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Abstract

We announce new conditions for uniform pointwise convergence rates of
wavelet expansions in Besov and uniformly local Sobolev spaces.

1. Introduction

The wide applicability of wavelet approximation methods to diverse technological
problems is due to their localization in time and frequency spaces, existence of fast
algorithms and, in the case of the Daubechies wavelets, orthogonality and compact
support. A natural question is, where and how fast do such wavelet expansions
converge?

The first results on L2 and L∞ convergence rates of r-regular miltiresolution expan-
sions were in [Ma, Me, W]. For an overview of convergence rates of wavelet expansions
in Sobolev and Besov spaces, see the text [HKPT]. For recent results in non-linear
approximation [De] and rates of convergence in threshholding algorithms for wavelet
expansions, see [CDKP]. For a study of shift invariant spaces see [BDR]. Our ap-
proach imposes less restrictive assumptions on the scaling function and/or wavelet,
and uses different techniques. Here we summarize previous results and announce new
results for Besov and uniformly local Sobolev spaces.

In [KKR1, KKR2] the wavelet expansion analogue of the Carleson result that
Fourier series converge almost everywhere on R

d is shown (it is easier to prove than the
corresponding Fourier series result). The main ideas of the proof involve showing that
the kernels associated with the projection operators of the multiresolution analyses
(MRA) are bounded by an L1 radially decreasing convolution kernel, something which
fails to hold in Fourier theory.

The techniques of [KKR2] are used in the study of the rate of convergence of the
error ‖f − Pnf‖∞ associated with MRA projections Pn, for functions f in Sobolev
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2(R

d) [KR1]. The MRA’s are assumed to satisfy weak regularity assumptions,
in the sense that the kernel of P0 is bounded by a convolution kernel in the class
[RB] (which consists of functions with integrable radial decreasing majorants). This
situation is more general than r-regularity and occurs when the scaling function φ(x)
or the logarithmically weighted wavelets ψλ(x) ln(2 + |x|) are in [RB].

In [KR1] it is shown that convergence rates of wavelet and multiresolution ex-
pansions depend on smoothness of the expanded function f . Specifically, if s is not
larger than a fixed parameter σ and f ∈ Hs

2(R
d) then the error of approximation is

O(2−n(s−d/2)), with d the dimension and n the number of scales used in the expansion.
More precisely, the pointwise approximation condition can be stated as, for all n ≥ 0,

‖f − Pnf‖∞ ≤ C 2−n(s−d/2)‖f‖Hs
2

(1.1)

whenever d/2 < s < σ. The convergence rate of (1.1) is expected [W].
In a sequel paper [KR2] we show that the index σ is actually sharp and depends

on the MRA used in the expansion. The upper bound σ is related to the behavior of
the Fourier transform ψ̂ of the wavelet near the origin, a condition which is essential
for the proof of (1.1). We have shown that σ can be defined in four equivalent ways,
involving the operator I−P0, the Fourier transform of the scaling function φ or of the
wavelet ψ, or the scaling function’s symbol m0. For function spaces with smoothness
s greater than σ the rate of convergence “freezes” and fails to improve, no matter
how large s is. Such behaviors are again expected for wavelet expansions. Again the
key to these proofs is the L1 bound on the reproducing kernel of the MRA.

The natural spaces for wavelets are Besov spaces, and here we will use embedding
theorems [BL], [De] and our results for Sobolev spaces to derive optimal pointwise
convergence rates for some classes of Besov spaces. Wavelet convergence questions in
local spaces are also important because wavelets are local in nature, and we expect
that global convergence properties which assume that the function f being expanded
decays at infinity also hold locally, independently of the decay properties of f .

We also announce here optimal rates of convergence for other spaces of smooth
functions, such as the uniformly local counterparts Hs

p,ul(R
d) of the standard Sobolev

spaces Hs
p (definitions in Section 6), in the range 1 ≤ p ≤ ∞. We show that the

expected optimal rate of convergence σ − d/2 holds in these cases, but only under a
decay assumption on the scaling function, namely |φ(x)| ≤ C|x|−σ−d/2.

An overview of the organization of this paper is as follows. Basic definitions are
given in Section 2. Section 3 contains known results on convergence rates of wavelet
expansions for Sobolev and Besov spaces from [HKPT]. In Section 4 statements of
the main pointwise convergence rate results for Sobolev spaces Hs

2(R
d) are given in

order to provide a context for new results in Besov and uniformly local Sobolev spaces
given in Sections 5 and 6. Section 7 gives examples involving convergence rates for
Meyer, Battle-Lemariè and Daubechies wavelets.

2. Basic Definitions
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For detailed definitions and theory of an MRA we refer to [Da]. An MRA is
defined as an increasing sequence of subspaces {Vn} of L2(R

d) (d ≥ 1) such that

f(x) ∈ Vn iff f(2x) ∈ Vn+1,

the intersection of the spaces is {0}, the closure of their union is all of L2, and V0 is
invariant under integer translations. It is also generally assumed (though we do not
require it here) that there exists a function φ(x) (the scaling function) whose integer
translates form an orthogonal basis (ONB) for V0.

Let Wi be the orthogonal complement of Vi in Vi+1, i.e., Wi = Vi+1 � Vi, so that
Vi+1 = Vi ⊕Wi. From existence of φ it follows that there is a set of basic wavelets
{ψλ(x)}λ∈Λ (with Λ a finite index set) such that ψλ

jk(x) ≡ 2jd/2ψλ(2jx−k) (j ∈ Z, k ∈
Z

d) form an orthonormal basis for Wj for fixed j, and form an orthonormal basis for
L2(Rd) as λ, j, k vary. Our results will hold for any wavelet set {ψλ}λ related to W0

whose translations and dilations form an orthonormal basis for L2(R
d), regardless of

how they are constructed (see [Da], Ch. 10; [Me]; [HW]).
It follows from the above definitions that there exist numbers {hk}k∈Zd such that

the scaling equation

φ(x) = 2d
∞∑

k=−∞
hkφ(2x− k) (2.1)

holds. We define

m0(ξ) ≡
∞∑

k=−∞
hke

−ikξ (2.2)

to be the symbol of the MRA. Notem0 satisfies φ̂(ξ) = m0(ξ/2)φ̂(ξ/2), where ̂ denotes
Fourier transform where our convention for the Fourier transform is

φ̂(ξ) ≡ F(φ)(ξ) ≡ (2π)−d/2
∫

Rd
φ(x)e−iξ·xdx

where ξ · x is inner product.

Definitions 2.1: Define Pn to be the L2 orthogonal projection onto Vn, with
kernel (when it exists) Pn(x, y). We define P0 = P .

Given f ∈ L2,
(i) the multiresolution approximation of f is the sequence {Pnf}n;
(ii) the wavelet expansion of f is ∑

j;k;λ

aλ
jkψ

λ
jk(x) ∼ f, (2.3a)

with aλ
jk the L2 expansion coefficients of f , and ∼ denoting convergence in L2;

(iii) the scaling-wavelet expansion of f is∑
k

bkφk(x) +
∑

j≥0;k;λ

aλ
jkψ

λ
jk(x) ∼ f, (2.3b)
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where the bk, a
λ
jk are L2 expansion coefficients, and φk(x) = φ(x− k).

We say such sums converge in any given sense (e.g., pointwise, in Lp, etc.) if
the sums are calculated in such a way that at any stage in the summation there is a
uniform bound on the range (largest minus smallest) of j values for which we have
only a partial sum over k, λ.

Definitions 2.2: The Sobolev space Hs
2(R

d), s ∈ R is defined by

Hs
2(R

d) ≡
{
f ∈ L2(R

d) : ‖f‖Hs
2
≡
√∫

|f̂(ξ)|2(1 + |ξ|2)sdξ <∞
}
.

The homogeneous Sobolev space is:

H̃s
2(R

d) ≡
{
f ∈ L2(R

d) : ‖f‖
H̃s

2
≡
√∫

|f̂(ξ)|2|ξ|2sdξ <∞
}
.

Note the spaces contain the same functions (by virtue of the fact that H̃s
2 is restricted

to L2). Only the norms differ, and the second space is incomplete as defined (its
completion contains non-L2 functions which grow at ∞).

We denote the space FHs
2 to be the Fourier transforms of functions in Hs

2 , with
the analogous definition for FH̃s

2 .
In general the classical Sobolev space Hs

p on R
d is defined by

Hs
p(R

d) = {f ∈ Lp(R
d) : (1 − Δ)s/2f ∈ Lp(R

d)}
for 1 ≤ p ≤ ∞, where Δ is the Laplacian, defined by

FΔf(x) = −∑
i

ξ2
i (Ff)(ξ), and

ξ = (ξ1, . . . , ξd) denotes the Fourier variable dual to x = (x1, . . . , xd). The norm is
‖f‖Hs

p(Rd) = ‖(1 − Δ)s/2f‖Lp(Rd).

Finally, the Sobolev space Wm
p (Rd) is defined as

Wm
p (Rd) =

{
f ∈ Lp(R

d) : f (j) ∈ Lp(R
d), j = 0, 1, 2, . . . , m

}
where f (j) is a weak jth derivative. The norm for this space is

‖f‖W m
p (Rd) = ‖f‖Lp(Rd) + ‖f (m)‖Lp(Rd).

When s ∈ {0, 1, 2, . . .} then Hs
p = Wm

p if 1 < p <∞.

Definitions 2.3: A multiresolution analysis (MRA) or corresponding family of
wavelets ψλ yields pointwise order of approximation (or pointwise order of conver-
gence) s > 0 in Hr

2 if for any f ∈ Hr
2 , the nth order approximation Pnf satisfies

‖Pnf − f‖∞ = O(2−ns), (2.4)
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as n tends to infinity, if r − d/2 > 0 (if r − d/2 ≤ 0 the left side of (2.4) is in fact
infinite for some f).

It yields best pointwise order of approximation (or convergence) s > 0 in Hr
2 if s is

the largest positive number such that (2.4) holds for all f ∈ Hr
2 . If the supremum s of

the numbers for which (2.4) holds is not attained, then we denote the best pointwise
order of convergence by s−. By convention best order of approximation 0 means that
the supremum in (2.4) fails to go to 0; thus s ≥ 0 by our definitions.

The MRA yields optimal order of approximation (or convergence) s if s is the
best pointwise order of approximation for sufficiently smooth f , i.e. for f ∈ Hr

2 for
sufficiently large r (i.e., for r > R for some R > 0). Thus this order of convergence
is the best possible order in any Sobolev space. We say s = ∞ if the best order of
approximation in Hr

2 becomes arbitrarily large for large r.
In addition, the notion of optimal order can be extended to any scale of spaces

{Xs}s>0 in the same way. In particular we will use this notion for the scale of
uniformly local Sobolev spaces Hs

p,ul in Section 6.

Definitions 2.4: A function f(x) on R
d is radial if f depends on |x| only. A real

valued radial function is radial decreasing if |f(x)| ≤ |f(y)| whenever |x| ≥ |y|.
A function φ(x) is in the radially bounded class [RB] if |φ(x)| ≤ η(|x|), with η(·)

a decreasing function on R
+, and η(|x|) integrable in x.

We say φ(x) ∈ [RB(N)] if, φ(x) ∈ [RB] and in addition, we can choose a η(x)
such that ∫

η(|x|)|x|Ndx <∞.

With a slight abuse of terminology, a kernel P (x, y) is in [RB] if |P (x, y)| ≤ η(|x−y|),
where η(|x|) is, as above, decreasing in |x| and integrable in x.

3. Basic Results for Sobolev and Besov Spaces [HKPT]

We cite a basic result on convergence of wavelet expansions in Sobolev spaces
Wm

p (R)1 ≤ p ≤ ∞.

Theorem 3.1 [HKPT]: For x on the real line R, assume that the integer trans-
lates of a scaling function φ of an MRA generate an orthonormal system such that
φ(x) ∈ [RB(N + 1)] for an integer N ≥ 0. Assume that one or more of the following
equivalent conditions hold:
(a) |m0(ξ)|2 = 1 + o(|ξ|2N) as ξ → 0,
(b)

∫
xnψ(x)dx = 0 for n = 0, 1, . . . , N , where ψ is the wavelet associated to φ,

(c) φ̂(ξ + 2kπ) = o(|ξ|N) as ξ → 0 for all k = 0.
Then f ∈WN+1

p (R) if and only if

‖Pjf − f‖p = O(2−j(N+1)) as j → ∞, (3.1)

for any p ∈ [1,∞].
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That is, for functions in WN+1
p (R) the rate of convergence for the multiresolution

expansion in the p norm is N + 1. In the next section we will present necessary
and sufficient conditions for rates of sup-norm convergence (p = ∞) for functions in
Hs

2(R
n) under the more minimal assumption that φ ∈ [RB]. We remark, however,

that extension of our results to Hs
p , 1 ≤ p <∞ will be straightforward. We will also

present new results for Besov and uniformly local spaces.
To define Besov spaces on R

n, we proceed as follows ([BL]). (For alternative defi-
nitions of Besov spaces see [De], [HKPT].)

Definitions 3.2: Let α = (α1, . . . , αn) be a multiindex with αi non-negative
integers, and define for a function f on R

n

Dαf(x) =
∂α1+α2+...+αn

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

f(x).

We define the Schwarz space of rapidly decreasing functions on R
n by

S(Rn) = {f(x) : ‖(1 + |x|)bDαf‖∞ <∞ ∀ b > 0}

where ‖ · ‖∞ denotes the essential supremum norm.
It can be shown that there exists a function φ ∈ S(Rn) whose support supp φ

satisfies
supp φ = {ξ|2−1 ≤ |ξ| ≤ 2},

and such that φ(x) > 0 for 2−1 < |ξ| < 2, and

∞∑
k=−∞

φ(2−kξ) = 1 (ξ = 0).

We then define functions φk(x) and ψ(x) such that

Fφk(ξ) = φ(2−kξ) (k = 0,±1,±2, . . .) (3.1a)

Fψ(ξ) = 1 −
∞∑

k=1

φ(2−kξ). (3.1b)

Letting S ′ denote the dual space, we define for f ∈ S ′, s ∈ R, 1 ≤ p, q ≤ ∞,

‖f‖s,q
p ≡ ‖ψ ∗ f‖p +

( ∞∑
k=1

(2sk‖φk ∗ f‖p)
q

)1/q

,

and the Besov space Bs,q
p to be all functions for which this norm is finite.

The next theorem gives convergence rates of multiresolution approximations in
Besov spaces.
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Theorem 3.4 [HKPT]: Let φ be a scaling function generating an MRA whose integer
translates form an orthonormal system, φ ∈ [RB(N + 1)] for some integer N ≥ 0.
Assume that φ is N + 1 times weakly differentiable, and that the derivative φ(N+1)

satisfies
ess supx

∑
k

|φ(N+1)(x− k)| <∞.

Then for any 0 < s < N + 1, 1 ≤ p, q ≤ ∞, and any function f ∈ Lp, the following
conditions are equivalent:
(a) f ∈ Bs,q

p (R)
(b) ‖Pjf − f‖p = 2−jsεj for j = 0, 1, . . ., with {εj}j ∈ lq
(c) ‖β‖p < ∞ and ‖αj‖lp = 2−j(s+1/2−1/p)ε′j , j = 0, 1, . . . where {ε′j} ∈ lq,
β = {bk}∞k=−∞ and αj = {ajk}∞k=−∞ (see 2.3(b)).

In Section 5 we will see that our conditions for convergence rates of expansions of
functions in Hs

2(R
d), together with Besov-Sobolev embedding theorems [De], will lead

to a supremum rate of convergence for functions in Besov spaces Bs,q
2 (Rd) (Theorem

5.2 and Corollary 5.5).

4. Pointwise Convergence Theorems for Sobolev Spaces

The results below extend those presented in the previous section to necessary and
sufficient conditions for given convergence rates, for expansions in Sobolev spaces
on R

d. We remark that these theorems deal with pointwise sup-norm (i.e. L∞)
convergence, but can be extended to convergence results of the same nature for Lp

spaces.
The following theorem states that under mild assumptions on the MRA (i.e., that

the scaling function or wavelet has a radially decreasing L1 majorant), for f ∈ Hs
2(R

d)
the rate of convergence to 0 of the error ‖f − Pnf‖∞ has sharp order 2−n(s−d/2). For
the sake of brevity we have summarized four theorems into the following.

Theorem 4.1 [KR1]: Given a multiresolution analysis with either
(i) a scaling function φ ∈ [RB],
(ii) a family of basic wavelets ψλ ∈ [RB] or
(iii) a kernel P (x, y) for the basic projection P satisfying |P (x, y)| ≤ F (x − y) with
F ∈ [RB],
then the following conditions (a to e) are equivalent for s > d/2, with d the dimension:

(a) The multiresolution approximation yields pointwise order of approxima-
tion s− d/2 in Hs.

(b) The projection I − Pn : H̃s
2 → L∞ is bounded, with I the identity.

(c) For every family of basic wavelets corresponding to {Pn}n, ψ
λ ∈ FH̃−s

for each λ.
(c′) For every such family of basic wavelets and for each λ,∫

|ξ|<δ
|ψ̂λ(ξ)|2|ξ|−2sdξ <∞ (4.1a)
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for some (or for all) δ > 0.
(d) For every scaling function φ ∈ [RB] corresponding to {Pn}n, (1− (2π)d/2|φ̂|)1/2 ∈
FH̃−s

2 .
(d′) For every such scaling function∫

|ξ|<δ
(1 − (2π)d/2|φ̂(ξ)|)|ξ|−2sdξ <∞ (4.1b)

for some (or all) δ > 0.
(e) For every symbol m0(ξ) corresponding to {Pn}∫

|ξ|<δ
(1 − |m0(ξ)|2)|ξ|−2sdξ <∞ (4.1c)

for some (or all) δ > 0.

Statements (c) and (c′) are related to the vanishing moment properties of the
wavelets ψλ around the origin, while (d) and (d′) are related to so-called Strang-Fix
conditions on the scaling function φ.

For the remainder of the paper we assume that one of the following conditions
holds:

(i) The projection P onto V0 satisfies |P (x, y)| ≤ F (x− y) for some F ∈ [RB].
(ii) The scaling function φ ∈ [RB].
(iii) For a wavelet family ψλ, ψλ(x)(ln(2 + |x|)) ∈ [RB] for all λ.

By representing the kernel of P (x, y) in terms of sums of products involving φ or ψλ,
it is shown in [KKR1] that (ii) ⇒ (i) and (iii) ⇒ (i).

We refer to formulas (4.1a, b, c) as motivation for the following definitions.

Definitions 4.2: We define for s, c ≥ 0

Is(c) ≡
∫
1≥|ξ|≥c

(
1 − (2π)d/2|φ̂(ξ)|

)
|ξ|−2sdξ (4.2)

Ks(c) ≡ sup
λ

∫
1≥|ξ|≥c

|ψ̂λ(ξ)|2|ξ|−2sdξ

Ms(c) ≡
∫

1≥|ξ|≥c
(1 − |m0(ξ)|2)|ξ|−2sdξ.

In this paper an often-used consequence of Theorem 4.1 is the existence of a least
upper bound σ (best Sobolev parameter) on s, depending only on the MRA, for which
(b) of Theorem 4.1 holds. This motivates the following definition.

Definition 4.3: The best Sobolev parameter σ of an MRA is

σ = sup{s > 0|(I − P ) : H̃s
2 → L∞ is bounded}. (4.3)

By convention σ = 0 if the set in the supremum is empty.
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It can be shown that if the best Sobolev parameter σ = 0, then σ > d/2, and the
set Σ ≡ {s > 0|(I−P ) : H̃s

2 → L∞ is bounded} satisfies Σ = (d/2, σ] or Σ = (d/2, σ).

From Theorem 4.1 we have immediately:

Proposition 4.4: If the best Sobolev parameter σ = 0, then

σ = sup{s > 0|Is(0) <∞} (4.4)

= sup{s > 0|Ks(0) <∞}
= sup{s > 0|Ms(0) <∞}.

In Theorem 4.1, σ is important in that all statements hold only if s ≤ σ. For
approximation rates in Hs

2 , we have the following, which will appear in [KR2]. It
summarizes convergence rates in all Hs

2 in terms of properties of the projections Pn

or of integrals involving the wavelets or scaling functions.

Theorem 4.5 [KR2]: Given a multiresolution approximation {Pn},
(o) If σ = 0, there is no positive order of approximation for the MRA {Pn} in any
Hs

2, s ∈ R.
If (o) does not hold then σ > d/2 and:
(i) For 0 ≤ s ≤ d/2, the best pointwise order of approximation in Hs

2 is 0;
(ii) If d/2 < s < σ, the best pointwise order of approximation in Hs

2 is r = s− d/2;
(iii) If s = σ, the best pointwise order of approximation in Hs

2 is

r =
{
σ − d/2 if Iσ(0) <∞
(σ − d/2)− if Iσ(0) = ∞ ;

(iv) If s > σ, the best pointwise order of approximation in Hs
2 is

r =
{
σ − d/2 if Iσ+1/2(c) = O(1/c) (c→ 0)
(σ − d/2)− otherwise

;

(v) In (iii) and (iv) above, Is(c) can be replaced by Ks(c) or by Ms(c).
Another way to say (iv) is that if s > σ, then there exists g ∈ Hs

2(R
d) such

that for all ε > 0, supj 2j(σ+ε−d/2)‖g − Pjg‖∞ = ∞. This says the convergence rate
cannot be improved for functions belonging even to very smooth Sobolev spaces, i.e.,
convergence rates are wavelet dependent. Moreover we note that the value σ + 1/2
used above in condition (iv) is not crucial for its statement. Equivalent conditions to
those in (iv) exist in the form Iσ+α/2(c) = O(c−α) for any (or all) α > 0.

In terms of the Sobolev order s of the expanded function f and the best Sobolev
parameter σ of the MRA, the diagram above gives rates for an MRA expansion in
any Sobolev space (or local Sobolev space; see Section 6). The rates on the boundary
region s = σ in (iii) above are not indicated in the diagram.

We now state our result for optimal pointwise orders of convergence in Sobolev
spaces. Recall σ denotes the best Sobolev parameter of {Pn}, and that optimal order

9



Figure 1: Approximation rate diagram; see Theorem 4.5 (iii) for rates on the boundary
s = σ. The (−) in (σ − d/2)(−) indicates that the superscript − is present only in some
cases.
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of approximation denotes the highest order of approximation in sufficiently smooth
Sobolev spaces.

Corollary 4.6: [KR2] If the best Sobolev parameter σ = 0, then the wavelet collection
ψλ [or scaling function φ] yields optimal pointwise order of approximation:

(i) σ − d/2 if Kσ+1/2(c) = O(1/c) [where K can be replaced by I or M ], and
(ii) (σ − d/2)− otherwise.
This optimal order is attained for all functions f with smoothness greater than σ,

i.e., for f ∈ Hs
2 with s > σ.

Corollary 4.6 gives “best possible” pointwise convergence rates, i.e., convergence
rates for the smoothest possible functions. In fact this optimal rate is largely inde-
pendent of how smoothness is defined, i.e., which particular scale of spaces we are
working with. Such a statement is possible because when the smoothness parameter
s is sufficiently large, the most used scales of “smoothness spaces” satisfy inclusion
relations. For example for s′ large the space Hs′

2 is contained in the sup-norm Sobolev
space Hs

∞ and in other L∞-type Sobolev spaces. Therefore the optimal rates of con-
vergence given here are upper bounds for convergence rates in all Hs

∞ spaces, no
matter how smooth.

5. Extensions to Besov Spaces

Embedding theorems for Besov and Sobolev spaces can be used to extend the
Sobolev results in Section 4 to sup-norm convergence rates for wavelet expansions of
functions in Besov spaces.

The basic questions regarding embedding take the form: Given a fixed Besov space
Bs,q

p where s is the smoothness parameter, is it true that every Sobolev space Hr
2 is

contained in this space for sufficiently large r? Conversely given a Sobolev space Hs
2

and fixed p, q, is it true that Br,q
p is contained in this space for sufficiently large r?

The answer is yes and follows from Sobolev embedding theorems. For such em-
bedding theorems see [BL], [De]. We now state only those embedding results for R

d

that we need.

Theorem 5.1: For s ∈ R and 1 ≤ p ≤ ∞
Bs,1

p ⊂ Hs
p ⊂ Bs,∞

p on R
d.

In particular, Bs,1
2 ⊂ Hs

2 ⊂ Bs,∞
2 .

Combined with Theorem 4.1, this yields the following (best order of approximation
is defined in Definition 2.3).

Theorem 5.2: Given a multiresolution approximation {Pn}, let r be the best order of
approximation of Pn in Hs

2 , as given in Theorem 4.5. Then the order of approximation
in the Besov space Bs,1

2 is at least r, while in Bs,∞
2 it is at most r.
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In order to obtain results on optimal orders of convergence we need the following.

Lemma 5.3: Let 2 ≤ p ≤ ∞, and q ≥ 1. Given s ∈ R, for sufficiently large s1, we
have

Hs1
2 ⊂ Bs,q

p . (5.1a)

Similarly, if 1 ≤ p ≤ 2, then for sufficiently large s1,

Bs1,q
p ⊂ Hs

2 . (5.1b)

In order to obtain exact optimal sup-norm orders of convergence for functions in
Besov spaces we compare the scales {Hs

2}s and {Bsq
p }s, for fixed p and q. To this end,

note that by the above inclusions we have:

Corollary 5.4: For any 1 ≤ q ≤ ∞, the scales of spaces {Hs
2}s≥0 and {Bs,q

2 }s≥0

are intertwined; that is, for any fixed s and sufficiently large s1, H
s1
2 ⊂ Bs,q

2 and
Bs1,q

2 ⊂ Hs
2.

The next corollary allows us to find precise optimal convergence rates in the scale
{Bs,q

2 }s≥0 for any fixed q. Since this scale intertwines with the scale {Hs
2}s≥0, the

optimal rate must be the same, namely:

Corollary 5.5: If the best Sobolev parameter σ = 0, then in the scale {Bs,q
2 }s≥0 of L2-

Besov spaces, the wavelet collection ψλ [or scaling function φ] has optimal pointwise
order of approximation given by

(i) σ − d/2 if Kσ+1/2(c) = O(1/c), and
(ii) (σ − d/2)− otherwise.
(Here K can be replaced by I or M).

6. Pointwise Convergence in Uniformly Local Sobolev Spaces

In this section we will see that the diagram in the figure in Section 4. above also
applies to expansions of functions in uniformly local spaces Hs

2,ul, when the decay
rate t of the scaling function satisfies t− d ≥ s (Theorem 6.2 below). In addition, on
compact subsets the rates in the diagram apply to functions in local Sobolev spaces
Hs

2,loc, when the wavelet has compact support.
The study of convergence properties in local rather than global Sobolev spaces

is a naturally motivated pursuit, given that pointwise convergence properties should
be determined strictly locally for compact wavelets, and essentially locally (i.e., with
small modifications) for wavelets with rapid decay.

Definitions 6.1: The decay rate of a function φ is

sup{t : |φ(x)| ≤ K|x|−t for some K > 0}.
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We will assume here our decay rates t are positive unless otherwise specified.
The local Sobolev space Hs

2,loc is {f ∈ L2(R
d) : fη ∈ Hs

2 ∀ η ∈ C∞
0 }, where C∞

0 is
compactly supported C∞ functions.

The uniformly local Sobolev space Hs
2,ul is {f ∈ L2(R

d) : ‖f‖ul
s < ∞}, where the

uniformly local norm ‖ · ‖ul
s is defined by:

‖f‖ul
s ≡ sup

x∈Rd

‖f‖s,Bx,

with Bx is the unit ball centered at x, where the local norm is defined by

‖f‖s,Bx ≡ inf
f∗
∣∣∣
Bx

=f, f∗∈Hs
2

‖f ∗‖Hs
2
. (6.1)

Similarly, the space Hs
p ≡ {f ∈ Lp : (1 − Δ)s/2f ∈ Lp} has a local version Hp

s,ul

defined analogously to the above with the norm ‖f ∗‖Hs
2

in (6.1) replaced by the norm
of the Sobolev space Hs

p .
As their name implies, these spaces are local versions of the global Sobolev spaces

Hs
p . By definition, f(x) is in the purely local space Hp

s,loc if the product fη ∈ Hs
p

for any compactly supported smooth function η(x). Membership in a uniformly local
space, on the other hand, requires that the size of fη be uniformly bounded if η(x)
is translated to η(x− a) for any a ∈ R

d. Thus uniformly local spaces are not entirely
local because of global sup-norm constraints on the local norms.

An important property of the scale of uniformly local spaces is that there are
bi-directional inclusions among the spaces Hs

p,ul for different values of p. Thus, for
example, for any p and q (including ∞), and for sufficiently large r, the space Hr

p,ul is
contained in the space Hs

q,ul. More interestingly, this type of inclusion also includes
Hs

∞ and related standard spaces of functions with bounded derivatives.
This is useful in the following way. First, if φ(x) has decay rate t (Def. 6.1)

with t − d ≥ σ − d/2 (which holds, for example, for all r-regular wavelets [Me]),
then Corollary 4.6 implies the optimal convergence rate in any scale of uniformly
local spaces Hp

s,ul (including p = ∞) is either σ − d/2 or (σ − d/2)−, i.e., the same
as in the Corollary. Now this result for the spaces Hr

p,ul can be broadened to more
general scales of smoothness spaces using the above inclusions. This includes spaces
of functions defined by L∞ bounds on their derivatives. The caveat, however, is that
the scaling function φ must have the above sufficiently rapid decay.

With this motivation, we present convergence rate results for uniformly local
Sobolev spaces. The results below are for the spaces Hs

2,ul and can be extended
to other scales of spaces via the above-mentioned inclusions. The results for Hs

2,ul are
essentially local versions of the above rates of convergence results, modulo the spatial
uniformity assumptions on functions in Hs

2,ul. However, the uniformity conditions
are not restrictive; for example, similar uniformity assumptions also hold, e.g., for
L∞ Sobolev spaces. We assume our working spaces have uniformly bounded local
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L2 Sobolev norms rather than L∞ Sobolev norms, since the latter are more difficult
to work with in the present context. Our results will also directly extend to local
Sobolev spaces Hs

2,loc with some caveats.
Recall from the definitions that approximation order 0 in a space X means the

error (I − Pn)f fails to have any positive rate of decay for some f ∈ X. Proofs of
Theorem 6.2 and Corollary 6.3 will appear in [KR2].

Theorem 6.2 (Localization): The multiresolution or wavelet expansion (2.3) corre-
sponding to a scaling function φ ∈ [RB] has a best pointwise approximation order of
at least min(r, t− d) in Hs

2,ul, with r the rate of best approximation in Hs
2 and t > d

the decay rate of φ.

The proofs of these uniform convergence results for uniformly local Sobolev spaces
use embedding theorems that reduce the proof to the case p = 2 and write f in
Hs

2,ul(R
d) as a decomposition of its local and global parts.

Corollary 6.3: If the best Sobolev parameter σ ≤ t− d/2 (where t is the decay rate
of φ), then:
(a) The optimal approximation order in the scale of spaces Hs

2,ul is exactly σ− d/2 if
Iσ+1/2(c) = O(1/c) [where I can be replaced by K or M ], and (σ − d/2)− otherwise.
(b) The same exact optimal approximation order holds in the scale of uniformly local
spaces Hs

p,ul for fixed 1 ≤ p ≤ ∞, and in particular also in the scale Hs
∞,ul and thus

Hs
∞.

Proposition 6.4: If φ is compactly supported, the best pointwise approximation rate
for the expansion of any f ∈ Hs

2,loc on any compact K ⊂ R
d is the same as the rate

for the global space Hs
2.

7. Examples:
To illustrate these results we briefly mention applications to some well-known

wavelet approximations. Details for these rates of convergences forHs
2(R

1) will appear
in [KR2].

7.1 Haar wavelets
By Theorem 4.5, Haar expansions in Hs

2 have best order of convergence

r =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, s ≤ 1/2
s− 1/2, 1/2 < s < 3/2,
1−, s = 3/2
1, s > 3/2

. (7.1)

By Corollary 4.6, the optimal approximation order for such expansions (i.e., for
arbitrarily smooth functions) is 1.

The optimal order in scale of Besov spaces Bsq
2 is the same as the optimal order

in the scale of L2 Sobolev spaces Hs
2 .
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By Theorem 6.2 these same orders also hold in the uniformly local Sobolev spaces
Hs

ul. Since φ is compactly supported, these orders of convergence for f(x) hold uni-
formly on compact subsets of R

d, for any f ∈ Hs
2,loc by Proposition 6.4. By Corollary

6.3 this optimal order also holds, among others, in the scale Hs
∞ of L∞ Sobolev

spacess.

7.2 Meyer wavelets
In the case of Meyer wavelets, φ̂ ∈ C∞

0 and σ = ∞−. So we have order of
convergence s − 1/2 in every Sobolev space Hs

2 , s > 1/2, with a convergence order
of 0 for s ≤ 1/2. Thus f ∈ ∩sH

s in the intersection of all Sobolev spaces, the
convergence is faster than any finite order r.

If p = 2, the optimal order in scale of Besov spaces is the same as the optimal
order in the scale of Sobolev spaces.

By Theorem 6.2 the same holds in Hs
2,ul. Thus the optimal order of convergence

is ∞, i.e., convergence rates have no wavelet-based limitations for very smooth f .

7.3 Battle Lemarié wavelets
By Theorem 4.5, Battle-Lemarié expansions (as well as order one spline expansions

- note the scaling spaces Vj are the same) have order of convergence

r =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, s ≤ 1/2,
s− 1/2, 1/2 < s < 5/2
2−, s = 5/2
2, s > 5/2

in Hs
2 .

Again, if p = 2, the optimal order in scale of Besov spaces is the same as the
optimal order in the scale of Sobolev spaces.

In the uniform local spaces Hs
2,ul the same approximation rates again hold. Anal-

ogous results hold for the higher order versions of these spline wavelets, as well as the
corresponding spline expansions.

7.4 Daubechies wavelets
For standard Daubechies wavelets of order 2, by Theorem 4.5 for Hs

2 , the best
order of approximation is

r =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, s ≤ 1/2
s− 1/2, 1/2 < s < 5/2
2−, s = 5/2
2, s > 5/2

.

Similar analyses can be done for higher order Daubechies expansions.
As above, if p = 2, the optimal order in the scale of Besov spaces is the same as

the optimal order in the scale of Sobolev spaces.
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As before the global space Hs
2 can be replaced by the uniformly local space

Hs
2,ul. The optimal order of convergence for these Daubechies wavelets is 2. Since

the wavelets are compactly supported, these are entirely local results, and for any
f ∈ Hs

2,loc, these exact approximation rates hold uniformly on any compact K ⊂ R
d.
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