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Abstract

New results for uniform pointwise convergence rates of wavelet
expansions in Besov spaces are presented.
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1 INTRODUCTION

This paper announces new approximation properties of wavelet expansions on
Besov spaces. Optimal pointwise convergence rates for Besov spaces are established
by using embedding theorems ([1], [5]) and results for Sobolev spaces ([12], [13]).
More specifically, we show that conditions for convergence rates of expansions of
functions in L2 Sobolev spaces, together with Besov-Sobolev embedding theorems,
lead to specific supremum rates of convergence for functions in L2 Besov spaces.

Besov spaces are the natural spaces for wavelets for two reasons. First, Besov
spaces describe the smoothness properties of functions more precisely than Sobolev
spaces. Second, and more importantly, there is an essential connection between Besov
norms and wavelet expansion coefficients [8]. More precisely, Besov spaces can be
characterized in terms of wavelet coefficients, a property which has no direct corre-
spondence in Sobolev spaces.

As expected, the convergence rate of a wavelet expansion for functions in an
L2 Sobolev space Hs

2(R
d) depends on the smoothness of the expanded function. In

[12], uniform pointwise approximation properties are formulated in Sobolev spaces
using conditions related to vanishing moment properties for the wavelet (or similar
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conditions on the scaling function). More precisely, for all projections Pn associated
with a multiresolution analysis (MRA),

‖f − Pnf‖∞ ≤ C2−n(s−d/2)‖f‖Hs
2(Rd) (1.1)

whenever d/2 < s < σ, where s is the smoothness index, d dimension and σ is a fixed
parameter.

The Sobolev parameter σ is actually sharp and depends on the MRA used in the
expansion [13]. It is related to the behavior of the wavelet’s Fourier transform ψ̂(ξ)
near the origin. It can be defined in a number of equivalent ways involving: the
operator I − P0, the Fourier transform of the scaling function φ(x) or of the wavelet
ψ(x), or the scaling function’s symbol m0(ξ). For function spaces with smoothness s
greater than σ the rate of convergence “freezes” and fails to improve, no matter how
large s is [12]. Such behaviors are again expected for wavelet expansions. The key to
these proofs is an L1 bound on the reproducing kernel of the MRA.

For overviews of basic results for wavelet expansions in Sobolev and Besov spaces
see the text [8]. For results in nonlinear approximation see [5] and [7]. For pointwise
convergence results see [9], [10], and [11]. For results on shift invariant spaces see [2].
Older results on convergence for wavelets are found in [14], [15].

This paper is organized as follows. Basic definitions are given in section 2. Section
3 contains known results on convergence rates of wavelet expansions for Besov spaces
from [8]. In section 4 we give our main pointwise convergence rates results for Besov
spaces using the Sobolev results proved in [13]. We state the Sobolev results used in
section 5.

Finally section 6 gives optimal convergence rates in Besov spaces for Haar, Meyer,
Battle-Lemarié and Daubechies wavelets.

2 BASIC DEFINITIONS

A multiresolution analysis (MRA) is defined as an increasing sequence of subspaces
{Vn} of L2(R

d)(d ≥ 1) such that

f(x) ∈ Vn iff f(2x) ∈ Vn+1,

the intersection of the spaces is {0}, the closure of their union is all of L2, and V0 is
invariant under integer translations. It is also generally assumed (though we do not
require it here) that there exists a function φ(x) (the scaling function) whose integer
translates form an orthogonal basis (ONB) for V0. For detailed definitions and theory
of an MRA we refer to [4] or [9].
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Let Wi be the orthogonal complement of Vi in Vi+1, i.e., Wi = Vi+1 � Vi, so that
Vi+1 = Vi ⊕Wi. From existence of φ it follows that there is a set of basic wavelets
{ψλ(x)}λ∈Λ (with Λ a finite index set) such that ψλ

jk(x) ≡ 2jd/2ψλ(2jx−k) (j ∈ Z, k ∈
Z

d) form an orthonormal basis for Wj for fixed j, and form an orthonormal basis for
L2(Rd) as λ, j, k vary. Our results will hold for any wavelet set {ψλ}λ related to W0

whose translations and dilations form an orthonormal basis for L2(R
d), regardless of

how they are constructed (see [4], Ch. 10; [15]; [9]).

It follows from the above definitions that there exist numbers {hk}k∈Zd such that
the scaling equation

φ(x) = 2d
∞∑

k=−∞
hkφ(2x− k) (2.1)

holds. We define

m0(ξ) ≡
∞∑

k=−∞
hke

−ikξ (2.2)

to be the symbol of the MRA. Note m0 satisfies φ̂(ξ) = m0(ξ/2)φ̂(ξ/2), where ̂
denotes Fourier transform where our convention for the Fourier transform is

φ̂(ξ) ≡ F(φ)(ξ) ≡ (2π)−d/2

∫
Rd

φ(x)e−iξ·xdx

where ξ · x denotes inner product.

Definition 2.1: Define Pn to be the L2 orthogonal projection onto Vn, with kernel
(when it exists) Pn(x, y). We define P0 = P .

Given f ∈ L2,
(i) the multiresolution approximation of f is the sequence {Pnf}n;
(ii) the wavelet expansion of f is∑

j;k;λ

aλ
jkψ

λ
jk(x) ∼ f, (2.3a)

with aλ
jk the L2 expansion coefficients of f , and ∼ denoting convergence in L2;

(iii) the scaling wavelet expansion of f is∑
f

bkφk(x) +
∑

j≥0;k;λ

aλ
jkψ

λ
jk(x) ∼ f, (2.3b)

where the bk, a
λ
jk are L2 expansion coefficients, and φk(x) = φ(x− k).

We say such sums converge in any given sense (e.g., pointwise, in Lp, etc.) if
the sums are calculated in such a way that at any stage in the summation there is a
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uniform bound on the range (largest minus smallest) of j values for which we have
only a partial sum over k, λ.

Definition 2.2: The Sobolev space Hs
2(R

d), s ∈ R, is defined by

Hs
2(R

d) ≡
{
f ∈ L2(R

d) : ‖f‖Hs
2
≡
√∫

|f̂(ξ)|2(1 + |ξ|2)sdξ <∞
}
.

The homogeneous Sobolev space is:

H̃s
2(R

d) ≡
{
f ∈ L2(R

d) : ‖f‖H̃s
2
≡
√∫

|f̂(ξ)|2|ξ|2sdξ <∞.

}

Note the spaces contain the same functions (by virtue of the fact that H̃s
2 is restricted

to L2). Only the norms differ, and the second space is incomplete as defined (its
completion contains non-L2 functions which grow at ∞).

We denote the space FHs
2 to be the Fourier transforms of functions in Hs

2 , with

the analogous definition for FH̃s
2 .

Definition 2.3: A multiresolution analysis (MRA) or corresponding family of wavelets
ψλ yields pointwise order of approximation (or pointwise order of convergence) s > 0
in Hr

2 if for any f ∈ Hr
2 , the nth order approximation Pnf satisfies

‖Pnf − f‖∞ = O(2−ns), (2.4)

as n tends to infinity, if r − d/2 > 0 (if r − d/2 ≤ 0 the left side of (2.4) is in fact
infinite for some f).

It yields best pointwise order of approximation (or convergence) s > 0 in Hr
2 if s is

the largest positive number such that (2.4) holds for all f ∈ Hr
2 . If the supremum s of

the numbers for which (2.4) holds is not attained, then we denote the best pointwise
order of convergence by s−. By convention best order of approximation 0 means that
the supremum in (2.4) fails to go to 0; thus s ≥ 0 by our definitions.

The MRA yields optimal pointwise order of approximation (or convergence) s if s
is the best pointwise order of approximation for sufficiently smooth f , i.e. for f ∈ Hr

2

for sufficiently large r (i.e., for r > R for some R > 0). Thus this order of convergence
is the best possible order in any Sobolev space. We say s = ∞ if the best order of
approximation in Hr

2 becomes arbitrarily large for large r.

The motivation for our next definitions is found in [12] where the finiteness of
each integral in the definition guarantees the multiresolution approximation yields
pointwise order of approximation s− d/2 in Hs

2(R
d).
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Definition 2.4: We define for s, c ≥ 0

Is(c) ≡
∫

1≥|ξ|≥c

(
1 − (2π)d/2|φ̂(ξ)|

)
|ξ|−2sdξ (2.5)

Ks(c) ≡ sup
λ

∫
1≥|ξ|≥c

|ψ̂λ(ξ)|2|ξ|−2sdξ

Ms(c) ≡
∫

1≥|ξ|≥c

(1 − |m0(ξ)|2)|ξ|−2sdξ.

In this announcement an often-used consequence of [12] is the existence of a least
upper bound σ (best Sobolev parameter) on s, depending only on the MRA, which
motivates the following definition.

Definition 2.5: The best Sobolev parameter σ of an MRA is

σ = sup{s > 0|(I − P ) : H̃s
2(R

d) → L∞ is bounded}. (2.6)

By convention σ = 0 if the set in the supremum is empty.

It can be shown that if the best Sobolev parameter σ �= 0, then σ > d/2 (where

d is the dimension) and the set Σ ≡ {s > 0|(I − P ) : H̃s
2 → L∞ is bounded} satisfies

Σ = (d/2, σ] or Σ = (d/2, σ).

Moreover if the best Sobolev parameter σ �= 0, then

σ = sup{s > 0|Is(0) <∞} (2.7)

= sup{s > 0|Ks(0) <∞}
= sup{s > 0|Ms(0) <∞}.

Definition 2.6: A function f(x) on R
d is radial if f depends on |x| only. A real

valued radial function is radial decreasing if |f(x)| ≤ |f(y)| whenever |x| ≥ |y|.
A function φ(x) is in the radially bounded class [RB] if |φ(x)| ≤ η(|x|), with η(·)

a decreasing function on R
+, and η(|x|) integrable in x.

With a slight abuse of terminology, a kernel P (x, y) is in [RB] if |P (x, y)| ≤
η(|x− y|), where η(|x|) is, as above, decreasing in |x| and integrable in x.

We say φ(x) ∈ [RB(N)] if, φ(x) ∈ [RB] and if we can choose an η(x) as above
such that ∫

η(|x|)|x|Ndx <∞.
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3 BASIC RESULTS FOR BESOV SPACES

To define Besov spaces on R
n, we proceed as follows [1]. (For alternative definitions

of Besov spaces see [5],[6],[8].)

Definition 3.1: Let α = (α1, . . . , αn) be a multiindex with αi non-negative integers,
and define for a function f on R

n

Dnf(x) =
∂α1+α2+...+αn

∂xα1
1 ∂x

α2
2 . . . ∂xαn

n

f(x).

We define the Schwarz space of rapidly decreasing functions on R
n by

S(Rn) = {f(x) : ‖(1 + |x|)bDαf‖∞ <∞ ∀b > 0}
where ‖ · ‖∞ denotes the essential supremum norm.

It can be shown that there exists a function φ ∈ S(Rn) whose support supp φ
satisfies

supp φ = {ξ|2−1 ≤ |ξ| ≤ 2},
and such that φ(x) > 0 for 2−1 < |ξ| < 2, and

∞∑
k=−∞

φ(2−kξ) = 1 (ξ �= 0).

We then define functions φk(x) and ψ(x) such that

Fφk(ξ) = φ(2−kξ) (k = 0,±1,±2, . . .) (3.1a)

Fψ(ξ) = 1 −
∞∑

k=1

φ(2−kξ). (3.1b)

Letting S ′ denote the dual space, we define for f ∈ S ′, s ∈ R, 1 ≤ p, q ≤ ∞,

‖f‖s,q
p ≡ ‖ψ ∗ f‖p +

( ∞∑
k=1

(2sk‖φk ∗ f‖p)
q

)1/q

,

and the Besov space Bs,q
p to be all functions for which this norm is finite.

We cite a basic result on convergence rates of wavelet expansions in Besov spaces
Bs,q

p (R) 1 ≤ p ≤ ∞.

Theorem 3.2 [8]: Let φ be a scaling function generating an MRA whose integer
translates form an orthonormal system, φ ∈ [RB(N + 1)] for some integer N ≥ 0.

6



Assume that φ is N + 1 times weakly differentiable, and that the derivative φ(N+1)

satisfies

ess supx

∑
k

|φ(N+1)(x− k)| <∞.

Then for any 0 < s < N + 1, 1 ≤ p, q ≤ ∞, and any function f ∈ Lp, the following
conditions are equivalent:

(a) f ∈ Bs,q
p (R)

(b) ‖Pjf − f‖p = 2−jsεj for j = 0, 1, . . ., with {εj}j ∈ lq
(c) ‖β‖p <∞ and ‖αj‖lp = 2−j(s+1/2−1/p)ε′j , j = 0, 1, . . . where {ε′j} ∈ lq, where
β = {bk}∞k=−∞ and αj = {ajk}∞k=−∞ [see (2.3a,b)].

4 MAIN RESULTS FOR BESOV SPACES

We derive optimal pointwise convergence rates for some classes of Besov spaces.
Our principal techniques are our convergence rates results for Sobolev spaces [12],[13]
and embedding theorems between Sobolev and Besov spaces [1],[5]. The following
theorems are extensions of the Sobolev results [13] to sup-norm convergence rates for
wavelet expansions of functions in Besov spaces. The Sobolev results used are cited
in the next section.

The basic questions regarding embedding take the form: Given a fixed Besov space
Bs,q

p where s is the smoothness parameter, is it true that every Sobolev space Hr
2 is

contained in this space for sufficiently large r? Conversely given a Sobolev space Hs
2

and fixed p, q, is it true that Br,q
p is contained in this space for sufficiently large r?

The answer is yes and follows from Sobolev embedding theorems. For such em-
bedding theorems see [1],[5]. We now state only those embedding results that we
need.

Theorem 4.1: For s ∈ R and 1 ≤ p ≤ ∞ we have

Bs,1
p ⊂ Hs

p ⊂ Bs,∞
p .

In particular, Bs,1
2 ⊂ Hs

2 ⊂ Bs,∞
2 . This yields the following.

Theorem 4.2: Given a multiresolution approximation {Pn}, let r be the best order
of approximation of Pn in Hs

2, and σ the best Sobolev paramneter of the given MRA
(Definition 2.5).
If σ = 0, then r = 0.
If σ > d

2
and

(i) 0 ≤ s ≤ 2, then r = 0;
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(ii) d
2
< s < σ, then r = s− d

2
;

(iii) s = σ, then r =

{
σ − d

2
if Iσ(0) <∞

(σ − d
2
)− if Iσ(0) = ∞ ;

(iv) s > σ, then r =

{
σ − d

2
if Iσ+ 1

2
(c) = 0(1

c
), c→ 0

(σ − d
2
)− otherwise

,

then the order of approximation in the Besov space Bs,1
2 is at least r, while in Bs,∞

2 it
is at most r.

The proof follows immediately from the Besov embedding Theorem 4.1 and the
convergence rates results for Hs

2(R
d) stated in Theorem 5.1. We note that in (iii) and

(iv) above, Is(c) can be replaced by Ks(c) or Ms(c) (Definition 2.4).

In order to obtain results on optimal orders of convergence we need the following:

Lemma 4.3: Let 2 ≤ p ≤ ∞, and q ≥ 1. Given s ∈ R, for sufficiently large s1, we
have

Hs1
2 ⊂ Bs,q

p . (4.1a)

Similarly, if 1 ≤ p ≤ 2, then for sufficiently large s1,

Bs1,q
p ⊂ Hs

2 . (4.1b)

Next, to obtain exact optimal sup-norm orders of convergence for functions in
Besov spaces we compare the scales {Hs

2}s and {Bsq
p }s, for fixed p and q. To this end,

note that by the above inclusions we have:

Corollary 4.4: For any 1 ≤ q ≤ ∞, the scales of spaces {Hs
2}s≥0 and {Bs,q

2 }s≥0

are intertwined; that is, for any fixed s and sufficiently large s1, H
s1
2 ⊂ Bs,q

2 , and
Bs1,q

2 ⊂ Hs
2.

The next corollary allows us to find precise optimal convergence rates in the scale
{Bs,q

2 }s≥0 for any fixed q. Since this scale intertwines with the scale {Hs
2}s≥0, the

optimal rate must be the same, namely:

Corollary 4.5: If the best Sobolev parameter σ �= 0, then in the scale {Bs,q
2 }s≥0 of L2

Besov spaces, the wavelet collection ψλ [or scaling function φ] has optimal pointwise
order of approximation given by

(i) σ − d/2 if Kσ+1/2(c) = O(1/c), and
(ii) (σ − d/2)− otherwise.

(here K can be replaced by I or M ; see Definition 2.4).

The proof follows immediately from Corollaries 4.4 and 5.2.

We note that our convergence result for Bs,q
2 (Rd) is with respect to sup norm; while

for the case p = 2, Theorem 3.2 gives convergence rates for Bs,q
2 (R) with respect to

the L2 norm.
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5 POINTWISE CONVERGENCE THEOREMS FOR SOBOLEV
SPACES

This section cites the results which are used to prove our main results on Besov
spaces. These Sobolev results extend previous results [8] to necessary and sufficient
conditions for given convergence rates for expansions in Sobolev spaces on R

d. While
these theorems deal with pointwise sup-norm (i.e. L∞) convergence, they can be
extended to convergence results of the same nature for Lp spaces.

The main results in [12] state that under mild assumptions on the MRA (the
scaling function or wavelet has a radially decreasing L1 majorant) for f ∈ Hs

2(R), the
rate of convergence to 0 of the error ‖f − Pnf‖∞ has sharp order 2−n(s−d/2). For the
sake of brevity, we refer the reader to [12].

We assume that one of the following conditions holds:

(i) The projection P onto V0 satisfies |P (x, y)| ≤ F (x− y) for some F ∈ [RB].
(ii) The scaling function φ ∈ [RB].
(iii) For a wavelet family ψλ, ψλ(x)(ln(2 + |x|)) ∈ [RB] for all λ.

By representing the kernel of P (x, y) in terms of sums of products involving φ or ψλ,
it is shown in [10] that (ii)⇒ (i) and (iii)⇒(i).

The above conditions are required to prove the main result about convergence
rates of wavelet expansions for Hs

2(R
d) (see [13]).

For approximation rates in Hs
2 , we give the following summary of convergence

rates in all Hs
2 in terms of properties of the projections Pn, or integrals involving the

wavelets or scaling functions.

Theorem 5.1 [13]: Given a multiresolution approximation {Pn},
(o) If σ = 0, there is no positive order of approximation for the MRA {Pn} in any
Hs

2, s ∈ R.
If (o) does not hold then σ > d/2 and:
(i) For 0 ≤ s ≤ d/2, the best pointwise order of approximation in Hs

2 is 0;
(ii) If d/2 < s < σ, the best pointwise order of approximation in Hs

2 is r = s− d/2;
(iii) If s = σ, the best pointwise order of approximation in Hs

2 is

r =

{
σ − d/2 if Iσ(0) <∞
(σ − d/2)− if Iσ(0) = ∞ ;

(iv) If s > σ, the best pointwise order of approximation in Hs
2 is

r =

{
σ − d/2 if Iσ+1/2(c) = O(1/c) (c→ 0)
(σ − d/2)− otherwise

;
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(v) In (iii) and (iv) above, Is(c) can be replaced by Ks(c) or by Ms(c).

Equivalent conditions to those in (iv) exist in the form Iσ+α/2(c) = O(c−α) for any
(or all) α > 0. An interpretation of (iv) is that if s > σ, then there exists g ∈ Hs

1(R
d)

such that for all ε > 0, sup
j

2j(σ+ε−d/2)‖g − Pjg‖∞ = ∞. This says the convergence

rate cannot be improved for functions belonging even to very smooth Sobolev spaces,
i.e., convergence rates are wavelet dependent.

In terms of the Sobolev order s of the expanded function f and the best Sobolev
parameter σ of the MRA, the diagram above gives rates for an MRA expansion in
any Sobolev space. The rates on the boundary region s = σ in (iii) above are not
indicated in the diagram.
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Figure 1: Approximation rate diagram; see Theorem 5.1 (iii) for rates on the
boundary s = σ. The (−) in (σ − d/2)(−) indicates that the superscript − is
present only in some cases.

We now state our result for optimal pointwise orders of convergence in Sobolev
spaces, which denotes the highest order of approximation in sufficiently smooth
Sobolev spaces.

Corollary 5.2: [13] If the best Sobolev parameter σ �= 0, then the wavelet collection
ψλ [or scaling function φ] yields optimal pointwise order of approximation:

(i) σ − d/2 if Kσ+1/2(c) = O(1/c) [where K can be replaced by I or M ], and
(ii) (σ − d/2)− otherwise.
This optimal order is attained for all functions f with smoothness greater than σ,

i.e., for f ∈ Hs
2 with s > σ.

Corollary 5.2 gives “best possible” pointwise convergence rates, i.e., convergence
rates for the smoothest possible functions. In fact this optimal rate is largely inde-
pendent of how smoothness is defined, i.e., which particular scale of spaces we are
working with. Such a statement is possible because when the smoothness parameter
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s is sufficiently large, the most used scales of “smoothness spaces” satisfy inclusion
relations. For example for s′ large the space Hs′

2 is contained in the sup-norm Sobolev
space Hs

∞ and in other L∞-type Sobolev spaces. Therefore the optimal rates of con-
vergence given here are upper bounds for convergence rates in all Hs

∞ spaces, no
matter how smooth.

6 EXAMPLES

To illustrate these results we briefly mention applications to some well-known
wavelet approximations in Hs

2(R).

6.1 Haar wavelets

By Theorem 5.1, Haar expansions in Hs
2 have best order of convergence

r =


0, s ≤ 1/2
s− 1/2, 1/2 < s < 3/2,
1−, s = 3/2
1, s > 3/2

. (7.1)

The optimal order in scale of Besov spaces is the same as the optimal order in the
scale L2 of Sobolev spaces Hs

2 . Namely, the optimal approximation order for such
expansions (i.e., for arbitrarily smooth functions) is 1.

6.2 Meyer wavelets

In the case of Meyer wavelets, φ̂ ∈ C∞
0 and σ = ∞−. So we have order of

convergence s − 1/2 in every Sobolev space Hs
2 , s > 1/2, with a convergence order

of 0 for s ≤ 1/2. Thus f ∈ ∩sH
s in the intersection of all Sobolev spaces, the

convergence is faster than any finite order r.

Thus when p = 2, the optimal order in scale of Besov spaces is the same as the
optimal order in the scale of Sobolev spaces.

6.3 Battle Lemarié wavelets

When p = 2, the optimal order in scale of Besov spaces is the same as the optimal
order in the scale of Sobolev spaces. That is, the optimal order of convergence of the
spline wavelets in Besov spaces is

r =


0, s ≤ 1/2,
s− 1/2, 1/2 < s < 5/2
2−, s = 5/2
2, s > 5/2

.
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6.4 Daubechies wavelets
For standard Daubechies wavelets of order 2, the optimal order in scale of Besov

spaces is the same as the optimal order of Sobolev spaces namely,

r =


0, s ≤ 1/2
s− 1/2, 1/2 < s < 5/2
2−, s = 5/2
2, s > 5/2

.
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