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ABSTRACT 
 

A host of data on genetic variation from the Human Genome and International 

HapMap projects, and advances in high-throughput genotyping technologies, have 

made genome-wide association (GWA) studies technically feasible. GWA studies 

help in the discovery and quantification of the genetic components of disease risks, 

many of which have not been unveiled before, and have opened a new avenue to 

understanding disease treatment, and prevention.  

 

This chapter presents an overview of genome-wide association (GWA), an important 

tool for discovering regions of the genome that harbor common genetic variants to 

confer susceptibility for various diseases or health outcomes in the post-Human 

Genome Project era. A tutorial on how to conduct a GWA study and some practical 

challenges specifically related to the GWA design is presented, followed by a 

detailed GWA case study involving the identification of loci associated with glioma 

as an example and an illustration of current technologies.  

 

I. INTRODUCTION 
 

A significant scientific breakthrough in genomic research has been made in the first 

decade of the new millennium. The draft completion of the Human Genome Project 
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[1, 2] in 2001 is a major milestone in human genomics and biomedical sciences. It 

mapped the three billion nucleotide bases that make up the human genetic code, 

providing the foundation for studying genetic variations in the human genome, and 

showed that the DNA sequences of any two people are about 99.9% identical. The 

International HapMap Project [3] (http://www.hapmap.org/) which was completed in 

2005 is another scientific landmark in the genomic research. It provides a catalog of 

common genetic variants, predominantly single nucleotide polymorphisms (SNPs), 

occurring in humans within and across populations in the world, and identifies 

chromosomal regions where genetic variants are shared. It further deepens our 

understanding of the genetic architecture of the human genome. The linkage 

disequilibrium (LD) map of the human genome provided by the HapMap project 

creates a valuable and useful genome-wide database of patterns of human genetic 

variation and also promotes the breakthrough in large-scale and high-throughput 

genotyping technological developments..  

 

During the past five years, the accumulating knowledge about the correlation 

structure and frequency of common variants in the human genome combined with 

rapid advances in array technology have made GWA studies technically feasible  

The number of published GWA studies at p ≤ 5E-08 has doubled within a year from 

June 2009 to June 2010 (N=439 through 6/2009, and N=904 for 165 traits through 

6/2010 (NHGRI GWA Catalog, www.genome.gov/GWAStudies). In contrast to 

hypothesis-driven candidate-gene association studies, which largely rely on the 

understanding known and suspected pathology in a given trait, GWA studies 

systematically investigate genetic variation across the genome without the 

constraints of a priori hypotheses, and allows for the possibility of discovering 

associations in previously unsuspected pathways or in chromosomal regions of as yet 

undetermined function. This approach provides a comprehensive and unbiased 

examination of the common genetic basis of various complex traits. GWA studies 
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have expanded our understanding of the complexity and diversity of genetic 

variations in the human genome, and have led to pivotal discoveries of new genetic 

loci for a host of common human disorders, including cancer, type 2 diabetes 

mellitus, and autoimmune diseases [4].  

 

II. HOW ARE GENOME-WIDE ASSOCIATION 

STUDIES CONUCTED? 
 
As in other genetic association studies (such as candidate gene studies), genome-

wide association compares the allele/genotype frequencies between groups that in 

principle differ in a single well defined phenotype; e.g. with and without a particular 

disease, looking for markers that are statistically significant correlates of phenotype.  

 

A. Association study designs 

 

The principal goal is to minimize systematic bias and maximize power. Two 

fundamentally different designs are used: population-based designs that collect 

unrelated individuals (such as case-control or cohort studies) and family-based 

designs that use families (such as trio or pedigree studies), but case-control studies 

are most typically used in GWA studies. For common diseases, population-based 

studies generally have higher statistical power; in addition, in late-onset 

diseases/disorders such as Alzheimer’s disease, parents and siblings may not be 

available. On the other hand, although family-based design is generally more time- 

and resource-consuming, it is robust against population stratification and population 

admixture, and significant findings always imply both linkage and association.  

 
B. DNA sample collection and genotyping technology 
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After appropriate samples are recruited, DNA is drawn from each participant, usually 

by either blood draw or buccal swab. Each person's complete set of DNA is then 

purified from the blood or buccal cells, placed on tiny chips and scanned on 

automated laboratory machines. The genotyping machines quickly survey each 

participant's genome for a dense set of strategically selected markers of genetic 

variation, including either single nucleotide polymorphisms (SNPs) or copy number 

polymorphisms (CNPs), or both.  

 

The popular commercially available genotyping arrays for GWA studies include 

Illumina arrays (such as Human Hap550, Human Hap650, Infinium HD BeadChips, 

etc) and Affymetrix arrays (such as Genome-wide Human SNP Array 5.0, SNP 

Array 6.0, Human Mapping 500K Array Set, etc). In terms of the design in general, 

Affymetrix chips use the “random” design, in which the SNPs on the platform are 

randomly selected from the genome, without specific reference to the LD patterns. In 

contrast, Illumina chips use the “tagging” design, where SNPs are explicitly chosen 

to serve as surrogates for common variants in the HapMap data. The current 

genotyping platforms can accommodate up to 1 million or even more markers per 

chip per person. 

 

C. Genotyping quality control 

 
A battery of genotyping quality control procedures should be performed and checked 

after genotyping is completed, including marker completion rate, marker 

concordance, deviations from Hardy-Weinberg Equilibrium (HWE), sample 

completion rate, minor allele frequency (MAF), heterozygosity, gender concordance, 

duplicate sample detection, relatedness check, self-reported ethnicity concordance, 

and Mendelian consistency for markers and samples (if it is family-based study). In 

the population-based design, unexpected population structure can cause potential 
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bias due to population stratification when there is confounding due to correlated 

differences in both allele frequencies and disease risks across unobserved sub-

populations.  GWA studies therefore typically adjust for multiple random, unlinked 

markers as a surrogate for genetic variation across subpopulation using 

EIGENSTRAT software [5] . A principal component-based analysis to detect and 

correct for population stratification and false positive results from ethnic mixtures. 

(http://genepath.med.harvard.edu/~reich/EIGENSTRAT.htm). In addition,  linkage 

agglomerative clustering based on pairwise identity-by-state (IBS) distance followed 

by multi-dimensional scaling (MDS) implemented in the PLINK toolset [6] 

(http://pngu.mgh.harvard.edu/~purcell/plink/) can be used to identify clusters of 

samples with more homogeneous genetic backgrounds for subsequent association 

tests. 

 

A Quantile-Quantile (QQ) plot that compares observed order statistics of p-values 

against the expected order statistics of p-values under the null hypothesis is also 

useful for visualizing and to summarizing both systematic bias and evidence for 

association. Early departures from the expected p-values usually suggests systematic 

bias, whereas late departures suggest true association signals.  

 

D. Statistical analysis 

 

Because the purpose of the GWA studies is to analyze associations between 

thousands or millions of genetic markers at the genome-wide level and a disease or 

trait of interest without an a priori hypotheses, the initial association analysis 

examines marker-disease associations on a marker-by-marker basis from those who 

pass the quality control filtering. Depending on the assumption of genetic mode of 

inheritance, researchers may choose either allelic test, dominant, recessive, or co-

dominant genotypic test, or trend test. Association analysis can be performed by 
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several existing programming packages, such as PLINK [6] and EIGENSTRAT [5]. 

PLINK is a free, open-source specifically developed for GWA studies that allows 

large-scale analyses in a computationally efficient manner for both population-based 

and family-based designs. EIGENSTRAT uses principal component analysis to 

model ancestry differences between cases and controls. The resulting correction 

minimizes spurious associations while maximizing power to detect true associations.  

 

Because a large number of tests are conducted in GWA studies, stringent 

significance thresholds are essential to rule out false positive results. Several hundred 

thousand tests require  thresholds of  p = 10-07 to control experiment-wide type I 

error for all common variants and p = 5x10-8 for all variants [7-9]. A comprehensive 

analysis beyond single-marker analyses in the GWA setting is not yet feasible 

because it can introduce a large number of additional tests. For example, a 

combinatorial scan for all 2-way interaction on 1 million SNPs is barely feasible. A 

restriction to only a small subset of the data based on a specific rationale or 

hypothesis is more desirable, unless solutions on high-dimension data reduction and 

optimization are developed. SNPs or markers that are identified from the GWAS 

results can be further assigned to pathway analysis or enrichment analysis which 

could potentially be very useful for prioritizing genes and pathways within a 

biological context, which can be done with computational tools and pathway 

databases [10]. 

 

E. Validation and replication 

 

If certain genetic markers are found to be significantly more frequent or less frequent 

in cases than in controls, the variations are said to be "associated" with the disease. 

The associated genetic variations can serve as powerful pointers to the region of the 

human genome where the causal locus resides. However, the significantly associated 
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variants themselves may not always directly cause the disease. In fact, in most cases 

they may just "tag along" with the actual causal variants due to the LD correlation 

structure in the human genome. Deeper analysis of the associated regions by 

sequencing is the best way to identify (a set of possible) causal variant(s), and 

filtering the list of highly associated variants using biologic annotation, including 

sequence context or known function (eQTLs), or conducting further in vitro 

experiments for functionality.   

 

In order to represent credible genotype-phenotype associations observed in a GWA 

study, replication of the results is especially critical. That means finding  the same 

marker or a marker in perfect or high LD with the prior marker [11].  

With the increasing number consortia of multiple GWA studies, meta-analysis of 

multiple genome-wide studies conducted by different investigative groups, in 

different populations, using different genotyping technologies and different study 

designs) becomes an emerging approach of replication of GWA studies in the 

context of gene discovery [11], as illustrated below. Meta-analysis can increase the 

sample size effectively by combining different studies, which is especially powerful 

and useful in genetic association research, particularly when most of the common 

genetic variants contributing to complex diseases have only small to modest effects 

(odds ratio < 1.5). While a single GWA may not have sufficient statistical power to 

detect small effects, secondary analyses using a meta-analysis framework that pools 

information across studies provides an inexpensive and efficient way to accumulate 

evidence, which can also provide additional power for discovery of new associations 

by combing association signals across GWA studies, even when the original raw data 

are unavailable. For example, additional genetic loci with BMI [12] and lipid traits 

[13, 14] have recently been discovered by meta-analysis.  
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III. AN EXAMPLE – GLIOMA GENOME-WIDE 

ASSOCIATION STUDY 
 

A case study involving the identification of loci which are associated with glioma 

using the GWA approach is presented here as a working example. We follow closely 

the presentation in [38]. 

 

A. Study samples 

 

To identify risk variants for glioma, we conducted a principal component-adjusted 

genome-wide association study. 226 glioma patients were collected from The Cancer 

Genome Atlas (TCGA) [15] SNP data. The TCGA data portal contains clinical 

information, genomic characterization data of the tumor genomes and provides a 

platform for researchers to search, download, and analyze data sets generated by 

TCGA. Genotypes were determined using the Illumina Human Hap550 Array.  We 

eliminated all samples for which more than 5% of the single nucleotide 

polymorphisms (SNPs) are missing, and eliminated all SNPs that (i) are determined 

in fewer than 95% of the samples, (ii) have MAF less than 5%, or (iii) have a HWE 

p-value of less than 10-6.  The procedure is outlined in Figure 1. 

 

In order to adjust the potential confounding effects by ethnicity-specific SNP 

frequencies, we further confined our study sample to European-Americans only, 

which is the group from which the majority of samples were obtained.  Glioma 

patient samples were identified by a two-step screening: (a) self-reporting of 

ancestry, and (b) computationally assisted stratification.  The latter was carried out 

using the EIGENSTRAT package [5].  After screening, 179 TCGA samples 

remained.  Of these, we used for confirmation only the 92 that were released after 



9 

August 2009, since the majority of the earlier samples have been already included in 

the Adult Glioma Study (AGS) [16].   

 

The comparison group included normal European-American blood samples (n = 

1366), which was downloaded from the Illumina iControlDB (iControls), an online 

data repository of genotype and phenotype data from individuals that can be used as 

controls in association studies. After applying the quality control procedures 

described above, 1306 control samples remained.  

 

B. Association analysis 

 

Association analysis was performed with the EIGENSTRAT package, under the null 

hypothesis of “no association between the glioblastoma multiform (GBM) SNP 

genotype and the control SNP genotype” based on an additive inheritance model [5].  

To set the significance threshold for  p we required that the probability of 1 or more 

false positives be less than 0.05; in particular, 

 

1! e!Np " 0.05 or 

 

p ! 0.93"10#7 $10#7 

with N, the total number of SNPs examined, taken as 550,000.  At this level, few if 

any SNPs will be detected for typical glioma population sizes.  The alternative is to 

accept a less stringent p-value, and to eliminate false discoveries by seeking 

confirmation in an independent study.  

 

C. Meta-analysis 

 
Various versions of meta-analysis can be used to combine  p-values from two 

independent studies. Because the AGS and TCGA datasets differ wiely in the 

number of samples, we assigned them different weights [37]  In particular 
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p12= 

 

P(Z >
W1Z1 +W2Z 2
W1

2 +W2
2
)  ; 

 

Z ~ Normal(0,1)                       (1) 

 

where the weights (Wi) are proportional to the square root of the "total number of 

individuals”, Zi  =  F-1(1 − pi),   and F-1 (.) is an inverse standard normal CDF.  The 

false discovery rate is estimated as the fused probability multiplied by the total 

number of SNPs, which is 300,000.   

 

The procedure for calculating fused p-values begins with lists of SNPs that have p-

values of less than 0.001 in each population.  We walk down this list, calculating a 

combined p value (eq 1)  for each pair, and accept all SNPs for which the false 

discovery rate (FDR) is less than 0.05 (or equivalently p12 = 0.05/300,000 = 1.7 x 10-

7 ; see Table 1).  For our results, when p exceeds 0.001 in either population, p12  no 

longer meets the required threshold, and the walk stops.1  

 
D. Genes in Linkage Disequilibrium with SNPs 

 

We use the coefficient of determination, R2, to identify genes in strong linkage 

disequilibrium with the SNPs that we identified in the meta-analysis. R2 is calculated 

based on the correlation between gene expression level and SNP genotype. Genes 

with R2 greater then 0.8 are considered to be in strong LD with the SNP. 

 

E. Relative risk 

 
                                                
1 As a practical matter, the walk can be stopped at more stringent p values without changing the main 

conclusions. In particular stopping AGS at p = 10-5, and TCGA at 10-3, while requiring that p12 pass 

the genomic significance level (1.7 x 10-7),  loses only 2 SNPs (rs12021720 and rs2810424), neither 

of which adds new genomic regions. 
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As indicated below, analysis of TCGA and AGS identifies 12 significant SNPs, 7 of 

which are new.  One of the implications of additional SNPs is that the number of 

associated genes that can be used to estimate relative glioma risk increases 

combinatorially.  Consequently we can expect higher prognostic reliability for 

individuals possessing a combination of risk alleles, although at some loss of 

population coverage.  We consider here all combinations of two and three SNPs, 

while constraining our choices to SNPs that are more than a megabase (Mb) apart, in 

order to minimize redundant (disequilibrated) information.  Specifically, the 12 

SNPs are divided into 5 groups based on location. Chromosome 1 has 5 SNPs 

clustered together within 1 Mb, and chromosome 9 has 4 SNPs within 1 Mb around 

genes CDKN2A/2B. The remaining 3 SNPs are located on chromosomes 3, 5, and 7.   

 

If we rule out combinations including any pair of SNPs that are within a single 

chromosome, we find 50 SNP pairs, and 88 SNP triplets.  Statistical analyses were 

implemented using R (v2.7) and PLINK (v1.07) [6].  Combinations with odds ratios 

greater than three, along with p-values, are shown in Table 2, which also shows that 

SNP combinations from chromosomes 1 and 9 are associated with the highest 

relative risk.  

 
F. Identification of Associated Pathways and Genes  

 

The standard method for identifying altered processes is a pathway enrichment 

analysis, which can be carried out using a single population [17].  In this case 

pathways would be identified by showing that the number of significant SNPs/genes 

that occur in a particular pathway is above chance expectation.  The procedure that 

we describe here requires multiple populations.  The assignment of a SNP/gene to a 

particular pathway from a single population meets a significance threshold which is 
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loose enough to allow multiple assignments from that population, but not stringent 

enough for an acceptable FDR.  The FDR is brought down to an acceptable level, as 

described below, when both populations assign the same gene(s) to the same 

pathway.   

 

The procedure is as follows:  (1) identify SNPs having a p-value < 10-3 in either the 

populations; (2) identify genes that include these SNPs, and  (3) assign the genes 

thus obtained to KEGG pathways [18].  The detailed procedure by which 

assignments are made is explained elsewhere [38] 

 

G. Results 

 

i. Significant SNP candidates 

Using TCGA datasets, we validated 4 of the 13 SNPs inferred by Wrensch et al 

based on the Adult Glioma study (Table 1, boldface) [16,38]. SNPs rs7530361 and 

rs501700, both at 1p21.2, were reported for the first time. 

 

Joint analysis of data, as reported in (our Bio direct paper), rather than sequential 

analysis of two or more populations can increase the power to detect genetic 

associations [19].  In particular using eq (1) as described in Methods, we found 12 

SNPs (Table 1), confirmed by AGS and TCGA at an FDR <0.05, one of which was 

previously confirmed by Wrensch et al. [16] and Shete et al. [20].  Of the 11 

remaining, 4 were reported by Shete et al.; the other 7 are reported for the first time. 

The 12 SNPs are distributed over five genomic regions: 5q15.33, 9q21.3, 1p21.2, 

3q26.2 and 7p15.3.  Two of these, 5q15.33 and 9q21.3, have been reported in 

previous studies [16, 20].  The 12 candidates are in strong linkage disequilibrium 

with 25 genes, 8 of which are previously known to be associated with cancer are 

indicated in boldface in Table 1.  An additional SNP of interest is rs12341266 at 
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9q32, which has an FDR of 0.06 and is in the glioma associated gene, RGS3.  

 

ii. Genes identified by conserved pathway analysis 

 

We identified 49 pathways that contain genes associated with loosely defined AGS 

or TCGA SNPs.  Thirty-six of them do not meet the hypergeometric test at a p value 

of 0.001 (an FDR of 0.05 divided by 49), leaving 13 invariant pathways; i.e. 

pathways that are relevant to both populations.  Each of the 13 pathways has 1 

common gene (Table 3) from the two groups.  There are 5 such genes – FHIT, 

GABRG3, PRKG1, DCC, ITGB8 – each of which occurs in more than one of these 

pathways.  

 

iii. Genes in Strong Linkage Disequilibrium with SNP candidates 

 

The SNP candidates occur within, or are in strong linkage disequilibrium with, 25 

genes (Table 1). Eight of which are cancer associated. The latter are TERT [16, 21, 

22], SLC6A18 [21], CLPTM1L [21, 22], CDKN2A/2B [16, 23, 24], SASS6 [25], 

ITGB8 [26], and MACC1 [27] (Table 1).  Five of the genes, TERT, SLC6A18, 

CLPTM1L, and CDKN2A/2B, were previously shown to be associated with glioma 

by other GWA studies. 

 

As explained below, we have predicted by a combination of GWA and pathway 

analysis, 4 additional genes, which are identified in the literature as cancer related. 

The detail literature citations and the type of cancers that associated with these genes 

are discussed in discussion section.  We therefore predict 29 glioma associated 

genes, 12 of them known by previous studies to be cancer related. It is useful to ask 

for the probability that as many as12 cancer related genes in a set of 29 would be 

found by chance. If we use the fraction of OMIM genes that are cancer related as an 
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estimate of the background frequency of cancer genes in the disease genes 

population, the probability that 29 genes have 12 cancer associated genes by chance 

is 1.4E-06. The fraction of OMIM genes that are cancer related is 0.1 (750 cancer 

associated gene in 7,381 OMIM genes). 

 

Each of the 8 cancer related genes listed above plays one or more key roles in 

processes known to be altered during tumor initiation and development [28].  For 

example, MACC1 is a growth pathway regulator influencing angiogenesis and 

processes related to metastasis [27]; CDKN2A is a well studied cell cycle regulator 

[24] and a known tumor suppressor whose loss results in a diminished ability to 

regulate growth and predisposition to cancer [23]; ITGB8 has been implicated in 

activities related to metastasis, including adhesion and migration [26];  and the 

telomerase enzyme (TERT) is linked to unlimited replication [16].  It is worth noting 

that CDKN2A/2B are in strong linkage disequilibrium with rs1412829 at 9p21.3, 

which has now been identified in 3 independent studies and should therefore be 

considered an unusually high confidence gene marker. 

 

IV. POTENTIAL CHALLENGES IN GENOME-WIDE 

ASSOCIATION STUDIES 

 
While GWA studies open a new avenue of discovering and understanding of the 

common genetic variation of the human genome in diseases and health, the 

assessments of the overall evidence deriving from GWA studies remains a complex 

endeavor. The GWA studies also create some open challenges as the field is still 

under development and much of the literature remains exploratory.  

 

A. From statistics to functionality 
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Although statistically compelling associations have been identified, many association 

signals identified in GWA studies are not localized to intervals that include a gene, 

unlike Mendelian human diseases whose genetics is understood that functional rare 

mutations with large effects act through altering or truncating gene products. 

However, there is growing evidence that a sizeable proportion, perhaps the majority, 

of the functional variants that underlie GWA studies exert their effects through gene 

regulation rather than changing gene products [29]. For example, a SNP (rs6983267) 

in the 8q24 locus implicated in multiple cancer pathogeneses identified in GWA 

studies is located in a gene desert that is >300 kilo-bases (kb) away from the most 

neighboring annotated MYC proto-oncogene; recently studies have shown that the 

region harboring this risk allele is a transcriptional enhancer that interacts with the 

MYC gene [30, 31]. How to translating mere statistically association signals to 

biological relevance of the precise variants that have a causal role in conferring the 

disease susceptibility remains unclear at present, but more research towards a deeper 

understanding of the vast regulatory regions within the human genome and 

functional studies will be the future direction. 

 

B. Investigations of complex interactions 

 

Given the fact that common complex diseases are multi-factorial with each factor 

contributing a small effect, it is possible that what really counts is not the main 

effects of the genes but complex gene-gene or gene-environment interactions. How 

to proceed with the investigations of gene-gene interactions or gene-environment 

interactions in GWA studies is an important question with no straightforward 

answers.  

 

C. Sufficiency of common variants to account for genetic bases of complex traits 
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The current technology for GWAS studies consider common genetic variants, 

predominantly SNPs, as possible targets for association with a trait or a phenotype, 

and do not capture information about rare variants. However, not only SNPs, there 

are also others forms of genetic variations that could account for disease risk. For 

example, recently, genomic copy number variations (CNVs) have begun investigated 

in several GWA studies. CNVs are defined as gains or losses of repeats of DNA 

sequences consisting of between kilo- to mega-base pairs. CNVs have been detected 

in locations covering about 12% of the human genome [32, 33]. As technology and 

knowledge surrounding CNVs continue to improve, CNVs have become a 

significantly more mainstream in GWA studies [34, 35]. However, in addition to 

SNPs and CNVs, there are also other types of structural variations and epigenetics in 

the human genome and it is unclear how much each type of genetic variation 

contributes to inherited risk and the relative proportion of rare versus common 

variants. The use of new technologies for assaying DNA sequences can provide 

important and additional insights about the roles of different types of genetic variants 

in human disease or health. For example, the 1000 Genomes Project [36] launched in 

2008 has used the next-generation sequencing technique to provide a comprehensive 

resource on human genetic variation with at least 1% across most of the genome and 

down to 0.5% or lower within genes. The 1000 Genomes Project will map not only 

the SNPs but also will produce a high-resolution map of structural variants, including 

rearrangements, deletions or duplications of segments of the human genome. 
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Figure 1. Subjects and single-SNP exclusion schema for genome-wide association 

studies. 
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Table 1. Concordant SNPs recovered from TCGA and AGS data, and associated 
genes. Concordant SNPs (FDR < 0.05) recovered from TCGA (n = 97) and AGS 
data (n = 692), and associated genes. 
SNP chr gene 

location 
left_gene right_gene 

Genes in LD with SNP 
(R2) 

AGS 
(P1) 

TCGA 
(P2) FDR 

rs2736100+ 5 TERT 5p15.33 SLC6A18 CLPTM1L NA 5.30E-13 2.66E-04 7.38E-09 

rs1412829*+ 9 CDKN2A/2B 

9p21.3 

LOC100130239 LOC729983 

CDKN2A(1.0);  
CDKN2B(1.0);  
C9orf53(0.87) 3.40E-08 3.26E-03 1.27E-03 

rs2157719 9 CDKN2A/2B 

9p21.3 

LOC100130239 LOC729983 

CDKN2A(0.97);  
CDKN2B(0.97);  
C9orf53(0.93);  
RP11-145E5.4(0.97);  
LOC100130239(0.97) 6.10E-08 8.00E-03 5.40E-03 

rs1063192+ 9 CDKN2A/2B 

 
9p21.3 

CDKN2A LOC100130239 

CDKN2A(0.97);  
CDKN2B(0.97);  
C9orf53(0.93);  
RP11-145E5.4(0.97);  
LOC100130239(0.97) 9.20E-08 8.31E-03 7.95E-03 

rs4977756+ 9 CDKN2A/2B 

 
 
9p21.3 

LOC100130239 LOC729983 

CDKN2A(0.97);  
CDKN2B(0.97);  
C9orf53(0.93);  
RP11-145E5.4(0.97);  
LOC100130239(0.97) 4.20E-07 1.12E-02 3.90E-02 

rs7530361 1 SLC35A3 1p21.2 LOC730081 HIAT1 

SLC35A3(1.0);  
CCDC76(0.95);  
HIAT1(1.0);  
LRRC39(0.95);  
SASS6(1.0);  
BRI3P1(0.95);  
LOC730081(1.0) 6.50E-07 2.19E-06 4.29E-05 

rs501700 1 HIAT1 1p21.2 SLC35A3 SASS6 

DBT(0.95);  
RTCD1(0.89);  
SLC35A3(1.0);  
CCDC76(0.95);  
HIAT1(1.0);  
LRRC39(0.94);  
SASS6(1.0);  
BRI3P1(0.94);  
LOC730081(1.0) 7.10E-07 5.99E-06 9.72E-05 

rs1920116 3 LRRC31 

3q26.2 

LRRIQ4 KRT18P43 

MYNN(0.89);  
LRRC31(1);  
ARPM1(0.85);  
KRT18P43(1)  
LRRC34(1) 1.40E-06 2.88E-03 2.81E-02 

rs506044 1 SASS6 1p21.2 SASS6 LRRC39 

DBT(1.0);  
RTCD1(0.89);  
SLC35A3(0.95);  
CCDC76(1.0);  
HIAT1(1.0);  
LRRC39(1.0);  
SASS6(1.0);  
BRI3P1(0.95);  
LOC730081(0.94) 2.10E-06 2.45E-06 1.57E-04 

rs640030 1 SASS6 1p21.2 HIAT1 CCDC76 

DBT(1.0);  
RTCD1(0.89);  
SLC35A3(0.95);  
CCDC76(1.0);  
HIAT1(1.0);  
LRRC39(1.0);  
SASS6(1.0);  
BRI3P1(0.95);  
LOC730081(0.94) 2.40E-06 2.57E-06 1.86E-04 

rs687513 1 SASS6  1p21.2 SASS6 LRRC39 

DBT(0.95);  
RTCD1(0.90);  
SLC35A3(0.94);  
CCDC76(1.0);  
HIAT1(1.0); 
LRRC39(1.0);  
SASS6(1.0);  
BRI3P1(0.95);  
LOC730081(0.90) 2.90E-06 3.91E-06 3.03E-04 

rs3779505 7 ITGB8 
7p15.3 

MACC1 LOC100130234 
ITGB8(1.0) 

3.00E-06 5.67E-04 1.35E-02 
 
+  reported by Shete et, al. 
*  reported by Wrensch et, al. and validated on Mayo Clinic population  
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Table 2. Pairwise and triplet SNP combinations with odds ratios greater than 3. 

Numbers in parenthesis are single SNP odds ratios. Last column is the Wald test p-

value for the odds ratio of the combination.  This is an unadjusted p-value, with an 

0.05 multiple testing adjusted threshold of  p = 0.05/(50+88) =  3.6 x 10-4.  Freq 

denotes the combined frequency of the given combination in the case and control 

populations as a whole. 

 

                      SNP Combinations 
+RISK ALLELE Freq OReq2 p-value 

*rs1412829 (1.58 ) #rs7530361 (1.89 ) 11 5.45E-02 3.31 3.58E-07 
*rs1412829 (1.58 ) #rs501700 (1.90) 11 5.51E-02 3.09 1.95E-06 
*rs1412829 (1.58 ) #rs506044 (1.96) 11 5.47E-02 3.23 5.15E-07 
*rs1412829 (1.58 ) #rs640030 (1.95) 11 5.42E-02 3.28 4.30E-07 
*rs1412829 (1.58 ) #rs687513 (1.93) 11 5.52E-02 3.18 7.32E-07 
*rs2157719 (1.49) #rs7530361 (1.89 ) 11 5.51E-02 3.2 6.83E-07 
*rs2157719 (1.49) #rs506044 (1.96) 11 5.54E-02 3.12 9.64E-07 
*rs2157719 (1.49) #rs640030 (1.95) 11 5.49E-02 3.16 8.12E-07 
*rs2157719 (1.49) #rs687513 (1.93) 11 5.59E-02 3.07 1.35E-06 
*rs1063192 (1.42) #rs7530361 (1.89 ) 11 5.60E-02 3.12 1.13E-06 
*rs1063192 (1.42) #rs506044 (1.96) 11 5.63E-02 3.05 1.60E-06 
*rs1063192 (1.42) #rs640030 (1.95) 11 5.59E-02 3.08 1.35E-06 
*rs4977756 (1.60) #rs7530361 (1.89 ) 11 5.35E-02 4.28 3.14E-10 
*rs4977756 (1.60) #rs501700 (1.90) 11 5.44E-02 4.17 5.57E-10 
*rs4977756 (1.60) #rs506044 (1.96) 11 5.36E-02 4.18 4.46E-10 
*rs4977756 (1.60) #rs640030 (1.95) 11 5.31E-02 4.24 3.66E-10 
*rs4977756 (1.60) #rs687513 (1.93) 11 5.41E-02 4.1 6.86E-10 

rs2736100 (0.63) #rs7530361 (1.89 ) rs1920116 (0.68) 212 5.01E-02 4.3 5.02E-10 

rs11823971 (1.45) *rs1412829 (1.58 ) #rs7530361 (1.89 ) 211 5.21E-02 3.04 5.05E-06 

rs11823971 (1.45) *rs1412829 (1.58 ) #rs506044 (1.96) 211 5.26E-02 3.01 4.67E-06 

+ Denotes alleles in which significant shifts occur. 11 denotes significant shift in the minor alleles for both SNPs. 212 denotes 

significant shifts in major, minor major; 211, significant shifts in major, minor, minor.   

# denotes SNP on chromosome 1 

* denotes SNP on chromosome 9 in gene CDKN2A/2B 
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Table 3. Pathways that contain significant SNPs (p < 10-3) inferred from both AGS 

and TCGA samples  

 
PATHWAY* AGS_SNP GENE TCGA_SNP GENE 

Purine metabolism (p=3.50E-04)** 

Small cell lung cancer (p=4.35E-04) ** 

Non-small cell lung cancer (p=2.6E-04) ** rs7617530 FHIT rs13059601 FHIT 

Neuroactive ligand-receptor interaction (p=8.00E-04) ** rs1011455 GABRG3 

rs12904325 GABRG3 

rs4887546 GABRG3 

rs1011456 GABRG3 

Vascular smooth muscle contraction (p=3.48E-04) ** 

Gap junction (p=1.30E-04) ** 

Long-term depression (p=6.95E-04) ** 

Olfactory transduction (p=3.47E-04) ** 

rs4400745 PRKG1 

rs1922139 PRKG1 rs4466778 PRKG1 

Axon guidance (p=3.91E-04) ** 

Pathways in cancer (p=2.13E-03) 

Colorectal cancer (p=8.69E-05) ** rs1145245 DCC 

rs11082983 DCC 

rs11872471 DCC 

rs12604940 DCC 

Focal adhesion (p=1.95E-03)  

ECM-receptor interaction (p=8.69E-04) ** 

Cell adhesion molecules (CAMs) (p=1.74E-04) ** 

Regulation of actin cytoskeleton (p=1.56E-03)  

Hypertrophic cardiomyopathy (HCM) (p=1.22E-03) 

Arrhythmogenic right ventricular cardiomyopathy 

(ARVC) (p=9.12E-04) ** 

Dilated cardiomyopathy (p=1.04E-03) 

rs3779505 ITGB8 

rs3779505 ITGB8 

rs2301727 ITGB8 

rs3807936 ITGB8 

rs2158250 ITGB8 

 
* p = Probability of the gene overlap in two independent populations. Multiple testing adjusted threshold of  p = .05/49 =  10-3 

** Pathways with p < 10-3  

 


