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Abstract. This paper is concerned with the oscillatory behavior of first-order
delay differential equations of the form

x′(t) + p(t)x(τ(t)) = 0, t ≥ t0,(1)

where p, τ ∈ C([t0,∞),R+),R+ = [0,∞), τ(t) is non-decreasing, τ(t) < t for
t ≥ t0 and limt→∞ τ(t) =∞. Let the numbers k and L be defined by

k = lim inf
t→∞

∫ t

τ(t)
p(s)ds and L = lim sup

t→∞

∫ t

τ(t)
p(s)ds.

It is proved here that when L < 1 and 0 < k ≤ 1
e

all solutions of Eq. (1)
oscillate in several cases in which the condition

L > 2k +
2

λ1
− 1

holds, where λ1 is the smaller root of the equation λ = ekλ.

1. Introduction

The problem of establishing sufficient conditions for the oscillation of all solutions
of the differential equation

x′(t) + p(t)x(τ(t)) = 0, t ≥ t0,(1)

where the functions p, τ ∈ C([t0,∞),R+) (here R+ = [0,∞)), τ(t) is non-
decreasing, τ(t) < t for t ≥ t0 and limt→∞ τ(t) = ∞, has been the subject of
many investigations. See, for example, [1]–[26] and the references cited therein.

By a solution of Eq. (1) we understand a continuously differentiable function
defined on [τ(T0),∞) for some T0 ≥ t0 and such that (1) is satisfied for t ≥ T0.
Such a solution is called oscillatory if it has arbitrarily large zeros, and otherwise
it is called nonoscillatory.

The first systematic study for the oscillation of all solutions of Eq. (1) was made
by Myshkis. In 1950 [23] he proved that every solution of Eq. (1) oscillates if

lim sup
t→∞

[t− τ(t)] <∞, lim inf
t→∞

[t− τ(t)] · lim inf
t→∞

p(t) >
1
e
.(C1)
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In 1972, Ladas, Lakshmikantham and Papadakis [18] proved that the same con-
clusion holds if

lim sup
t→∞

∫ t

τ(t)

p(s)ds > 1.(C2)

In 1979 Ladas [17] and in 1982 Koplatadze and Chanturija [13] improved (C1)
to

lim inf
t→∞

∫ t

τ(t)

p(s)ds >
1
e
.(C3)

Concerning the constant 1
e in (C3), it is to be pointed out that if the inequality∫ t

τ(t)

p(s)ds ≤ 1
e

holds eventually, then, according to a result in [13], (1) has a non-oscillatory solu-
tion.

In 1982 Ladas, Sficas and Stavroulakis [19] and in 1984 Fukagai and Kusano [10]
established oscillation criteria (of the type of conditions (C2) and (C3)) for Eq. (1)
with oscillating coefficient p(t).

It is obvious that there is a gap between the conditions (C2) and (C3) when the
limit

lim
t→∞

∫ t

τ(t)

p(s)ds

does not exist. How to fill this gap is an interesting problem which has been recently
investigated by several authors.

In 1988, Erbe and Zhang [9] developed new oscillation criteria by employing the
upper bound of the ratio x(τ(t))/x(t) for possible nonoscillatory solutions x(t) of
Eq. (1). Their result, when formulated in terms of the numbers k and L defined
by

k = lim inf
t→∞

∫ t

τ(t)

p(s)ds and L = lim sup
t→∞

∫ t

τ(t)

p(s)ds,

says that all the solutions of Eq. (1) are oscillatory, if 0 < k ≤ 1
e and

L > 1− k2

4
.(C4)

Since then several authors tried to obtain better results by improving the upper
bound for x(τ(t))/x(t). In 1991 Jian Chao [2] derived the condition

L > 1− k2

2(1− k)
,(C5)

while in 1992 Yu and Wang [25] and Yu, Wang, Zhang and Qian [26] obtained the
condition

L > 1− 1− k −
√

1− 2k − k2

2
.(C6)

In 1990 Elbert and Stavroulakis [7] and in 1991 Kwong [16], using different
techniques, improved (C4), in the case where 0 < k ≤ 1

e , to the conditions

L > 1−
(

1− 1√
λ1

)2

(C7)
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and

L >
`nλ1 + 1

λ1
,(C8)

respectively, where λ1 is the smaller root of the equation

λ = ekλ.(2)

In 1994 Koplatadze and Kvinikadze [14] improved (C6), while in 1996 Philos and
Sficas [24] and Jaroš and Stavroulakis [11] derived the conditions

L > 1− k2

2(1− k)
− k2

2
λ1(C9)

and

L >
`nλ1 + 1

λ1
− 1− k −

√
1− 2k − k2

2
(C10)

respectively, where λ1 is the smaller root of Eq. (2).
Following this historical (and chronological) review we also mention that in the

case where ∫ t

τ(t)

p(s)ds ≥ 1
e

and lim
t→∞

∫ t

τ(t)

p(s)ds =
1
e

this problem has been studied in 1993 by Elbert and Stavroulakis [8] and in 1995
by Kozakiewicz [15], Li [21], [22] and by Domshlak and Stavroulakis [5].

The purpose of this paper is to improve the methods previously used to show
that in several cases the conditions (C2) and (C4)–(C10) may be weakened to

L > 2k +
2
λ1
− 1,(C11)

where λ1 is the smaller root of the equation λ = ekλ.
It is to be noted that as k → 0, then all conditions (C4)–(C10) and also our

condition (C11) reduce to the condition (C2). However the improvement is clear as
k → 1

e . For illustrative purposes, we give the values of the lower bound on L under
these conditions when k = 1

e :
(C2): 1.000000000
(C4): 0.966166179
(C5): 0.892951367
(C6): 0.863457014
(C7): 0.845181878
(C8): 0.735758882
(C9): 0.709011646
(C10): 0.599215896
(C11): 0.471517764

We see that our condition (C11) essentially improves all the known results in the
literature.

2. Main results

In what follows we will denote by k and L the lower and upper limits of the
average

∫ t
τ(t)

p(s) ds as t→∞, respectively, i.e.

k = lim inf
t→∞

∫ t

τ(t)

p(s)ds
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and

L = lim sup
t→∞

∫ t

τ(t)

p(s)ds.

Set

w(t) =
x(τ(t))
x(t)

.

We begin with the preliminary analysis of asymptotic behavior of the function
w(t) for a possible nonoscillatory solution x(t) of Eq. (1) in the case that k ≤ 1

e .
For this purpose, assume that (1) has a solution x(t) which is positive for all large
t. Dividing first Eq. (1) by x(t) and then integrating it from τ(t) to t leads to the
integral equality

w(t) = exp
∫ t

τ(t)

p(s)w(s)ds(3)

which holds for all sufficiently large t.
For the next lemma see [11].

Lemma 1. Suppose that k > 0 and Eq. (1) has an eventually positive solution
x(t). Then k ≤ 1/e and

λ1 ≤ lim inf
t→∞

w(t) ≤ λ2,

where λ1 is the smaller and λ2 the greater root of the equation λ = ekλ.

Proof. Let α = lim inft→∞w(t). From (3) we have for sufficiently large t that

α ≥ expkα,

which is impossible if k > 1/e, since a simple calculus argument shows that in this
case λ < ekλ for all λ. This implies that (1) has no eventually positive solution
if k > 1/e. On the other hand, if 0 < k ≤ 1/e, then λ = ekλ has roots λ1 ≤ λ2

(with equality λ1 = λ2 = e if and only if k = 1/e), and α ≥ ekα if and only if
λ1 ≤ α ≤ λ2.

Lemma 2. Let 0 < k ≤ 1
e and x(t) be an eventually positive solution of Eq. (1).

Assume that there exists θ > 0 such that∫ τ(t)

τ(u)

p(s)ds ≥ θ

∫ t

u

p(s)ds for all τ(t) ≤ u ≤ t.(4)

Then

lim sup
t→∞

w(t) ≤ 2
1− k −

√
(1− k)2 − 4A

,(5)

where A is given by

A =
eλ1θk − λ1θk − 1

(λ1θ)2
.(6)

Proof. Let δ : 0 < δ < k be any number arbitrarily close to k and T > t0 large
enough so that τ(t) > t0 and

∫ t
τ(t)

p(s)ds > δ for every t ≥ T . Let t ≥ T and

T1 ≡ T1(t) > t : τ(T1) = t. Since
∫ T1

t p(s)ds > δ there exists T1 > t1 ≡ t1(t) > t
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such that ∫ t1

t

p(s)ds = δ.

Integrating (1) from t to t1, we obtain

x(t) = x(t1) +
∫ t1

t

p(s)x (τ(s))ds,

while integrating from τ(s) to t for s < t1, we have

x(τ(s)) = x(t) +
∫ t

τ(s)

p(u)x (τ(u)) du.

Combining the last two equalities, we obtain

x(t) = x(t1) +
∫ t1

t

p(s)

[
x(t) +

∫ t

τ(s)

p(u)x (τ(u)) du

]
ds.(7)

Let 0 < λ < λ1. Then the function

ϕ(t) = x(t) eλ
∫
t
t0
p(s)ds

, t ≥ a,

is decreasing for appropriate a ≥ t0 since x(t) is also decreasing. Indeed, by Lemma
1,

x(τ(t))
x(t)

> λ

for all sufficiently large t, and consequently

0 = x′(t) + p(t)x(τ(t)) ≥ x′(t) + λ p(t)x(t)

which implies ϕ′(t) ≤ 0 for sufficiently large t.
Substituting into (7), we derive for sufficiently large t

x(t) ≥ x(t1) + δx(t) + ϕ(τ(t))
∫ t1

t

p(s)

(∫ t

τ(s)

p(u) e−λ
∫
τ(u)
t0

p(ξ) dξ
du

)
ds

= x(t1)+δx(t)+ϕ(τ(t)) e−λ
∫ τ(t)
t0

p(s) ds
∫ t1

t

p(s)

(∫ t

τ(s)

p(u) eλ
∫ τ(t)
τ(u)p(ξ)dξdu

)
ds

and therefore

x(t) ≥ x(t1) + δx(t) + x(τ(t))
∫ t1

t

p(s)

(∫ t

τ(s)

p(u) eλ
∫ τ(t)
τ(u)p(ξ)dξdu

)
ds.

(8)

In view of (4), we obtain∫ t

τ(s)

p(u) eλ
∫ τ(t)
τ(u)p(ξ)dξdu ≥

∫ t

τ(s)

p(u) eλθ
∫
t
u
p(ξ)dξdu

=
1
λθ

[
eλθ

∫
t
τ(s)p(ξ)dξ − 1

]
.
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Thus∫ t1

t

p(s)

(∫ t

τ(s)

p(u) eλ
∫ τ(t)
τ(u)p(ξ)dξdu

)
ds ≥ − δ

λθ
+

1
λθ

∫ t1

t

p(s)eλθ
∫ t
τ(s)p(ξ)dξds

= − δ

λθ
+

1
λθ

∫ t1

t

p(s)eλθ
∫ s
τ(s) p(ξ)dξ−λθ

∫ s
t
p(ξ)dξ

ds

≥ − δ

λθ
+

1
λθ

eλθδ
∫ t1

t

p(s)e−λθ
∫ s
t
p(ξ)dξds

= − δ

λθ
+

eλθδ

(λθ)2

[
1− e−λθ

∫
t1
t
p(ξ)dξ

]
= − δ

λθ
+

eλθδ

(λθ)2

[
1− e−λθδ

]
= − δ

λθ
+

1
(λθ)2

(eλθδ − 1),

and (8) yields

x(t) ≥ x(t1) + δx(t) + A∗ x (τ(t)),(9)

where

A∗ =
eλθδ − λθδ − 1

(λθ)2
.

From (9), we have
x(t) ≥ d1 x (τ(t)),

where we have set
d1 =

A∗

1− δ .

Observe that
x(t1) ≥ d1 x (τ(t1)) ≥ d1x(t)

since x(t) is decreasing, and therefore (9) yields

x(t) ≥ d2 x (τ(t)),

where
d2 =

A∗

1− d1 − δ
.

Following this iterative procedure (cf. [25], [26]), we obtain

x(t) ≥ dn+1 x (τ(t)),

where
dn+1 =

A∗

1− dn − δ
, n = 1, 2, ....

It is easy to see that the sequence {dn} is strictly increasing and bounded.
Therefore limn→∞ dn = d exists and satisfies

d2 − (1− δ)d+A∗ = 0.

Since {dn} is strictly increasing, it follows that

d =
1− δ −

√
(1− δ)2 − 4A∗

2
.

Thus, for all large t

x(t)
x(τ(t))

≥ 1− δ −
√

(1− δ)2 − 4A∗

2
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and since 0 < δ < k is arbitrarily close to k, by letting λ→λ1 the last inequality
leads to (5). The proof is complete.

Remark 1. Assume that τ(t) is continuously differentiable and that there exists
θ > 0 such that

p(τ(t)) τ ′(t) ≥ θ p(t)(10)

eventually for all t. Then it is easy to see that (10) implies (4). Indeed, the function

v(u) =
∫ τ(t)

τ(u)

p(s)ds− θ
∫ t

u

p(s)ds, τ(t) ≤ u ≤ t,

satisfies the conditions
v(t) = 0,

and
v′(u) = −p(τ(u))τ ′(u) + θp(u) ≤ 0.

If p(t) > 0 eventually for all t and

lim inf
t→∞

p(τ(t)) τ ′(t)
p(t)

= θ0 > 0,

then θ can be any number satisfying 0 < θ < θ0 . Besides the case p(t) ≡ p >
0, τ(t) = t − τ or the case τ(t) = t − τ and p(t) is τ -periodic, there exists a class
of functions which satisfy (10).

Theorem. Consider the differential equation (1) and let L < 1, 0 < k ≤ 1
e and

there exist θ > 0 such that∫ τ(t)

τ(u)

p(s)ds ≥ θ
∫ t

u

p(s)ds for all τ(t) ≤ u ≤ t.(4)

Assume that

L >
`nλ1 + 1

λ1
− 1− k −

√
(1− k)2 − 4A
2

,(11)

where λ1 is the smaller root of the equation λ = ekλ and A is given by (6). Then
all solutions of Eq. (1) oscillate.

Proof. Assume, for the sake of contradiction, that x(t) is an eventually positive
solution of Eq. (1). Then, as in [11, Theorem 1], we obtain

L ≤ `nλ1 + 1
λ1

− M,

where
M = lim inf

t→∞

x(t)
x(τ(t))

.

The last inequality, in view of Lemma 2, contradicts (11). The proof is complete.

Remark 2. Observe that when θ = 1, then

A =
λ1 − λ1k − 1

λ2
1

and (11) reduces to

L > 2k +
2
λ1
− 1.(12)
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In the case that k = 1
e , then λ1 = e and (12) leads to

L >
4
e
− 1 ≈ 0.471517764.

Example. Consider the delay differential equation

x′(t) + p x

(
t− a sin2

√
t− 1

pe

)
= 0,(13)

where p > 0, a > 0 and pa = 1
2 −

1
e . Then

k = lim inf
t→∞

∫ t

τ(t)

pds = lim inf
t→∞

p

(
a sin2

√
t+

1
pe

)
=

1
e

and

L = lim sup
t→∞

∫ t

τ(t)

pds = lim sup
t→∞

p

(
a sin2

√
t+

1
pe

)
= pa +

1
e

=
1
2
.

Thus, according to Remark 2, all solutions of Eq. (13) oscillate. Observe that none
of the results mentioned in the introduction can be applied to this equation.
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