
Can Neural Network and Statistical
Learning Theory be Formulated in terms

of Continuous Complexity Theory?

1. Neural Networks and Statistical
Learning Theory

Many areas of mathematics, statistics, and
computer science deal with extrapolation of
functions from partial information or
examples.

E.G., data mining, prediction

Function approximation problem:  How >9
best estimate the function  from partial0
information (examples)

C œ R0 œ Ð0ÐB Ñ  ßá ß 0ÐB Ñ  Ñ" " 5 5% %

i.e., values of  at a finite number of points0
B ßá ß B" 5 5, with possible error ?%

More generally:



Given normed linear space  and anJ
unknown  how to best estimate  (in0 − J ß 0
the norm of ) given J information

R0 œ ÐP 0ßá ßP 0Ñ" 5 , 

where  are (linear or nonlinear)P3

functionals  (henceforth implicitly assume
possible error terms  in the components of%5
R ).

IBC is a complete theory of information and
algorithmic complexity developed for study
of function approximation problem and its
generalizations.

Other work in function approximation is
closely related to continuous complexity
theory.  We wish to classify them within the
framework of complexity analysis
established within this theory.

This other work includes:



ì  Statistical learning theory [Vapnik,
Poggio].

ì Learning in neural network theory
[Rumelhart, Hinton, Williams],

ì  Computational learning theory [Kearns,
Vazirani],

ì  Regularization theory [Poggio, Girosi]

ì   Regression theory in statistics

ì   Maximum entropy method [Jaynes],

ì   Theory of V-C dimension and
approximation [Vapnik, Chervenenkis,
Poggio, Girosi, etc.],

ì  Adaptive resonance theory [Carpenter,
Grossberg]



ì   Approximation theory

ì   Decision tree methodologies (AI)

Goal 1:  identify -complexities of%
algorithms in these areas (so far, there are
almost no results)

Goal 2:  classify such methods in context of
continuous complexity analyses

Goal 3:   precisely define optimality within
such classes of approaches, and identify
optimal algorithms from among differing
approaches above.

Resulting Goal:  Form a normative index of
such methods according to their (now
comparable) optimality properties.

Some currently used methods seem outside
the domain of the information-based



continuous complexity model; we wish to
show that this model includes these existing
approaches.

Desired outcome:  Use continuous
complexity formulation to move closer to a
more inclusive theory of continuous optimal
algorithms, into which most current
approaches for function extrapolation would
fit.

Important philosophical point:

For comparison of various methods of data
extrapolation from partial information, need
universal separation of information into

•  a priori information = prior information
about 0

•  a posteriori information = data
R0 œ Ð0ÐB Ñßá ß 0ÐB ÑÑ" 8



Examples:

1.  Interpolatory approach (worst case
approach)

A priori information:

0 − J œ" balanced convex function set

A posteriori information:  , i.e.R0 œ C

0 − R C"

Optimal algorithms approximate center of
set  through algorithm J  R C À"

" 9

9ÐR0Ñ ¸ 0Þ

2.  Average case approach

A priori information:  Unknown function 0
has an a priori probability distribution  on a.
Banach space .J



A posteriori information:

R0 œ ÐP 0ßá ßP 0Ñ" 8

where  are linear functionals.P3

Choose estimate of  to be the average of 0 .
conditioned on given data.R0 œ C œ

Optimal algorithm for Gaussian measure:
spline algorithm

9ÐR0Ñ œ P Ð0ÑG P"
4

4 4.

where  is the covariance operator, definedG.

by

P ÐG P Ñ œ P Ð0ÑP Ð0Ñ Ð.0ÑÞ" # " #
J

. ( .

3.  Maximum likelihood approaches



Choose estimate of  which is consistent0
with  and whose probability is theR0
largest, for the measure  restricted to.
Ö0 À R0 œ C×Þ

4.  Regularization approach

Ex: Maximum likelihood methods of
Bayesian statistics:

Given: a priori probability distribution  on.
J 0; assume  chosen according to ..

Algorithm: maximize density of  subject to.
the  information a posteriori R0 œ CÞ

More generally, this involves minimization
of a weighted combination

L Ð0Ñ œ mR0  Cm  Ð0Ñ-
# -A .  



 In fact, we feel that the union of the
interpolatory and regularization approaches
constitutes a very comprehensive set of
algorithms  which explicitly separate9ÐR0Ñ
the two types of information.

5.  Vapnik-Chervenenkis (VC) approach

Given nested family  of candidate ÖZ ×-  a
priori spaces increasing in size (and
complexity) with .-

Approach:
- small
Ê R C  Zcandidate set  small"

-

Ê selection of approximation

0 − R C  Z˜ "
-

is from reasonable sized set.
Approach: choose   such thatsmallest -
R C  Z"

- is non-empty.



6.  Neural Network Algorithms
ì  Use examples  of an unknown i-oR0
function .0

ì   Apply algorithm  to get approximation9

0 œ ÐR0Ñ˜ 9

0̃  is the function computed by the network
after training with examples ; chosenR0
from parameterized class  of network-T
computable functions

0Ð Ñ œ ßx q

with



x y qœ à œ à œ Þ
B C ;
ã ã ã
B C ;

Ô × Ô × Ô ×
Õ Ø Õ Ø Õ Ø

" " "

5 8 7

Function defined by:0ÐBÑ

C Ð Ñ œ A K Ð Ñ3 34 4

4

x x"

; Ð Ñ œ @ C3 34 4

4

y "
œ linear operation.

Class (measured by size  ofT œ T 88

middle layer) = set of functions computable
by network with middle layer of size ;8

seek closest match to  in .˜0 0 − T8

Same arguments as for the V-C method :Ê



We want  sufficiently diverse toT8

approximate , but not so diverse that there0
are too many solutions (and solution
problem is ill-posed).  Thus make  as small8
as possible, so long as  is non-R C  T"

8

empty.

Effectively, the a priori class  is similar toT8

a class  consisting of a ball in a SobolevJ"

space, i.e. an  optimizing for smoothness.J

Indeed, if  is specialized to computeT8

radial basis functions (RBF's), we know
optimal approximations from  explicitlyT
minimize for Sobolev norm.

b many variations of approximation of i-o
functions  with a priori assumptions (e.g.,0
0 − T Ñ8  essentially assuming smoothness of
0 .

7. Adaptive resonance theory (ART):



Algorithm:  dynamic neural network weight
allocation procedure for classification of
input vectors x.

For different classes  of input vectors ,G3 x
different output vectors  respond.C3

This network is similar (in its simplest from)
to first two layers of feedforward radial
basis function network

Difference: second competitive processing
stage where the hidden neuron C œ K ÐBÑ3 3

with highest activation suppresses all other
neurons .C Á C4 3



Effectively, ART network computes the
function

0 ÐBÑ œ Ð!ßá ß !ßK ÐBÑß !ßá ß !Ñ‡
4 , (1)

where the right hand side represents the
choice of the  with the maximumK ÐBÑ œ C4 4

valueÞ

Note: maximum over all K ÐBÑ œ 43

indicates that input was in class G Þ3

A posteriori information:  the data vector x
a priori information:  fact that the i-o
function is approximable in the form (1)Þ

Smoothness of   is effectively an aK ÐBÑ3

priori assumption on smoothness of the
separators of classes  aboveG3

Claim:  It is possible to compare the various
approaches to function extrapolation using



well-defined comparisons, based on
identification in each case of  and a priori a
posteriori information.

Illustration:   Comparison of optimization
and average case approach of complexity
theory.

Let  be a Hilbert space, and let  beL 0 − L
unknown, with information

R0 œ ÐP 0ßá ßP 0ÑÞ" 8

A priori information:    has small norm0
with respect to some operator, e.g.,

mE0m œ small



(for example,  on a compactE0 œ 0  0?
manifold would mean  has small Sobolev0
norm, i.e., is smooth).

If information is inexact, optimization
approach gives

0 œ ÖmR0  Cm  mE0m ×arg min # #-

where error informationC œ R0  œ Þ

If information is exact, then optimization
approach gives the  case:- Ä !

0 œ ÖmE0m À R0 œ C×Þarg min #

This approach regarding a priori information
implies a

Bayesean viewpoint:   there exists an a
priori measure  on  whose density at. L



0 − L mE0m is a "function of"  and
decreases monotonically with mE0mÞ

First guess at a priori density:

. Ð0Ñ œ 2ÐmE0mÑ .0.

this does not exist in infinite dimension
unless  is invertible and  is trace class;E E"

in that case we have a Gaussian measure
completely consistent with this:

. œ / .0
"

Ð# Ñ ÐEÑ
.

1
  

 det
lim

dim dim/2Ä_

mE0m#

œ EGaussian with covariance operator #



We want a measure  which "depends" only.
on ; however, a priori assumptions domE0m
not assume it is Gaussian.

However, a general such a priori measure .
can be constructed as follows:

Define sets L œ Ö0 − L À mE0m œ -×Þ-

We want measures which are “constant”.
on sets .L-

Define  = conditional measure of  on .. .- -L

Note:   supported on .  L Þ- -

Also:  measure theoretically

 L œ L ‚ Þ- - "
  ‘

Thus (extending definition from finite
dimension), any measure  which. Ð0Ñ/



depends only on has the form of amE0m
measure on

L ‚ œ  L" - -
‘ , 

with conditional measures  on ,/ .- - -œ L
and some marginal measure  on / ‘7

Þ

Henceforth assume the measure  has/7
finite mean.

With this as the general form of a measure
consistent with our a priori assumptions, we
have:



Theorem:  The -complexity of the%
regularization approach for any problem
(under the accompanying Bayesian
assumption) is equal to the -complexity of%
the average case complexity assuming a
Gaussian measure with covariance operator
E Þ#

Conclusion:  Complexities are entirely
independent of the choice of specific a priori
assumptions.  All that is necessary is the
regularization assumption that " shouldmE0m
be small"; all complexities consistent with
this assumption can be computed from the
average case setting.

Proposition:  Under the same measure .ß
maximum likelihood also gives the same
%  complexity.




