoter 
can often be transcription factor binding sites, and this fact has been effectively used 
to identify biologically significant patterns[87-89].  For every possible k-mer 4, 5, and 
6 long we calculate the probability that the k-mer has x occurrences in a gene’s 
promoter.  The negative log of these probabilities are then the features used for SVM 
classification. 
 Background k-mer counts are obtained from RSA tools.  The prior probability 
(f) for a k-mer to be found in any position is calculated by dividing the total number of 
counts in the background sequence set by the total number of possible positions in the 
background set (here, the background set is the full set of 800bp yeast promoters).  
Given this prior probability for a k-mer, the expected number of occurrences of the k-
mer in any sequence can be calculated by 
 
m = f(L – k + 1), 
 
where L is the length of the sequence and k is the length of the k-mer. 
 The goal is then to calculate the probability of finding the observed number of 
counts by chance given the expected number for a promoter.  This can be done simply 
by using the probability density function of the Poisson distribution with mean m.  
This method for calculating k-mer likelihoods is similar to the method described 
in[90].  Thus, for each gene, a p-value will be calculated for each k-mer which 
represents the likelihood that the k-mer appears as many times as observed by chance.  
A feature vector for a gene is then the vector of probabilities describing all k-mers.   
 
12 Promoter Melting Temperature Profile and Promoter Delta G profile (Table 2 
items 24 and 25) 
 It is widely known that the initiation of transcription by polymerase involves 
melting of the DNA double helix.  Several experiments have indicated that 
differences in melting temperature (Tm) of DNA can influence the rate of 
transcription by assisting or obstructing DNA melting by polymerase[34], and there is 
evidence that torsional strain can play a role in duplex destabilization and 
opening[35].  Furthermore, it has been shown that sites thought to be susceptible to 
stress-induced duplex destabilization (SIDD) match well with gene regulatory 
regions[36].  It is therefore possible that transcription factors binding DNA may 
induce conformational adjustments in the promoter which slightly alter the stability of 
the helix.  This change in stability may indirectly change the frequency or likelihood 
of transcription initiation. Indeed, recent models have shown correlation between sites 
of local promoter melting, regulatory sites, and initiation sites[91]. 
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 If certain transcription factors influence a target’s expression by altering 
promoter stability, its targets may contain a specific melting temperature or free-
energy signature in their promoter regions.  This signature could potentially 
distinguish targets from non-targets much as sequence motifs do.  To include this 
information in a classifier the EMBOSS[92] toolbox is used to calculate the melting 
and free energy profiles of all yeast promoters using a sliding window of 20bp.  Thus, 
for every 20bp increment along each upstream region, a Tm value and a Gibbs free 
energy (ΔG at 25°C) is calculated.  For these calculations EMBOSS uses the nearest-
neighbor thermodynamics from [93, 94].  The Tm profile and the free energy profile 
become separate feature vectors for each gene, thereby providing two additional 
datasets which can be used for classification. 
  
PSSM Comparision 

Using the same positive and negative sets as for the SVM procedure, PSSMs 
are also used to make predictions across the yeast genome at various score thresholds 
to serve as a comparision to predictions made by SVM.  The data in Figure 8  
represent only one threshold, a value of 0.1 as the prior parameter in MotifScanner 
(low parameter values retain the best matches whereas values near 1 allow very loose 
hits).  Other choices of threshold do not appear to improve performance.  Loosening 
the threshold begins to dramatically increase false positive predictions beyond a prior 
of  0.2.  By making detection more strict, false predictions are reduced along with 
sensitivity.    
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