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Abstract. It has become common practice to use heavy-tailed distributions in order to
describe the variations in time and space of network traffic workloads. The asymptotic
behavior of these workloads is complex; different limit processes emerge depending on
the specifics of the work arrival structure and the nature of the asymptotic scaling.
We focus on two variants of the infinite source Poisson model and provide a coherent
and unified presentation of the scaling theory by using integral representations. This
allows us to understand physically why the various limit processes arise.

1. Introduction

Our understanding of the random variation in packet networks computer traffic has im-
proved considerably in the last decade. Mathematical models were developed, which cap-
ture patterns observed in traffic data such as self-similarity. An essential element of these
models is the use of heavy-tailed distributions at the microscopic scale. Because the math-
ematics can be involved, it is often difficult to understand physically why heavy-tailed
distributions yield the different stochastic processes that appear at the macroscopic scale.
We shall use integral representations in order to clarify this mechanism. We aim to give
a coherent and unified presentation of a large spectrum of approximation results, so that
the features and the dependence structure of the limiting processes are convincingly “ex-
plained” by the underlying model assumptions including heavy tails. This approach will
also allow us to solve some open problems.

A number of different models have been suggested to capture the essential char-
acteristics of packet traffic on high-speed links. A popular view of network traffic is an
aggregate of packet streams, each generated by a source that is either in an active on-state
transmitting data or an inactive off-state. In reality separate flows of packets interact be-
cause of the influence of transport protocols or other mechanisms, but in modeling work it
is a standard approach to assume statistical independence between flows. This leads nat-
urally to considering the cumulative workload as the result of adding independent on-off
processes that are integrated over time. The superposition of independent renewal-reward
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processes have a similar interpretation, where the sources are not necessarily switching
between on and off but rather change transmission rates randomly at random times. A
third category of models is based on Poisson arrivals of independent sessions, where the
sessions are typically long-lived and carry workload continuously or in discrete packets.
Such models of Poisson shot noise type, called infinite source Poisson processes, have
been specifically proposed for modeling noncongested Internet backbone links at the flow
level, Barakat et al. 2003.

The preceding models have heavy-tailed versions, obtained by assuming that the
on/off periods, the interrenewal times, or the session durations are given by heavy-tailed
distributions and one can define stationary versions of these traffic models. Through de-
tailed studies, the asympotic behavior of the workload fluctuations around its mean has
been investigated and a pattern has emerged with certain generic characteristics. Taqqu
(2002) and Willinger et al. (2003) provide summaries including details on the relevant
networking concepts and observed characteristics of measured traffic. Stegeman (2002),
Pipiras et al. (2004) and Mikosch et al. (2002) give a variety of results while investigat-
ing the range of possible asymptotic growth conditions. Briefly, whenever the number of
multiplexing flows grows at a fast rate relative to time, fractional Brownian motion ap-
pears as a canonical limit process. If the rewards, i.e. the transmission rates, have heavy
tails, then a more general stable process with dependent increments, called the Telecom
process, appears instead of fractional Brownian motion, see Levy and Taqqu (2000) and
Pipiras and Taqqu (2000). Whenever the degree of aggregation is slow compared to time,
the natural limit process is a stable Lévy process with independent increments. In an
intermediate scaling regime another type of Telecom process appears, which is neither
Gaussian nor stable, Gaigalas and Kaj (2003).

Some further papers dealing with fractional Brownian limit processes under fast
growth are Rosenkrantz and Horowitz (2002) and Çağlar (2004). Results on approxima-
tion by the stable Lévy motion under slow growth conditions are derived in Jedidi et al.
(2004), and the intermediate scaling regime is further investigated in Kaj and Martin-Löf
(2005). The many results in the literature use a variety of mathematical techniques, often
complicated and specialized for the particular model studied, offering limited intuition
as to the origin of the limit processes and their physical explanation in terms of first
principles of the underlying models.

The purpose of this paper is to consider a physical model which shows clearly why
these various limiting scaling processes arise. For this purpose we use integral represen-
tations and focus on two variants of the infinite source Poisson model. Because integral
representations are interpretable physically, they shed light on the structure of the result-
ing limit processes. By using this approach, we can derive all the above asymptotics in a
unified manner. We are also able to provide the solution to an open problem: finding the
intermediate process when the rewards have infinite variance. Some of the approximation
techniques we use have been unified in Pipiras and Taqqu (2006). In addition, our ap-
proach for the case of fixed rewards has been successfully extended in a spatial setting of
Poisson germ-grain models and recast in a more abstract formulation involving random
fields in Kaj et al. (2007), further developed in Biermé et al. (2006, 2007).

The paper is organized as follows. In Section 1 we develop the models and derive
some basic properties. We state the main results in Section 2 and prove them in Section
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3. In Section 4, the convergence in finite-dimensional distributions of the continuous flow
model is extended to weak convergence in function space.

1.1. The infinite source Poisson model

Infinite source Poisson models are arrival processes with M/G/∞ input obtained by in-
tegrating the standard M/G/∞ queueing system size. The resulting class of Poisson shot
noise processes are widely used traffic models which describe the amount of workload
accumulating over time. Such models have been suggested as realistic workload processes
for Internet traffic, where is is natural to assume that while web sessions are inititated
according to a Poisson process, duration lengths and transmission rates could vary con-
siderably. More exactly, the aggregated traffic consists of sessions with starting points
distributed according to a Poisson process on the real time line. Each session lasts a
random length of time and involves workload arriving at a random transmission rate.
There are two slightly different sets of assumptions that are natural to make regarding
the precise traffic pattern during a session. The first is that the workload arrives continu-
ously at a randomly chosen transmission rate, which is fixed throughout the session and
independent of the session length. The second type of model assumes that the workload
arrives in discrete entities, packets, according to a Poisson process throughout the session,
and such that the size of each packet is chosen independently from a given packet size
distribution. The duration and the continuous or discrete rate of traffic in one session is
independent of the traffic in any other session, although in general the sessions overlap.
One novelty in this work is that we point out how these two types of models differ in
their asymptotic behavior and that we explain the origin of the qualitative differencies.

We are going to introduce the workload models using directly an integral represen-
tation with respect to Poisson measures, as in Kurtz (1996) and Çağlar (2004), rather
than working with a more traditional Poisson shot noise representation, as in Kaj (2005).
This approach is designed to help in understanding the scaling limit behavior of the mod-
els, and leads to useful representations of the limit processes. In formalizing the traffic
pattern, the starting points of sessions will be called arrival times and the session lengths
their durations. The traffic rate will be described in terms of a reward distribution, either
continuous flow rewards or compound Poisson rewards. With each session in the contin-
uous flow rate model we associate an arrival time S, a duration U and a reward R. A
session in the case of compound Poisson packet arrivals is characterized by an arrival
time S, a duration U , and a compound Poisson process Ξ(t) constructed from copies of
the reward R.

The basic notation and assumptions are as follows:

Arrivals:

Workload sessions start according to a Poisson process on the real line with
intensity λ > 0. The arrival times are denoted . . . , Sj , Sj+1, . . . .

Durations:

The session length distribution is represented by the random variable U > 0
with distribution function FU (u) = P (U ≤ u) and expected value

ν = E(U) < ∞.
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We have either
E(U2) < ∞

or
P (U > u) ∼ LU (u)u−γ/γ

as u → ∞, where 1 < γ < 2. We extend the parameter range to 1 < γ ≤ 2, by
letting γ = 2 represent the case E(U2) < ∞.

Rewards:

(1) Continuous flow rewards. The transmission rate valid during a session is given
by a random variable R > 0 with FR(r) = P (R ≤ r) and

E(R) < ∞.

We suppose either
E(R2) < ∞

or
P (R > r) ∼ LR(r)r−δ/δ

as r → ∞, where 1 < δ < 2. Again the parameter range extends to 1 < δ ≤ 2 by
letting δ = 2 be the case E(R2) < ∞. Observe that the aggregated workload in a
session is the product UR.

(2) Compound Poisson rewards. The packet stream in a session is a compound
Poisson process

Ξ(t) =
M(t)∑
i=1

Ri,

where the packet sizes (Ri) are independent and identically distributed with dis-
tribution FR(dr) having the same properties as above for continuous flow rewards,
and {M(t), t ≥ 0} is a standard Poisson process of intensity one. In this case, the
aggregated workload in a session is

∑M(U)
i=1 Ri.

Remark 1. We use γ, δ as basic parameters for renewals and rewards for a number of
reasons: (1) there will be no confusion with other works that used α, β. (2) It maintains
the order used in other works: γ ↔ α, δ ↔ β. (3) Since the limit processes can be γ-stable
or δ-stable, it is preferable to use indices such as γ and δ which do not have the intrinsic
meaning that α and β have in relation to stable distributions. We suggest in fact that, in
the future, γ and δ be used instead of α and β.

Remark 2. To simplify the presentation of our work and the statements of our results we
will set LU = LR = 1. In the proofs section, however, we deal with the the modifications
that one has to do when LU and LR are general slowly varying functions.

We are now prepared to define the infinite Poisson source workload process using
integrals with respect to a Poisson measure. The aim is to define an infinite source Poisson
process, W ∗

λ , such that for t ≥ 0,

W ∗
λ (t) = the aggregated workload in the time interval [0, t].
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1.1.1. The continuous flow reward model. Let N(ds, du, dr) denote a Poisson point mea-
sure on R × R+ × R+ with intensity measure

n(ds, du, dr) = λdsFU (du)FR(dr). (1)

We use S,U,R as generic notation for the random quantities and s, u, r for a particular
session outcome so that a Poisson event in (s, u, r) represents a session arriving at time
s of duration u and with reward size r. With the choice of (1), we obtain a fluid model
for network traffic where sessions begin successively on the (physical) time line labeled
s at Poisson rate λ. A session is active during the time interval [s, s + u] and transmits
traffic at rate r throughout the session, where (u, r) is an outcome of independent random
variables (U,R). For example,∫ t

−∞

∫ ∞

0

∫ ∞

0

1{s<t<s+u} N(ds, du, dr) = the number of active sessions at time t.

To express similarly W ∗
λ in terms of the point measure N , we fix t > 0 and partition the

total traffic streams into traffic originating from sessions that began in the infinite past,
s ≤ 0, and traffic from sessions starting at a time s with 0 < s < t. In the former case,
sessions do not count if s + u ≤ 0, the contribution to W ∗

λ (t) is (u − |s|)r = (s + u)r if
0 < s + u ≤ t, and it is tr if s + u > t. In the latter case, the amount of traffic workload
that counts for W ∗

λ (t) is ur if u < t − s and (t − s)r otherwise. Hence

W ∗
λ (t) =

∫ 0

−∞

∫ ∞

0

∫ ∞

0

(t ∧ (s + u)+)r N(ds, du, dr)

+
∫ t

0

∫ ∞

0

∫ ∞

0

((t − s) ∧ u)r N(ds, du, dr). (2)

Recall (Campbell Theorem, Kingman (1993), Section 3.2) that an integral of the
form I(f) =

∫
S

f(x)N(dx), where N is a Poisson random measure on a space S, exists
with probability 1 if and only if

∫
S

min(|f(x)|, 1)n(dx) < ∞ where n(dx) = EN(dx).
Moreover, if

∫
S
|f(x)|n(dx) < ∞ then the expected value of the integral equals EI(f) =∫

S
f(x)n(dx). Thus,

EW ∗
λ (t)

= E(R)
(∫ 0

−∞

∫ ∞

0

t ∧ (s + u)+ λdsFU (du) +
∫ t

0

∫ ∞

0

(t − s) ∧ u λdsFU (du)
)

= λE(R)
(∫ t

0

∫ ∞

s

P (U > u) duds +
∫ t

0

∫ s

0

P (U > u) duds

)
= λνE(R)t, (3)

by performing in each of the two terms an integration by parts in the variable u. For
example, ∫ ∞

0

(t − s) ∧ u FU (du) =
∫ t−s

0

u FU (du) + (t − s)P (U > t − s)

=
∫ t−s

0

P (U > u) du.
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Figure 1. The kernel function Kt(s, u), t = 4, −6 ≤ s ≤ 6, 0 ≤ u ≤ 6

The two integral terms in (2) may be combined into a single integral, by writing

W ∗
λ (t) =

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

((t − s)+ ∧ u − (−s)+ ∧ u)r N(ds, du, dr). (4)

The kernel

Kt(s, u) = (t − s)+ ∧ u − (−s)+ ∧ u (5)

is such that

0 ≤ Kt(s, u) =




0 if s + u ≤ 0 or s ≥ t
s + u if s ≤ 0 ≤ s + u ≤ t

t if s ≤ 0, t ≤ s + u
u if 0 ≤ s, s + u ≤ t

t − s if 0 ≤ s ≤ t ≤ s + u.

Hence Kt(s, u) is a function of the starting time s and the duration u of a session that
measures the length of the time interval contained in [0, t] during which the session is
active. Figure 1 indicates the shape of Kt(s, u) defined on the (s, u)-plane when we have
fixed a value of t. Write

Ñ(ds, du, dr) = N(ds, du, dr) − n(ds, du, dr) (6)
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for the compensated Poisson measure with intensity measure n(ds, du, dr). By (4) and
(3),

W ∗
λ (t) =

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kt(s, u)r N(ds, du, dr) (7)

with ∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kt(s, u)r n(ds, du, dr) < ∞,

and

W ∗
λ (t) = λνE(R)t +

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kt(s, u)r Ñ(ds, du, dr), (8)

which represents the workload in the form of a linear drift and random Poisson fluctua-
tions.

Note that the case of fixed unit rewards, R ≡ 1, is contained as a special case of the
above by setting FR equal to the Dirac measure

FR(dr) = δ1(dr),

which then gives

W ∗
λ (t) =

∫ ∞

−∞

∫ ∞

0

Kt(s, u)N(ds, du)

with ∫ ∞

−∞

∫ ∞

0

Kt(s, u)λdsFU (du) = λνt < ∞.

Here N(ds, du) is the marginal of the Poisson measure N(ds, du, dr) restricted to its first
two coordinates.

1.1.2. The compound Poisson arrival workload model. This model results from nesting
two Poisson measures as follows. During each session, we allow packets to be generated
at discrete Poisson time points. More precisely, consider the compound Poisson process

Ξ(t) =
M(t)∑
i=1

Ri, t ≥ 0, (9)

where (Ri)i≥1 is an i.i.d. sequence from the distribution FR and M(t) is a unit rate
Poisson process on R+. The paths of Ξ are elements in the space D of right-continuous
functions with left limits, t 7→ ξ(t), t ≥ 0, and we let µ denote the distribution of Ξ
defined on D. Let N](ds, du, dξ) be a Poisson measure on R × R+ × D with intensity
measure

n](ds, du, dξ) = λdsFU (du)µ(dξ). (10)

A Poisson event of N] at (s, u, ξ) represents a session that starts at s, has duration u,
and generates packets according to ξ. The length of time in [0, t] during which the session
is active is given by Kt(s, u) defined in (5), and the resulting workload is therefore given
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by ξ(Kt(s, u)). Thus, the accumulated workload W ∗
λ (t) under compound Poisson packet

generation is

W ∗
],λ(t) =

∫ ∞

−∞

∫ ∞

0

∫
D

ξ(Kt(s, u))N](ds, du, dξ). (11)

Since

EΞ(t) = EM(t)E(R) = tE(R), (12)

the expected value of W ∗
],λ(t) equals

EW ∗
],λ(t) =

∫ ∞

−∞

∫ ∞

0

∫
D

ξ(Kt(s, u))λdsFU (du)µ(dξ)

=
∫ ∞

−∞

∫ ∞

0

Kt(s, u)λdsFU (du)E(R)

= λνE(R)t,

just as in the continuous flow model. By analogy with (8) we have the representation

W ∗
],λ(t) = λνE(R)t +

∫ ∞

−∞

∫ ∞

0

∫
D

ξ(Kt(s, u)) Ñ](ds, du, dξ) (13)

in terms of the compensated Poisson measure

Ñ](ds, du, dξ) = N](ds, du, dξ) − n](ds, du, dξ). (14)

Kurtz (1996) introduced general workload input models of this form, Çağlar (2004) con-
siders the above model with a specific choice of duration distribution FU . Poissonized in-
tegral representations are discussed in Cohen and Taqqu (2003) and Wolpert and Taqqu
(2004).

1.2. Preliminary observations

We now represent the continuous flow model as an integral of an instantaneous arrival
rate process, show that the workload models have stationary increments, and provide
alternative representations which do not involve the presence of an infinite stretch of past
arrivals.

1.2.1. Instantaneous arrival rate for continuous flow workload. The integration kernel
Kt in (5) has several useful alternative representations. The relation

(t − s)+ ∧ u − (−s)+ ∧ u =
∫ t−s

−s

1{0<y<u} dy

yields

Kt(s, u) =
∫ t

0

1{s<y<s+u} dy (15)

and the geometric interpretation

Kt(s, u) = |(0, t) ∩ (s, s + u)|.
The resulting bounds

0 ≤ Kt(s, u) ≤ t ∧ u (16)
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are used repeatedly in the proofs below. A further equivalent representation of the kernel
function Kt(s, u) is given by

Kt(s, u) =
∫ u

0

1{0<y+s<t} dy. (17)

As a consequence of relation (15) applied to (7), one can represent the accumulated
workload of the continuous flow model as

W ∗
λ (t) =

∫ t

0

Wλ(y) dy, Wλ(y) =
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

1{s<y<s+u} r N(ds, du, dr). (18)

Here the integrand Wλ(y), −∞ < y < ∞, is itself a well-defined random instantaneous
workload arrival rate process and W ∗

λ (t) is the corresponding cumulative workload. The
expressions (18) provide a physical interpretation of Wλ and W ∗

λ . The instantaneous rate
Wλ(y) is the Poisson aggregation of rewards of all sessions that are active at time y, and
the cumulative workload W ∗

λ builds up accordingly during the time integration over [0, t].

1.2.2. Stationarity of the increments of the workloads.

Lemma 1. In the continuous flow workload model, the instantaneous arrival rate process
{Wλ(y),−∞ < y < ∞} is stationary and the cumulative workload process {W ∗

λ (t), t ≥ 0}
has stationary increments.

Proof. Because of the time-homogeneity of n(ds, du, dr) in the variable s the shifted
process

Wλ(y + τ) =
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

1{s<y+τ<s+u} r N(ds, du, dr)

has the same finite-dimensional distributions as∫ ∞

−∞

∫ ∞

0

∫ ∞

0

1{s<y<s+u} r N(ds, du, dr) = Wλ(y).

¤
Remark 3. Consider a link of maximal traffic capacity C > 0. The process

Cλ(t) =
∫ t

0

(Wλ(y) − C)+ dy, t ≥ 0,

represents the cumulative workload loss up to time t on the congested link where any
traffic of instantaneous rate in excess of C is lost.

Remark 4. In the case R ≡ 1, the stationary process Wλ measures the system size of
the standard M/G/∞ service model running on the real line with service distribution
G = FU . For each fixed y, Wλ(y) is Poisson distributed with expected value λν because
for R ≡ 1,

Wλ(y) =
∫ ∫

1{s<t<s+u} N(ds, du) = N(A), A = {(s, u) : s < t < s + u},
with

EN(A) =
∫ ∫

A

λdsFU (du) = λ

∫ t

−∞
P (U > t − s) ds = λ

∫ ∞

0

P (U > s) ds = λν.
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For the discrete packet generation workload model we apply a similar but slightly
different argument.

Lemma 2. The compound Poisson arrival workload model {W ∗
],λ, t ≥ 0} has stationary

increments.

Proof. By (17),

Kt+τ (s, u) − Kt(s, u) =
∫ u

0

1{t<y+s<t+τ} dy = Kτ (s − t, u),

and hence by (9),

Ξ(Kt+τ (s, u)) − Ξ(Kt(s, u)) d= Ξ(Kτ (s − t, u)).

Since n](ds, du, dξ) is time-homogeneous in the variable s, it now follows from (11) that

W ∗
],λ(t + τ) − W ∗

],λ(t) d=
∫ ∞

−∞

∫ ∞

0

∫
D

ξ(Kτ (s − t, u))N](ds, du, dξ)

d=
∫ ∞

−∞

∫ ∞

0

∫
D

ξ(Kτ (s, u))N](ds, du, dξ)

d= W ∗
],λ(τ)

¤

Here and elsewhere, the notation d= denotes equality in the sense of the finite-
dimensional distributions.

At this point, having established the property of stationary increments for W ∗
λ (t)

and W ∗
],λ(t), we comment on the special case E(R2) < ∞ when the reward distribution

FR has a finite second moment. Then, for s < t,

Cov(W ∗
λ (s),W ∗

λ (t)) =
1
2

(Var(W ∗
λ (s)) + Var(W ∗

λ (t)) − Var(W ∗
λ (t − s)))

where

Var(W ∗
λ (t)) = E(R2)

∫ ∞

−∞

∫ ∞

0

Kt(s, u)2 dsFU (du).

Also,

Var(W ∗
],λ(t)) = λνE(R2) t + (ER)2

∫ ∞

−∞
Kt(s, u)2 λdsFU (du).

The crucial property of regular variation which determines the large time behavior of
these processes in the finite variance case (δ = 2) is the asymptotic power law

Var(W ∗
λ (t)) ∼ Var(W ∗

],λ(t)) ∼ const t2H , t → ∞,

where we apply the convention of using a Hurst index H, which in our case is related to
the tail parameter γ as

H =
3 − γ

2
∈ (1/2, 1).

Our limit results will show that the parameter H appears as a self-similarity index in those
cases where the limit process is Gaussian. However, our results cover several other cases
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as well and hence we will keep γ and δ as basic parameters. A line of research of current
interest is that of estimation of such key parameters based on observations of the process.
For example, Fay, Roueff and Soulier (2007), study a wavelet-based estimator of the Hurst
index for the continuous rate flow model based on the infinite source Poisson process
and of the corresponding instantaneous arrival rate process described above. They show
consistency of the estimator and study the rate of convergence. Some of the results allow
for specific dependencies between durations and rewards. Simulation technique for these
processes is a related and relevant direction of research. Here, we restrict to mentioning the
references Bardet et al. (2003a, 2003b) which survey estimation and simulation techniques
for long-range dependent random processses.

1.2.3. Representations based on an equilibrium distribution. The workload processes
W ∗

λ (t) and W ∗
],λ, as defined in (2) and (11), involve sessions arriving at any time s in the

infinite past. We now provide an alternative representation of the workload, such that for
each t the underlying random mechanism generating W ∗

λ (t) or W ∗
],λ(t) consists of sessions

with arrival times restricted to the time interval [0, t]. To do this, recall the two terms
leading to (2). One term∫ t

0

∫ ∞

0

∫ ∞

0

((t − s) ∧ u)r N(ds, du, dr)

represents a nonstationary workload process only governed by session arrivals in (0, t]. We
focus here on the other term, which represents arrivals in the past, is a Poisson integral
with expected value∫ 0

−∞

∫ ∞

0

∫ ∞

0

(t ∧ (s + u)+)r n(ds, du, dr) = λE(R)
∫ t

0

∫ ∞

u

P (U > v) dvdu.

To express this as an integral of sessions starting at s = 0 and with respect to a different
Poisson measure, we introduce the notation Ũ for the equilibrium distribution associated
to U having distribution function FŨ (u) = P (Ũ ≤ u) such that

1 − FŨ (u) =
1
ν

∫ ∞

u

P (U > v) dv ∼ 1
νγ(γ − 1)uγ−1

, u → ∞. (19)

Let M(dv, du, dr) be a Poisson measure on [0, 1] × R+ × R+ with intensity measure

m(dv, du, dr) = λνdv FŨ (du)FR(dr)

and independent of N(ds, du, dr). The measure M(dv, du, dr) produces a Poisson dis-
tributed number of independent sessions each with duration taken from Ũ and reward R.
One has∫ 0

−∞

∫ ∞

0

∫ ∞

0

(t ∧ (s + u)+)r N(ds, du, dr) d=
∫ 1

0

∫ ∞

0

∫ ∞

0

(t ∧ u)r M(dv, du, dr) (20)

To see this, use the fact that the characteristic function of a Poisson integral satisfies

lnE exp
{

iθ

∫
f(x)N(dx)

}
=

∫
(ei f(x) − 1)n(dx)
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and observe that

log E exp
{ n∑

j=1

θj

∫ 0

−∞

∫ ∞

0

∫ ∞

0

(tj ∧ (s + u)+)r N(ds, du, dr)
}

=
∫ ∞

0

∫ ∞

0

∫ ∞

0

(ei
∑ n

j=1 θj(tj∧(u−s)+)r − 1)λdsFU (du)FR(dr)

= λ

∫ ∞

0

FU (du)
∫ u

0

ds

∫ ∞

0

FR(dr)(ei
∑ n

j=1 θj(tj∧s)r − 1)

= λ

∫ ∞

0

ds

∫ ∞

s

FU (du)
∫ ∞

0

FR(dr)(ei
∑ n

j=1 θj(tj∧s)r − 1)

= λν

∫ ∞

0

FŨ (ds)
∫ ∞

0

FR(dr)(ei
∑ n

j=1 θj(tj∧s)r − 1)

= log E exp
{ n∑

j=1

θj

∫ 1

0

∫ ∞

0

∫ ∞

0

(tj ∧ s)r M(dv, ds, dr)
}

,

where M has intensity measure m(dv, ds, dr). Therefore we can express W ∗
λ (t) as

W ∗
λ (t) d=

∫ 1

0

∫ ∞

0

∫ ∞

0

(t ∧ u)r M(dv, du, dr)

+
∫ t

0

∫ ∞

0

∫ ∞

0

((t − s) ∧ u)r N(ds, du, dr).

The expected number of sessions contributing to the first term in this alternative repre-
sentation is λν and we have the following interpretation. A random number of sessions,
Poisson distributed with mean λν, arrive at time s = 0. They last independently over
time durations Ũ and transmit independently at rate R, hence a Poisson event at (v, u, r)
contributes the workload (t ∧ u)r to W ∗

λ (t). The number v ∈ [0, 1] assigned to each ses-
sion is an auxiliary part of the construction for generating the correct number of initial
sessions at time s = 0, and has no physical meaning in itself.

With M̃(dv, du, dr) = M(dv, du, dr) − m(dv, du, dr), this can also be expressed as

W ∗
λ (t) − λνE(R)t d=

∫ 1

0

∫ ∞

0

∫ ∞

0

(t ∧ u)r M̃(dv, du, dr)

+
∫ ∞

0

∫ ∞

0

∫ ∞

0

((t − s)+ ∧ u)r Ñ(ds, du, dr). (21)

Similarly, the compound Poisson arrival workload process (11) has the representation

W ∗
],λ(t) d= λνE(R)t +

∫ 1

0

∫ ∞

0

∫
D

ξ(t ∧ u) M̃](dv, du, dξ)

+
∫ t

0

∫ ∞

0

∫
D

ξ((t − s) ∧ u) Ñ](ds, du, dξ), (22)

where M̃](dv, du, dξ) = M](dv, du, dξ) − λνdv FŨ (du)µ(dξ).
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2. Scaling behavior of the workload process

We are interested in the various limit processes that arise when the speed of time increases
in proportion to the intensity of traffic sessions. Heuristically, these approximation results
describe the random variation in traffic patterns that correspond to larger and larger
volumes of Internet traffic being transmitted over networks of higher and higher capacity.

The traffic fluctuations in an infinite source Poisson system are expressed by the
workload process centered around its average value, W ∗

λ (t) − λνE(R)t. To balance the
increasing session intensity λ, we will speed up time by a factor a and simultaneously
normalize the size using a factor b. It follows from (8) and (18) that the scaled continuous
flow workload process has the form

1
b
(W ∗

λ (at) − λνE(R)at) =
1
b

∫ at

0

(Wλ(y) − λνE(R)) dy (23)

=
1
b

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kat(s, u)r Ñ(ds, du, dr), t ≥ 0.

Similarly, the scaled compound Poisson workload process is given by

1
b
(W ∗

],λ(at) − λatνE(R)) =
1
b

∫ ∞

−∞

∫ ∞

0

∫
D

ξ(Kat(s, u))Ñ](ds, du, dξ). (24)

We are going to study both as λ tends to infinity with a and b appropriately chosen
functions of λ, which also tend to infinity. Observe that there are several ways to change
variables in the integrals. We will use

1
b
(W ∗

λ (at) − λatνE(R))

d=
1
b

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kat(as, u)r (N(ads, du, dr) − λadsFU (du)FR(dr)) (25)

d=
a

b

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kt(s, u)r (N(ads, adu, dr) − λadsFU (adu)FR(dr)) (26)

d=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kt(s, u)r
(
N(ads, adu,

b

a
dr) − λadsFU (adu)FR(

b

a
dr)

)
, (27)

and other variations. We used here the scaling property

Kat(as, au) = aKt(s, u). (28)

Thus, turning to the compound Poisson arrival model (24) we obtain e.g.

1
b
(W ∗

],λ(at) − λatνE(R)) d=
1
b

∫ ∞

−∞

∫ ∞

0

∫
D

ξ(aKt(s, u))Ñ](ads, adu, dξ)

instead of (26). An interesting feature of our approximation results is that the choice
of either continuous flow rate or compound Poisson packet generation during sessions
does affect the limit process. In fact, we will see that for the compound Poisson model
there is an additional averaging effect that takes place during sessions, which changes the
asymptotic behavior relative to that of the continuous flow model. This means that the
influence of heavy-tailed distributions acting over long time scales alone does not dictate
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limit results. Rather, the local workload structure over short time scales has an impact
on the asymptotics.

Remark 5. To simplify the notation the following useful convention will be used in the
sequel: the presence of the term N(dx)− n(dx) will imply, in particular, that N(dx) is a
Poisson random measure with intensity measure n(dx).

2.1. Gaussian and stable random measures and processes

We will be using Gaussian and α-stable random measures M(dx) with control measure
m(dx) defined for x ∈ Rd. The measure M has the following properties. If A1, . . . , An

are disjoint Borel sets in Rd, then M(A1), . . . M(An) are independent random variables.
If α = 2 (Gaussian case), then for any Borel set A in Rd, the random variable M(A) is
normal with mean 0 and variance m(A). If α < 2, then

σαM(A) d=
∫

A

∫ ∞

0

r
(
N(dv, dr) − m(dv) r−(1+α)dr

)
(29)

where

σα =
(

2Γ(2 − α)
α(α − 1)

(− cos πα/2)
)1/α

, (30)

and thus M(A) has an α-stable distribution which is totally skewed to the right (this is
because r > 0).

The characteristic function of M(A) is given by

lnE(eiθM(A)) = −m(A)|θ|αkα(θ), (31)

where

kα(θ) = 1 − i(sign θ) tanπα/2 (32)

(For more details, see Samorodnitsky and Taqqu (1994), pages 156, 119 and 5.) We will
write M2 to denote a Gaussian random measure and Mα to denote an α-stable random
measure with α < 2. The index α will be either γ or δ.

We will also consider a Lévy-stable process Λα(t) with index 1 < α < 2 totally
skewed to the right (here again α will be either γ or δ). This is a process with independent
increments which can be represented as

Λα(t) = σα

∫ t

0

Mα(ds) d=
∫ t

0

∫ ∞

0

r(N(ds, dr) − ds r−(1+α)dr), (33)

where σα is given by (30) and M(ds) is an α-stable random measure with control measure
ds and N(ds, dr) is a Poisson random measure with intensity measure ds r−1−αdr (see
Samorodnitsky and Taqqu, Theorem 3.12.2).

We will also use (standard) fractional Brownian motion BH(t), which is a Gaussian,
mean 0 process, with stationary increments and covariance

EBH(t1)BH(t2) =
1
2

{|t1|2H + |t2|2H − |t1 − t2|2H
}

,

where 0 < H < 1. Fractional Brownian motion is H-self-similar, that is, for any a >
0, the processes BH(at), t ≥ 0 and aHBH(t), t ≥ 0 have identical finite-dimensional
distributions. Fractional Brownian motion reduces to Brownian motion when H = 1/2.
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2.2. Results on fast, intermediate, and slow connection rates

When we let the session intensity λ increase to infinity and simultaneously scale time,
letting a tend to infinity, and scale size, letting b tend to infinity, it is possible to ob-
tain several different limit processes in (23) and (24). A crucial feature of these limiting
schemes is the relative speed at which λ and a increase. Namely, in most cases it is the
asymptotic behavior of the ratio

λ/aγ−1

which determines the proper normalizing sequence b and the limit process. More precisely,
we will see that this is the case for the continuous flow model in the situation 1 < γ <
δ ≤ 2, when the durations length has a heavier tail than that of the rewards, and for the
compound Poisson model for any set of parameters 1 < γ, δ ≤ 2 except γ = δ = 2. To
understand why the ratio λ/aγ−1 enters in the picture, consider the representations (21)
and (22) of the workload using the equilibrium session lengths Ũ . At time zero, or at
any fixed time point, there is a Poisson number of independent sessions of mean λν. The
remaining length of each session has the distribution Ũ . Hence, letting M be a Poisson
random measure with mean λν, we have

#(λ, a) = number of initial sessions still active at time a
d=

M∑
i=1

1{Ũi>a}.

For a given choice of sequences λ and a, #(λ, a) measures the degree to which very long
sessions are present and contribute to the total workload. The expected value of the
random variable #(λ, a) is

E(#(λ, a)) = λνP (Ũ > a) ∼ 1
γ(γ − 1)

λ

aγ−1
, (34)

in view of (19). This makes it natural to distinguish three limit regimes based on whether
E(#(λ, a)) tends to a finite and positive constant, tends to infinity, or vanishes to zero as
λ and a goes to infinity. We will introduce a parameter c to quantify the relative speed
in the scaling of time and size, and refer to the three cases as:

intermediate connection rate: λ/aγ−1 → cγ−1, 0 < c < ∞,

fast connection rate: λ/aγ−1 → ∞,

slow connection rate: λ/aγ−1 → 0.

2.2.1. Intermediate connection rate (ICR). We consider the asymptotics

E(#(λ, a)) ∼ const, λ, a → ∞,

in which case the number of very long sessions stays bounded. In this situation two kinds of
summation schemes influence the workload. First, the aggregation of traffic corresponding
to a large value of λ consists of many overlapping sessions, all active at the same fixed
time. Secondly, for large a the accumulated traffic in the interval [0, at] involves many
sessions that were active during some period in the past. To clarify this structure using
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heuristic arguments before stating the precise results, let us consider the case E(R2) < ∞,
take c = 1, and recall the representation (18) of W ∗

λ (t). We have

1
a
(W ∗

λ (at) − λνE(R)at) =
1
a

∫ at

0

(Wλ(y) − λνE(R)) dy

∼ 1
a(3−γ)/2

∫ at

0

Wλ(y) − λνE(R)√
λ

dy,

since λa3−γ ∼ a2. For each y, Wλ(y) has a compound Poisson distribution with finite
variance and hence for large λ the distribution of the integrand (Wλ(y)−λνE(R))/

√
λ is

approximately Gaussian. The subsequent integration over y affects the covariance struc-
ture but preserves the Gaussian distribution. On the other hand, the following argument
indicates that we should expect a stable distribution in the limit. Suppose for convenience
that λ is an integer and decompose Wλ =

∑λ
i=1 W i

1 as a sum of i.i.d. components W i
1,

1 ≤ i ≤ λ. Then

1
a
(W ∗

λ (at) − λνE(R)at) =
1
a

∫ at

0

λ∑
i=1

(W i
1(y) − νE(R)) dy

∼ 1
λ1/γ

λ∑
i=1

1
a1/γ

( ∫ at

0

W i
1(y) dy − νE(R)at

)
,

where we use λa ∼ aγ . The integral process
∫ t

0
W i

1(y) dy, t ≥ 0, that appears in the last
expression is increasing with expected value νt, but since the integrand W i

1(y) typically
stays constant for intervals of length U and the distribution of U has infinite variance,
there is no Gaussian central limit law for the corresponding centered process. Instead,
we note that

∫ t

0
W i

1(y) dy, after centering and scaling by a as above, should behave as a
renewal process having interrenewal times with the heavy-tailed distribution FU of index
γ. For such processes it is known that the limit distribution as a → ∞ is stable with stable
index γ. The additional summation over i preserves the stable distribution. For a more
detailed discussion in a similar case (of inverse Lévy processes), see Kaj and Martin-Löf
(2004).

Turning now to the statement of our first result, it turns out that the limit processes
under ICR scaling are neither Gaussian nor stable. In fact new limit processes arise. A
further interesting consequence is that the limits are different for the continuous flow rate
model and for the compound Poisson model.

Theorem 1. Consider a pair of parameters 1 < γ < 2 and 1 < δ ≤ 2, fix an arbitrary
constant c, 0 < c < ∞, and assume

λ → ∞, a → ∞,
λ

aγ−1
→ cγ−1.

Take b = a as size factor.
(i) If 1 < γ < δ ≤ 2, the continuous flow rate model, scaled and normalized as in (23),

has the limit
1
a
(W ∗

λ (at) − λνE(R)at) ⇒ c Yγ,R(t/c),
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where

Yγ,R(t) =
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kt(s, u)r
(
N(ds, du, dr) − ds u−(1+γ)du FR(dr)

)
=

∫ ∞

−∞

∫ ∞

0

Kt(s, u)
( ∫ ∞

0

r N(ds, du, dr) − E(R) ds u−(1+γ)du
)
. (35)

In the special case of fixed rewards, R ≡ 1, the limit process is

Yγ(t) =
∫ ∞

−∞

∫ ∞

0

Kt(s, u)
(
N(ds, du) − ds u−(1+γ)du

)
. (36)

(ii) The compound Poisson workload model in (24) has the limit process

1
a
(W ∗

],λ(at) − λνE(R)at) ⇒ E(R) c Yγ(t/c),

where Yγ is defined in (36).

Convention. The convergence is in the sense of the finite-dimesional distributions in this
theorem and in the following one. Weak convergence in function space will be established
in Section 4.

Remark 6. The limit process Yγ,R is not self-similar, because N does not have the scaling
properties that a Gaussian or a stable process has. However, if we assume that the reward
distribution FR(dr) has finite variance then

Var(Yγ,R(t)) = E(R2)
∫ ∞

−∞

∫ ∞

0

Kt(s, u)2 ds u−(1+γ)du = E(R2)σ2 t2H , H =
3 − γ

2
,

where σ2 is given in (38). Thus, in this case Yγ,R is second order self-similar with Hurst
index H.

Benassi et al. (1997) introduced local asymptotic self-similarity as another means of
generalizing the class of self-similar processes. It is shown in Gaigalas and Kaj (2003) and
with a proof more adapted to the present setting in Gaigalas (2006), that the process Yγ

is locally asymptotically self-similar with index H and with fractional Brownian motion
as tangent process, in the sense that{

Yγ(t + λu) − Yγ(t)
λH

, u ∈ R
}

⇒ {BH(u), u ∈ R}, as λ → 0.

Benassi et al. (2002) defined a stochastic process X(t) to be asymptotically self-similar
at infinity with index H if there exists a process R(t) such that

λ−HX(λt) → R(t), as λ → ∞.

The intermediate limit process Yγ(t) is asymptotically self-similar at infinity with index
H = 1/γ and asymptotic process R(t) given by an γ-stable Lévy process, totally skewed
to the the right, see Gaigalas (2006).

Remark 7. The difference between the representation of W ∗
λ (t)−EW ∗

λ (t) in (8) and that
of Yγ,R(t) in (35) is that the control measure FU (du) is now replaced by u−(1+γ) which
is not a probablility measure anymore.
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Remark 8. The process Yγ,R will be called the Intermediate Telecom process. We are thus
able to identify the limit process in the case of general reward distributions, which has
been an open problem in Pipiras et al. (2004). The special case of fixed rewards R ≡ 1,
has been solved earlier. It can be obtained by combining results in Gaigalas (2006), Kaj
(2005) and Gaigalas and Kaj (2003).

Remark 9. The limit for the compound Poisson workload model is a scaled version of Yγ

defined in (36) and, as noted in the theorem, Yγ is Yγ,R in (35) in the special case of fixed
rewards R ≡ 1.

2.2.2. Fast connection rate (FCR). In this case, a large number of very long sessions
contribute in the asymptotic limit of aggregating the traffic workload. Essentially, we
will have a summation scheme for processes as in the ordinary central limit theorem,
but with strong dependencies building up over time. For the continuous flow model the
limit is Gaussian in the case of finite variance rewards and the limit is stable if the reward
distribution does not possess finite variance. For the compound Poisson packet generation
model, the limit is Gaussian whether the rewards have finite variance or not.

Theorem 2. Let 1 < γ < 2, 1 < δ ≤ 2, and assume

λ → ∞, a → ∞,
λ

aγ−1
→ ∞. (37)

Set

b = λ1/δ a(δ+1−γ)/δ so that b/a = (λ/aγ−1)1/δ → ∞.

(i) In the case of finite variance rewards,

1 < γ < δ = 2,

so b = λ1/2a(3−γ)/2, then the limit process for (23) is the fractional Brownian motion√
E(R2) σ BH(t)

with index

H =
3 − γ

2
∈ (1/2, 1),

where

σ2 =
∫ ∞

−∞

∫ ∞

0

K1(s, u)2 ds u−(γ+1)du =
2

γ(γ − 1)(2 − γ)(3 − γ)
. (38)

Alternatively, the limit process can be represented as

E(R2)1/2

∫ ∞

−∞

∫ ∞

0

Kt(s, u)M2(ds, du), (39)

where Kt(s, u) is the kernel defined in (5) and M2(ds, du) is a Gaussian random
measure with control measure

ds u−(1+γ)du.
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(ii) If the reward distribution has infinite variance with a lighter tail than that of the
durations,

1 < γ < δ < 2,

then the limit of (23) is the Telecom process

Zγ,δ(t)

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kt(s, u)r
(
N(ds, du, dr) − ds u−(1+γ)du r−(1+δ)dr

)
(40)

= σδ

∫ ∞

−∞

∫ ∞

0

Kt(s, u)Mδ(ds, du), (41)

where the random measure Mδ(ds, du) is δ-stable and has the control measure

ds u−(γ+1)du.

The process Zγ,δ(t) is a δ-stable process, which is H-self-similar with

H =
δ + 1 − γ

δ
∈ (1/δ, 1).

The factor σδ is given in (30) (with α = δ).

(iii) If we replace W ∗
λ by W ∗

],λ, then for arbitrary parameters

1 < γ < 2, 1 < δ ≤ 2,

the limit process of (24) is the fractional Brownian motion(
E(R)σ

)
BH(t), t ≥ 0.

Remark 10. The symmetric δ-stable version of the Telecom process appeared in Pipiras
and Taqqu (2002). The Telecom process reduces to CBH(t) when δ = 2. The easiest
way to see this is to note that the random measure Mδ is Gaussian when δ = 2 and
hence the process Zγ,2 is Gaussian, has stationary increments and is H-self-similar with
H = (3 − γ)/2.

Remark 11. The kernel Kt(s, u) appears both in the representations (40) of the Telecom
process and in the representation (35) of the intermediate Telecom process. In (40), the
control measure involving r in the stable density r−(1+δ)dr and thus the Telecom process
is a δ-stable process. For the intermediate Telecom process (35), however, the part of the
control measure involving r is FR(dr) which has finite variance in the case δ = 2 and
while it has infinite variance in the case δ < 2, the process is not necessarily stable.

2.2.3. Slow connection rate (SCR). The remaining case SCR leads to stable Lévy pro-
cesses in the asymptotic limit. The interpretation of the scaling condition E(#(λ, a)) → 0,
λ, a → ∞, in (34) is that there are essentially no sessions that survive the scaling whose
remaining durations are so long that they could cause long-range dependence in the
limit process. Rather, the additive terms that contribute to the cumulative workload are
asymptotically independent and belong to a stable domain of attraction.

The multiplicative constants appearing in the limit depend on the local traffic struc-
ture during sessions. Again the limit process for the compound Poisson model depends
only on the expected reward E(R), which shows that this is a general property valid for
all choices of scaling.
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Theorem 3. Consider the scaling regime

a → ∞,
λ

aγ−1
→ 0

or, if λ is bounded away from zero, just
λ

aγ−1
→ 0,

and take

b = (λa)1/γ so that a/b = (aγ−1/λ)1/γ → ∞.

(i) If
1 < γ < δ ≤ 2,

or, more generally, if
E(Rγ) < ∞, 1 < γ < 2

(including γ = δ with slowly varying functions such that E(Rγ) is finite), then the
limit for the continuous flow rate model (23) is

[E(Rγ)]1/γ Λγ(t),

where Λγ is a Lévy-stable process with stable index γ. The limit process can be
represented as

E(Rγ)1/γ Λγ(t)

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

1{0<s<t}ur
(
N(ds, du, dr) − ds u−(1+γ)du FR(dr)

)
d= σγ

∫ ∞

−∞

∫ ∞

0

1{0<s<t}rMγ(ds, dr)

where σγ is defined in (30) (with α = γ) and Mγ(ds, dr) is γ-stable with control
measure dsFR(dr), as defined in (33).

(ii) For any choice of parameters

1 < γ < 2, 1 < δ ≤ 2,

the compound Poisson workload model (24) has the limit

E(R) Λγ(t).

2.3. Remaining choices for the parameters γ and δ

For the continuous model we supposed earlier that 1 < γ < δ ≤ 2. We will now consider
the remaining cases

γ = δ = 2, and 1 < δ < γ ≤ 2

The first of these, γ = δ = 2, remains also for the compound Poisson model. The second,
1 < γ < δ ≤ 2 will be applied to the continuous flow model, together with 1 < γ = δ < 2,
given that proper moments exist. The generic choice of normalization is b = (λa)1/δ in
each of the remaining cases. As λ → ∞ and a → ∞, and with this b, the convergence
results hold regardless of the limit behavior of λ/aγ−1. Hence the distinctions FCR, ICR,
SCR are now irrelevant.



Convergence to fractional Brownian motion and to the Telecom process 21

Theorem 4. Set

b = (λa)1/δ (42)

and assume

λ → ∞, a → ∞ or a → ∞, b → ∞ in any arbitrary way.

(i) Assume
γ = δ = 2.

Here E(U2) < ∞, E(R2) < ∞. The continuous flow model in (23) has the limit√
E(U2)E(R2) B(t) t ≥ 0,

and the compound Poisson model in (24) has the limit√
E(U2)E(R)B(t) t ≥ 0,

where B(t), t ≥ 0, denotes standard Brownian motion.

(ii) Assume
1 < δ < 2,

and that either γ satisfies
δ < γ ≤ 2

or, more generally, that U satisfies

E(Uδ) < ∞
(thus including γ = δ with slowly varying functions making Uδ have finite mean).
The limit process for the continuous flow model is

[E(U δ)]1/δ Λδ(t), t ≥ 0,

where Λδ(t) is a Lévy stable process with index δ.

Remark 12. For the case of fixed rewards, R = 1, higher-dimensional versions of Theorems
1-3 have been obtained in Kaj et al. (2007). Spatial versions of the continuous flow reward
model are obtained by replacing the collection of sessions on the real line by a family of
sets {xj + ujC}j on Rd, where C is a fixed bounded set of volume |C| = 1 and vanishing
boundary |∂C| = 0. The location and size of the sets are given by a Poisson measure
N(dx, du) on Rd × R+ with intensity λdx F (du) such that the size distribution F (du)
is heavy-tailed at infinity. The analog of the workload functional W ∗

λ is taken to be a
stochastic integral

X(µ) =
∫
Rd

∫
R+

µ(x + uC)N(dx, du), µ ∈ M,

where M is a suitable subset of signed measures on Rd. Here, X(µ) represents the
configuration of mass on Rd of a Poisson germ-grain model with germs uniformly located
in space and heavy-tailed grain size. The choice d = 1, C = [0, 1] and µt(dy) = 1{0<y<t} dy
yields

µt(s + uC) =
∫

[s,s+u]

1{0<y<t} dy = Kt(s, u)

in view of (15), which shows for this example X(µt) = W ∗
λ (t).
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By choosing properly the spatial scale, or equivalently, the size of the grains, in
relation to the Poisson intensity and taking a limit the fluctuations of X(µ) again exhibit
three different scaling regimes. The limiting operations are carried out with the use of
generalized random fields based on a careful choice of the space of measures M. The re-
sults in Kaj et al. (2007) generalize the Gaussian, stable and intermediate limits obtained
here to a spatial setting and are in complete analogy to those of Theorems 1, 2 and 3,
for the case of fixed rewards.

Biermé et al. (2006, 2007), extend the Gaussian and the intermediate scaling limit
results further for an analogous model where the intensity of the size of grains has a
specified power law behavior close to zero. It turns out that for such models one can obtain
in the scaling limit, for example, the family of fractional Brownian fields {BH(x), x ∈ Rd}
with Hurst index H, 0 < H < 1. Here, BH(x), x ∈ Rd, are zero mean Gaussian random
variables such that

Cov(BH(x), BH(y)) =
1
2

(|x|2H + |y|2H − |x − y|2H
)
.

3. Proof of the theorems

The proofs in our setting provide an intuitive feeling for why the various limits appear. We
will focus on the characteristic functions of the scaled and normalized workload process.
By performing the appropriate limit operation for each choice of limiting scheme and
deriving the limiting characteristic functions, we are able to identify the limit processes.
We begin by stating characteristic functions for the processes W ∗

λ (t) and W ∗
],λ(t) centered

at their expected values. We will then consider each case separately. This includes the
intermediate, fast, and slow connection rates when the tails of the durations are heavier
than the tails of the rewards. Further cases arise when the reward tails are heavier. We
will have to consider separately the continuous flow model and the compound Poisson
model.

3.1. Characteristic functions

The formulas given in the next two lemmas, which will be used repeatedly in the sequel,
are consequences of a general property of Poisson integrals

∫
f(x)(N(dx)−n(dx)), namely

that

lnE exp
{

i

∫
f(x)(N(dx) − n(dx))

}
=

∫
(ei f(x) − 1 − if(x))n(dx),

which is well-defined if ∫
(f(x)2 ∧ |f(x)|)n(dx) < ∞,

and in particular, if either
∫

f2(x)n(dx) < ∞ or
∫ |f(x)|n(dx) < ∞.

Lemma 3. The characteristic function for the finite-dimensional distributions of the cen-
tered continuous flow workload process W ∗

λ (t) − λνE(R)t, t ≥ 0, is given for arbitrary
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n ≥ 1, 0 ≤ t1 ≤ · · · ≤ tn, and real θ1, . . . , θn, by the relation

lnE exp
{

i
n∑

j=1

θj(W ∗
λ (tj) − λνE(R)tj)

}
=

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, r)n(ds, du, dr),

where

h(s, u, r) = exp
{

i

n∑
j=1

θjKtj
(s, u)r

}
− 1 − i

n∑
j=1

θjKtj
(s, u)r (43)

and n(ds, du, dr) = λdsFU (du)FR(dr) is the intensity measure defined in (1).

Lemma 4. The characteristic function for the finite-dimensional distributions of the cen-
tered compound Poisson workload process W ∗

],λ(t)−λνE(R)t, t ≥ 0, is given for arbitrary
n ≥ 1, 0 ≤ t1 ≤ · · · ≤ tn, and real θ1, . . . , θn, by

lnE exp
{

i

n∑
j=1

θj(W ∗
],λ(tj) − λνE(R)tj)

}
=

∫ ∞

−∞

∫ ∞

0

g(s, u)n(ds, du),

where

n(ds, du) = λdsFU (du)

and

g(s, u) = E
(

exp
{

i

n∑
i=1

θjΞ(Ktj
(s, u))

}
− 1 − i

n∑
i=1

θjΞ(Ktj
(s, u))

)

= exp
{ ∫ ∞

0

∫ ∞

0

(
exp

{
i

n∑
j=1

θj1{w≤Ktj
(s,u)}r

}
− 1

)
dw FR(dr)

}

−1 − i

n∑
j=1

θjKtj
(s, u)E(R).

Observe that the expressions for the logarithmic characteristic functions stated in
Lemma 3 and 4 above are well-defined, because the inequality∣∣eiu − 1 − iu

∣∣ ≤ 2|u|, u ∈ R, (44)

and the relation ∫ ∞

−∞
Kt(s, u) ds = ut, (45)

which is readily derived from (15), imply∫ ∞

−∞

∫ ∞

0

∫ ∞

0

|h(s, u, r)|n(ds, du, dr)

≤ 2
n∑

i=1

|θj |
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kt(s, u)r n(ds, du, dr) = 2
n∑

i=1

|θj |λνE(R)t
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and ∫ ∞

−∞

∫ ∞

0

|g(s, u)|n(ds, du)

≤ 2
n∑

i=1

|θj |E(R)
∫ ∞

−∞

∫ ∞

0

Kt(s, u)n(ds, du) = 2
n∑

i=1

|θj |λνE(R)t.

More refined estimates will be needed to carry out the various scaling limit operations.

3.2. Proof of Theorem 1 (ICR)

We can lump together the finite and infinite variance cases but we will need to distinguish
between the continuous flow model and the compound Poisson model.

3.2.1. The continuous flow model. Applying (26) with b = a and Lemma 3, we have

lnE exp
{

i

n∑
j=1

θj(W ∗
λ (atj) − λνE(R)atj)/a

}

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, r)EN(ads, adu, dr), (46)

where h is defined in (43). Under the ICR assumption λ, a → ∞ with λ/aγ−1 → cγ−1,
the scaled intensity measure has the asymptotic form

EN(ads, adu, dr) = λadsFU (adu)FR(dr) ∼ cγ−1 dsu−(1+γ)du FR(dr).

The logarithmic characteristic function of the process Yγ,R defined by the Poisson integral
expression (35) is given by

lnE exp
{

i

n∑
j=1

θj Yγ,R(tj)
}

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, r) dsu−(1+γ)du FR(dr),

in complete analogy to the result of Lemma 3. Thus,

lnE exp
{

i

n∑
j=1

θj cYγ,R(tj/c)
}

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(cs, cu, r) dsu−(1+γ)du FR(dr) (47)

= cγ−1

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, r) dsu−(1+γ)du FR(dr), (48)

where (47) follows from (28) expressed as cKt/c(s, u) = Kt(cu, cs). Hence to prove The-
orem 1 i), it is enough to verify that (46) converges to (48) under the ICR scaling.

Integration by parts in the variable u shows that the right hand side of (46) equals∫ ∞

−∞

∫ ∞

0

∫ ∞

0

∂

∂u
h(s, u, r) ds λaP (U > au)du FR(dr), (49)

where U , which has the distribution FU (du), satisfies by assumption

λaP (U > au) → cγ−1u−γ/γ.
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If we are allowed to take this limit inside the integral in (49), then another integration by
parts will revert the resulting integral into the form (48) and hence conclude the proof. To
justify the last steps it remains to demonstrate that the integrand in (49) is appropriately
dominated. The proofs of the required estimates simplify somewhat if we first make the
change of variable s → s + u. Hence we agree to consider instead of (49) the integral∫ ∞

−∞

∫ ∞

0

∫ ∞

0

∂

∂u
h(s − u, u, r) ds λaP (U > au)du FR(dr). (50)

(Note that the function in the integrand is the derivative of h with respect to its second
argument u, evaluated in the point (s − u, u, r).) We will use the Potter bounds, see
Bingham et al. (1987). Since the function P (U > u) is regularly varying at u → ∞ with
tail behavior u−γ , the Potter bound yields for any ε > 0 a number a0 > 0 such that

P (U > au)
P (U > a)

≤ 2u−γ max(u−ε, uε)

for a ≥ a0 and au ≥ a0. Moreover, since λaP (U > a) → cγ−1/γ, using possibly a larger
a0 we have

λaP (U > au) ≤ 2(cγ−1/γ + ε)u−γ max(u−ε, uε), a ≥ a0, au ≥ a0. (51)

Since ∂
∂uKt(s, u) = 1{0<s+u<t} by (17),

∂

∂u
h(s − u, u, r) = i

(
exp

{
i

n∑
j=1

θjKtj
(s − u, u)r

}
− 1

) n∑
k=1

θk1{0<s<tk}r.

For any 0 ≤ κ ≤ 1, we have |eix − 1| ≤ 21−κ|x|κ and (
∑n

i=1 |xi|)κ ≤ ∑n
i=1 |xi|κ. Since

(16) implies 0 ≤ Kt(s, u) ≤ u,∣∣∣ exp
{

i

n∑
j=1

θjKtj
(s, u)r

}
− 1

∣∣∣ ≤ (
21−κ

n∑
j=1

|θj |κuκ rκ
)
∧ 2 (52)

and so ∣∣∣ ∂

∂u
h(s − u, u, r)

∣∣∣ ≤ 2min
( n∑

j=1

|θj |κuκrκ, 1
) n∑

k=1

|θk|1{0<s<tk} r. (53)

We may assume that t1 > 0 and for convenience that a ≥ a0 is so large that a0/a ≤ t1.
Relations (51) and (53) now imply that the integrand in (49) is bounded on {u ≥ a0/a},∣∣∣ ∂

∂u
h(s, u, r)

∣∣∣λaP (U > au) 1{u≥a0/a} ≤ B1(s, u, r),

where

B1(s, u, r) = Cε,κu−γ max(u−ε, uε)min
( n∑

j=1

|θj |κuκrκ, 1
) n∑

k=1

|θk|1{0<s<tk} r

and

Cε,κ = 4(cγ−1/γ + ε).
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Now ∫ ∞

−∞

∫ ∞

0

∫ ∞

0

B1(s, u, r) dsduFR(dr)

≤ Cε,κ

n∑
k=1

|θk|tk
(
E(R1+κ)

∫ t1

0

n∑
j=1

|θj |κuκ−γ max(u−ε, uε) du

+E(R)
∫ ∞

t1

u−γ max(u−ε, uε) du
)

Since 1 < γ < δ ≤ 2 we may choose ε and κ such that

1 + ε < γ, γ + ε < 1 + κ < δ.

Then E(R1+κ) < ∞ and the du-integrals are finite.
Next we must find a dominating function which applies to 0 < u ≤ a0/a ≤ 1. By

(53), ∣∣∣ ∂

∂u
h(s − u, u, r)

∣∣∣ ≤ 2
n∑

j=1

|θj |κ
n∑

k=1

|θk|1{0<s<tk} uκr1+κ.

Fix ε > 0. Using

uκ ≤ (a0/a)γ−1+εu1+κ−γ−ε, u ≤ a0/a,

it follows from Markov’s inequality,

λaP (U > au) ≤ λu−1E(U),

that

uκλaP (U > au) ≤ aγ−1+ε
0 ν uκ−γ−ελ/aγ−1+ε.

Recall that the general scaling assumption for ICR is λLU (a)/aγ−1 → cγ−1, where LU is
a slowly varying function related to the asymptotic form of the duration U . By a general
property of slowly varying functions, a−ε ≤ L(a) for a sufficiently large. Hence we end
up with ∣∣∣ ∂

∂u
h(s − u, u, r)

∣∣∣λaP (U > au) 1{u≤a0/a} ≤ B2(s, u, r),

where

B2(s, u, r) = Cε,κ

n∑
k=1

|θk|1{0<s<tk} uκ−γ−εr1+κ1{0<u≤1}

and

Cε,κ = 2aγ−1+ε
0 ν(cγ−1 + ε)

n∑
j=1

|θj |κ.

The bound B2 is integrable with respect to ds du FR(dr) for γ + ε < 1 + κ < δ. Since ε is
arbitrary, this allows us to apply the dominated convergence theorem and complete the
proof of part i) of Theorem 1.
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3.2.2. The compound Poisson workload model. We turn to part ii) of Theorem 1. By
Lemma 4,

lnE exp
{

i
n∑

j=1

θj(W ∗
],λ(atj) − λνE(R)atj)/a

}
=

∫ ∞

−∞

∫ ∞

0

ga(s, u)n(ads, adu),

where

ga(s, u) = exp
{ ∫ ∞

0

∫ ∞

0

a
(

exp
{

i

n∑
j=1

θj1{w≤Ktj
(s,u)}r/a

}
− 1

)
dwFR(dr)

}

−1 − i
n∑

j=1

θjKtj
(s, u)E(R)

after making the change of variables w → aw, s → as, u → au and using (28). Since

ga(s, u) ∼ exp
{
i

n∑
j=1

θjKtj
(s, u)E(R)

}
− 1 − i

n∑
j=1

θjKtj
(s, u)E(R), a → ∞,

we can complete the proof in much the same way as in the previous part i), noticing that
this case is in fact simpler in the sense that only the expected reward E(R) and not the
full distribution FR(dr) enters the limiting characteristic function. Since, as a → ∞,

n(ads, adu) = λadsFU (adu) ∼ cγ−1 ds u−(γ+1)du,

the result in this case is∫ ∞

−∞

∫ ∞

0

ga(s, u)n(ads, adu)

→ cγ−1

∫ ∞

−∞

∫ ∞

0

(
exp

{
i

n∑
j=1

θjKtj
(s, u)E(R)

}

−1 − i
n∑

j=1

θjKtj
(s, u)E(R)

)
ds u−(γ+1)du

=
∫ ∞

−∞

∫ ∞

0

(
exp

{
i

n∑
j=1

θjcKtj/c(s, u)E(R)
}

−1 − i

n∑
j=1

θjcKtj/c(s, u)E(R)
)

ds u−(γ+1)du

= lnE exp
{

i

n∑
j=1

θj cYγ(tj/c)E(R)
}

,

where we used (28) and where the process Yγ is defined in (36).

3.3. Proof of Theorem 2 (FCR)

In the asymptotic regime of fast connection rate and for the continuous flow model it is
necessary to study the cases δ = 2 and δ < 2 separately.
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3.3.1. The continuous flow model, finite variance rewards. We start with the case δ = 2
of finite second moment rewards and we use representation (26) of the workload process,
to avoid scaling in the variable r. Observe first that

EN(ads, adu, dr) = λadsFU (adu)FR(dr)
∼ λaa−γds u−γ−1du FR(dr)

=
(

b

a

)2

ds u−γ−1du FR(dr).

Hence, setting ζ = b/a, by (26) and Lemma 3,

lnE exp
{

i

n∑
j=1

θj(W ∗
λ (atj) − λνE(R)atj)/b

}

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, ζ−1r)EN(ads, adu, dr)

∼
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, ζ−1r) ζ2 ds u−(γ+1)du FR(dr).

To justify taking the limit inside of the integral a similar argument applies as in the proof
of Theorem 1. The task is to dominate the integrand in∫ ∞

−∞

∫ ∞

0

∫ ∞

0

∂

∂u
h(s − u, u, ζ−1r)λaP (U > au) ds du FR(dr), (54)

just as we did earlier for ICR in (50). Because of the finite variance condition E(R2) < ∞,
this case is simpler and we can use (53) with κ = 1. Potter’s theorem and the Markov
inequality apply again to obtain bounds for the tail probability P (U > au). The resulting
estimates together justify using the dominated convergence theorem. Hence the Taylor
expansion

h(s, u, ζ−1r) = −ζ−2 1
2

( n∑
j=1

θjKtj
(s, u)r

)2

+ o(ζ−2), ζ → ∞,

shows that

lnE exp
{

i

n∑
j=1

θj(W ∗
λ (atj) − λνE(R)atj)/b

}

→ −1
2

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

( n∑
j=1

θjKtj
(s, u)r

)2

ds u−(γ+1)du FR(dr)

= −1
2
E(R2)

n∑
i=1

n∑
j=1

θiθj

∫ ∞

−∞

∫ ∞

0

Kti
(s, u)Ktj

(s, u) ds u−γ−1du.

One has ∫ ∞

−∞

∫ ∞

0

Kti
(s, u)Ktj

(s, u) ds u−γ−1du =
σ2

2
(t2H

i + t2H
j − |ti − tj |2H),
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where H = (3 − γ)/2 and σ is given by (38), and therefore the limit process is the
fractional Brownian motion

E(R2)1/2 σ BH(t).

An alternative way to see that the limit is fractional Brownian motion is to observe that
the process (39) is Gaussian, H-self-similar and has stationary increments.

3.3.2. Continuous flow model, infinite variance rewards (δ < 2). In the case 1 < γ < δ <
2 of infinite variance rewards, we have FR(dr) ∼ r−δ−1 dr as r → ∞. Lemma 3 and the
scaling representation (27) yield

lnE exp
{

i

n∑
j=1

θj(W ∗
λ (atj) − λνE(R)atj)/b

}

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, r)EN(ads, adu, (b/a)dr)

where h is defined in (43). Because of the choice of the normalization factor b,

EN(ads, adu, (b/a)dr) = λadsFU (adu)FR((b/a)dr)

∼ ds u−γ−1du r−δ−1dr,
b

a
→ ∞.

We need to verify that the limiting log-characteristic function is given by∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, r) ds u−γ−1du r−δ−1dr,

which is the logarithm of the characteristic function of the Telecom process as defined in
(40). In view of (29) this also yields the representation (41). The corresponding δ-stable
form of the characteristic function is obtained by integrating over r (Samorodnitsky and
Taqqu (1994), Exercise 3.24):∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, r) ds u−γ−1du r−δ−1dr

= −1
2
(σδ)δ

∫ ∞

−∞

∫ ∞

0

∣∣∣ n∑
j=1

θjKtj
(s, u)

∣∣∣δ kδ

( n∑
j=1

θjKtj
(s, u)

)
ds u−γ−1du,

where σδ is given by (30) and kδ(θ) by (32), with α = δ.
To establish the limit result we fix ε > 0 and split the integral in three parts,∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(s, u, r)(λadsFU (adu)FR((b/a)dr)

−ds u−γ−1du r−δ−1dr) = I1
ε + I2

ε + I3
ε ,

corresponding to the three domains of integration A1
ε = {u > ε, r > ε}, A2

ε = {u < ε < r}
and A3

ε = {r < ε}, not involving the integration over s.
Writing

µλ(du, dr) = λauFU (adu) rFR((b/a)dr),

µ(du, dr) = u−γdu r−δdr,
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and

H(u, r) =
1
ur

∫ ∞

−∞
h(s, u, r) ds,

we have

I1
ε =

∫ ∞

ε

∫ ∞

ε

H(u, r)(µλ(du, dr) − µ(du, dr)).

Here, |H(u, r)| ≤ 2
∑n

j=1 θjtj < ∞ in view of (44) and (45). It follows similarly that
H(u, r) is jointly continuous in A1

ε . Since∫ ∫
A1

ε

µλ(du, dr) < ∞,

∫ ∫
A1

ε

µ(du, dr) < ∞,

and the measure µλ converges weakly to µ, we obtain I1
ε → 0 by weak convergence.

We now consider I2
ε . Using the more general inequality |eix − 1 − ix| ≤ cκ |x|1+κ

where cκ is a constant and κ ∈ [0, 1], we obtain∣∣∣ ∫ ∞

−∞

∫ ε

0

∫ ∞

ε

h(s, u, r) ds u−γ−1du r−δ−1dr
∣∣∣

≤ cκ2κ
n∑

j=1

|θj |1+κ

∫ ∞

ε

rκ−δ dr

∫ ∞

−∞

∫ ε

0

Ktj
(s, u)1+κds u−γ−1du. (55)

Using (16) in the form 0 ≤ Kt(s, u) ≤ u together with (45) we may continue with∫ ∞

−∞
Ktj

(s, u)1+κ ds ≤ uκ

∫ ∞

−∞
Ktj

(s, u) ds = u1+κtj ,

and then compute the remaining integrals on the right hand side of (55). Under the
assumption γ < 1 + κ < δ, this yields a constant c′κ such that∣∣∣ ∫ ∞

−∞

∫ ε

0

∫ ∞

ε

h(s, u, r) ds u−γ−1du r−δ−1dr
∣∣∣ ≤ c′κε2(1+κ)−γ−δ

Similarly, ∣∣∣ ∫ ∞

−∞

∫ ε

0

∫ ∞

ε

h(s, u, r)λadsFU (adu)FR((b/a)dr)
∣∣∣

≤ dκλa

∫ ∞

ε

r1+κ FR((b/a)dr)
∫ ε

0

u1+κ FU (adu)

for a suitable constant dκ. By the properties of regularly varying functions, we have

(b/a)δ

∫ ∞

ε

r1+κ FR((b/a)dr) →
∫ ∞

ε

rκ−δ dr, b/a → ∞

if 1 + κ < δ, and

aγ

∫ ε

0

u1+κ FU (adu) →
∫ ε

0

uκ−γ du, a → ∞
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if γ < 1 + κ. Hence we can find d′κ such that∣∣∣ ∫ ∞

−∞

∫ ε

0

∫ ∞

ε

h(s, u, r)λadsFU (adu)FR((b/a)dr)
∣∣∣

≤ d′κε2(1+κ)−γ−δ, γ < 1 + κ < δ.

By taking in addition κ such that (γ + δ)/2 < 1 + κ < δ this shows

I2
ε ≤ (c′κ + d′κ) ε2(1+κ)−γ−δ → 0 ε → 0.

Finally,∣∣∣ ∫ ∞

−∞

∫ ∞

0

∫ ε

0

h(s, u, r) ds u−γ−1du r−δ−1dr
∣∣∣

≤ c2

n∑
i,j=1

θiθj

∫ ∞

−∞

∫ ∞

0

Kti
(s, u)Ktj

(s, u) ds u−γ−1du

∫ ε

0

r1−δ dr.

Since the dsdu-integral is the finite covariance function Cov(BH(ti), BH(tj)) of fractional
Brownian motion with H = (3− γ)/2, the right hand side takes the form const ε2−δ → 0,
ε → 0. Similarly, for λ snd a sufficiently large, we obtain∣∣∣ ∫ ∞

−∞

∫ ∞

0

∫ ε

0

h(s, u, r)λadsFU (adu)FR((b/a)dr)
∣∣∣ ≤ const ε2−δ.

Thus I3
ε → 0 as ε → 0, which concludes the proof of the desired convergence of charac-

teristic functions for this case.

3.3.3. The compound Poisson model. For the compound Poisson model the limit process
is the same for all parameters in the range 1 < γ < 2, 1 < δ ≤ 2. By Lemma 4 and (28),

lnE exp
{

i
1
b

n∑
j=1

θj(W ∗
],λ(atj) − λνE(R)atj)

}
=

∫ ∞

−∞

∫ ∞

0

ga,b(s, u)λadsFU (adu),

where

ga,b(s, u) = exp
{ ∫ ∞

0

∫ ∞

0

(
exp

{
i

n∑
j=1

θj1{w≤aKtj
(s,u)}r/b

}
− 1

)
dw FR(dr)

}

−1 − i

n∑
j=1

θjaKtj
(s, u)E(R)/b

∼ exp
{ ∫ ∞

0

∫ ∞

0

i

n∑
j=1

θj1{w≤Ktj
(s,u)} r(a/b) dw FR(dr)

}

−1 − i

n∑
j=1

θjaKtj
(s, u)E(R)/b

= exp
{

i
n∑

j=1

θjKtj
(s, u)E(R)(a/b)

}
− 1 − i

n∑
j=1

θjKtj
(s, u)E(R)(a/b).
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Hence, by Taylor expansion as a/b → 0, the log-characteristic function converges to

−1
2

∫ ∞

−∞

∫ ∞

0

( n∑
j=1

θjKtj
(s, u)E(R)

)2

ds u−γ−1du

= −1
2
E(R)2

n∑
i=1

n∑
j=1

θiθj

∫ ∞

−∞

∫ ∞

0

Kti
(s, u)Ktj

(s, u) ds u−γ−1du.

The limit is therefore the fractional Brownian motion E(R)σ BH(t), t ≥ 0.

3.4. Proof of Theorem 3 (SCR)

The proofs in the regime of slow connection rate are similar to the previous ones. To see
which limit to expect we shall scale directly the integral representations instead of the
characteristic functions.

3.4.1. The continuous flow model. The relevant scaling for any choice of parameters
1 < γ < δ ≤ 2, is

1
b

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kat(s, u)r Ñ(ds, du, dr)∫ ∞

−∞

∫ ∞

0

∫ ∞

0

K(a/b)t(s/b, u/b)r Ñ(ds, du, dr)

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

K(a/b)t((a/b)s, u)r Ñ(a ds, b du, dr),

where Ñ is defined by (6). Here, the compensator n scales as

n(a ds, b du, dr) = λadsFU (b du)FR(dr)
∼ ds u−1−γdu FR(dr),

since b = (λa)1/γ → ∞. Moreover, if we write z = a/b then z → ∞ and, using (17),

Kzt(zs, u) =
∫ u

0

1{0<y+zs<zt} dy

→
∫ u

0

1{0<s<t} dy = u1{0<s<t}, z → ∞. (56)

This suggests that the limit process is given by∫ ∞

−∞

∫ ∞

0

∫ ∞

0

u1{0<s<t} r
(
N(ds, du, dr) − ds u−1−γ du FR(dr)

)
d= σγ

∫ t

0

∫ ∞

0

r Mγ(ds, dr)

d= E(Rγ)1/γσγ

∫ t

0

Mγ(ds) (57)

d= E(Rγ)1/γ Λγ(t), (58)
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where σγ is defined in (30) and Mγ(ds, dr) and Mγ(ds) are γ-stable random measures with
control measures dsFR(dr) and ds respectively and where Λγ(t) is a Lévy-stable process
with index γ. The limit process is well-defined for any distribution FR with E(Rγ) < ∞,
in particular if we keep our assumption on R being regularly varying with a tail of index
δ, such that γ < δ ≤ 2.

In order to establish the convergence, we begin as in (50), with the representation

lnE exp
{

i

n∑
j=1

θj(W ∗
λ (tj) − λνE(R)tj)

}

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

∂

∂u
h(s − u, u, r)λdsP (U > u)du F (dr).

Applying the scaling parameters a and b it follows that

lnE exp
{

i

n∑
j=1

θj(W ∗
λ (atj) − λνE(R)atj)/b

}

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

i
(

exp
{

i

n∑
j=1

θjKatj
(s − u, u)r/b

}
− 1

)

×1
b

n∑
k=1

θk1{0<s<atk}r λdsP (U > u)du F (dr)

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

i
(

exp
{

i
n∑

j=1

θjKztj
(zs − u, u)r

}
− 1

)

×
n∑

k=1

θk1{0<s<tk}r ds bγP (U > bu)du F (dr),

where z = a/b → ∞ and we have used the normalization bγ = λa valid under SCR. Now

Kzt(zs − u, u) → u1{0<s<t}, z → ∞
and

bγP (U > bu) → 1
γuγ

, b → ∞.

This shows that the above integrand with respect to ds du FR(dr),

fλ(s, u, r) = i
(

exp
{

i

n∑
j=1

θjKztj
(zs − u, u)r

}
− 1

) n∑
k=1

θk1{0<s<tk}r bγP (U > bu),

has the pointwise limit

f(s, u, r) = i
(

exp
{

i
n∑

j=1

θj1{0<s<tj} ur
}
− 1

) n∑
k=1

θk1{0<s<tk}r γ−1u−γ
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as λ and hence z and b tend to infinity. Since the logarithmic characteristic function of
the limit process in Theorem 3 i) is given by∫ ∞

−∞

∫ ∞

0

∫ ∞

0

f(s, u, r) ds du FR(dr),

by Lemma 3, it remains to show that |fλ(s, u, r)| is dominated by an integrable function.
Since bγP (U > b) → 1/γ, b → ∞, it follows from the Potter bound as in (51) that

for any ε > 0 there is a number b0, such that

bγP (U > ub) ≤ 2(1/γ + ε)u−γ max(u−ε, uε) b ≥ b0, ub ≥ b0.

There is no restriction to assume t1 > 0 and that λ and thus b are so large that b0/b ≤ t1.
The task of estimating |fλ(s, u, r)| will be split accordingly in the three cases 0 < u < b0/b,
b0/b ≤ u < t1 and t1 ≤ u < ∞, where Potter’s bound is applicable in the two latter but
not in the first interval.

As in (52), for any 0 < κ < 1,∣∣∣ exp
{

i

n∑
j=1

θjKztj
(zs − u, u)r

}
− 1

∣∣∣ ≤ 2min
( n∑

j=1

|θj |κuκrκ, 1
)
.

This shows

|fλ(s, u, r)| 1{b0/b≤u} ≤ f1(s, u, r)

where

f1(s, u, r) = 4(1/γ + ε)
n∑

k=1

|θk|1{0<s<tk} r min
( n∑

j=1

|θj |κuκrκ, 1
)
u−γ max(u−ε, uε).

This upper bound is integrable, since∫ ∞

−∞

∫ ∞

0

∫ ∞

0

f1(s, u, r) ds du FR(dr)

≤ 4(1/γ + ε)
n∑

k=1

|θk|tk
(
ER1+κ

∫ t1

0

u−γ+κ max(u−ε, uε) du

+E(R)
∫ ∞

t1

u−γ max(u−ε, uε) du
)

< ∞,

if we choose γ + ε < 1 + κ < δ and 1 + ε < γ.
It remains to find a dominating function for small u, that is 0 < u < b0/b. Again by

(52), for 0 < κ < 1,

|fλ(s, u, r)| ≤
n∑

j=1

|θj |κ
n∑

k=1

θk1{0<s<tk}r
1+κ uκ bγP (U > bu).

Moreover, by Markov’s inequality

uκ bγP (U > bu) ≤ u1+κ−γ(b0/b)γ−1bγ 1
bu

E(U)

= νbγ−1
0 uκ−γ .
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With the choice γ < 1 + κ < δ we obtain the integrable upper bound

|fλ(s, u, r)|1{0<u<b0/b} ≤ νb1−κ
0

n∑
j=1

|θj |κ
n∑

k=1

θk1{0<s<tk}r
1+κ uκ−γ 1{0<u≤t1}.

3.4.2. The compound Poisson workload model. For the compound Poisson model (11)
one has

1
b

∫ ∞

−∞

∫ ∞

0

∫
D

ξ(Kat(s, u)) Ñ](ds, du, dξ)

=
∫ ∞

−∞

∫ ∞

0

∫
D

1
b
ξ(bK(a/b)t((a/b)s, u)) Ñ](a ds, b du, dξ),

where Ñ] is defined in (14). Its compensator n] in (10) is like the compensator n in (1)
but with FR(dr) replaced by µ(dξ). Hence as a, b → ∞, we have as in (56)

n](a ds, b du, dξ) ∼ ds u−1−γdu µ(dξ)

and, again observing that z = a/b → ∞,∫
D

1
b
ξ(bK(a/b)t((a/b)s, u))µ(dξ)

= E(R)Kzt(zs, u)
∼ E(R)u 1{0<s<t},

by (12) and (56). The limit process is therefore

E(R)
∫ ∞

−∞

∫ ∞

0

u1{0<s<t} (N(ds, du) − ds u−(1+γ) du) d= E(R)σγ

∫ t

0

Mγ(ds)

d= E(R) Λγ(t),

the formal verification of which rests again on studying the scaled characteristic function,
this time using Lemma 4. The processes Mγ and Λγ are as in (57) and (58).

3.5. Proof of Theorem 4

3.5.1. Finite variance durations and rewards, γ = δ = 2. Here, E(U2) < ∞ and E(R2) <
∞. To avoid scaling U and R, we use representation (25), i.e.

1
b
(W ∗

λ (at) − λatνE(R)) =
1
b

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kat(as, u)rÑ(a ds, du, dr)

where

EN(ads, du, dr) = λadsFU (du)FR(dr)
= b2 dsFU (du)FR(dr).

By (17),

Kat(as, u) =
∫ u

0

1{0<y+as<at} dy → u1{0<s<t} as a → ∞.
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Hence by Lemma 3, as b → ∞,

lnE exp
{

i

n∑
j=1

θj(W ∗
λ (atj) − λνE(R)atj)/b

}

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

h(as, u, r/b)EN(ads, du, dr)

∼ −1
2

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

(
b−1

n∑
j=1

θjKatj
(as, u)r

)2

b2 dsFU (du)FR(dr)

∼ −1
2

∫ ∞

−∞

∫ ∞

0

FU (du)
( n∑

j=1

θj1{0<s<tj}u
)2

ds

∫ ∞

0

r2FR(dr)

= −1
2

∫ ∞

−∞

( n∑
j=1

θj1{0<s<tj}
)2

dsE(U2)E(R2),

so the limit is

E(U2)1/2 E(R2)1/2 B(t)

where B(t) is Brownian motion.
When we consider instead W],λ and apply Lemma 4, then the resulting expression

is slightly different:

lnE exp
{
i

n∑
j=1

θj(W ∗
],λ(atj) − λνE(R)atj)/b

}

∼ −1
2
(ER)2

∫ ∞

−∞

∫ ∞

0

(
b−1

n∑
j=1

θjKatj
(as, u)

)2

b2 dsFU (du)

∼ −1
2

∫ ∞

−∞

( n∑
j=1

θj1{0<s<tj}
)2

dsE(U2) (ER)2,

which corresponds to the limit process E(U2)1/2 E(R)B(t).

3.5.2. Continuous model, rewards have heavier tails than those of durations, 1 < δ <
γ ≤ 2. Take 1 < δ < 2, and assume either δ < γ ≤ 2 or that we have an arbitrary
distribution FU with E(U δ) < ∞. Recall that

b = (λa)1/δ.
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Using (17) and (42),

1
b

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Kat(s, u)r Ñ(ds, du, dr)

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

(r/b)
∫ u

0

1{0<y+s<at} dy Ñ(ds, du, dr)

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

∫ u

0

1{0<y/a+s<t} dy r Ñ(a ds, du, b dr)

∼
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

1{0<s<t} ur(N(ds, du, dr) − dsFU (du) r−1−δ dr)

d= σδ

∫ ∞

−∞

∫ ∞

0

1{0<s<t} uMδ(ds, du)

d= E(U δ)1/δ Λδ(t),

where Mδ(ds, du) is δ-stable with control measure m(ds, du) = dsFU (du) and Λδ(t) is a
Lévy stable process with index γ.

4. Weak convergence

This section is devoted to extending our previous results on convergence of the finite-
dimensional distributions to weak convergence in function space.

Theorem 5. For the continuous flow model, which has continuous trajectories, the con-
vergence holds in the sense of weak convergence of stochastic processes in the space of
continuous functions.

4.1. Proof of tightness for the continuous flow model

To prove weak convergence in the continuous case, we are going to establish the following
tightness criterion. For some α > 0 (in our case 1 < α ≤ 2) and β > 1,

E
∣∣∣1
b
(W ∗

λ (at1) − λνE(R)at1) − 1
b
(W ∗

λ (at2) − λνE(R)at2)
∣∣∣α ≤ const |t2 − t1|β ,

uniformly in λ, a, b. Clearly, because of stationarity of the increments, it suffices to show
for any fixed t > 0 the uniform bound

E
∣∣∣1
b
(W ∗

λ (at) − λνE(R)at)
∣∣∣α ≤ const tβ . (59)

Lemma 5. For the continuous flow model (2) and for any 1 < α ≤ 2, we have the estimate

E|W ∗
λ (t) − λνE(R)t|α ≤ 2E(Rα)

∫ ∞

−∞

∫ ∞

0

Kt(s, u)α λdsFU (du).
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Proof. Suppose first that E(R2) < ∞. Then we can take α = 2. It is readily checked that
in this case we have the equality

E(W ∗
λ (t) − λνE(R)t))2 = E(R2)

∫ ∞

−∞

∫ ∞

0

Kt(s, u)2 λdsFU (du).

For 1 < α < 2 we will use the estimate

E|X|α ≤ A(α)
∫ ∞

0

(1 − |ΦX(θ)|2)θ−α−1 dθ, (60)

where

A(α) =
(∫ ∞

0

(1 − cos(x))x−α−1 dx
)−1

< ∞ (61)

and ΦX(θ) = E(eiθX) is the characteristic function of the random variable X. This
technique goes back to von Bahr and Esseen (1965), and is used in Gaigalas (2004) in a
similar context as here. With X = W ∗

λ (t) − λνE(R)t we have

ΦX(θ) = exp
{∫ ∞

−∞

∫ ∞

0

∫ ∞

0

(eiθKt(s,u)r − 1 − iθKt(s, u)r)n(ds, du, dr)
}

and

1 − |ΦX(θ)|2 = 1 − exp
{
− 2

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

(1 − cos(θKt(s, u)r))n(ds, du, dr)
}

(62)

≤ 2
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

(1 − cos(θKt(s, u)r))n(ds, du, dr).

Since this last relation implies∫ ∞

0

(1 − |ΦX(θ)|2)θ−α−1 dθ

≤ 2
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

E(1 − cos(θKt(s, u)R))θ−α−1 dθ λdsFU (du)

= 2E(Rα)
∫ ∞

−∞

∫ ∞

0

Kt(s, u)α λdsFU (du)/A(α),

we obtain the estimate stated in the lemma by using (60). ¤

We are now prepared to prove tightness under the scaling of intermediate connection
rates. Because of the assumption γ < δ we can apply Lemma 5 with α such that γ < α < δ.
If δ = 2 we may even take α = 2. In all cases E(Rα) < ∞ and, using (28) and an
integration by parts,

E
∣∣∣W ∗

λ (at) − λνE(R)at

a

∣∣∣α ≤ 2E(Rα)
∫ ∞

−∞

∫ ∞

0

Kt(s, u)α λadsFU (adu)

= 2E(Rα)
∫ ∞

−∞

∫ ∞

0

αKt(s, u)α−11{0<s+u<t} λadsP (U > au) du.
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By using (16) and applying the Potter bound and the fact that λ/aγ−1 → cγ−1 ∈ (0,∞),
it follows that the last double integral is bounded by

const
∫ ∞

−∞

∫ ∞

0

α(t ∧ u)α−1 1{0<s+u<t} max(u−γ−ε, u−γ+ε) dsdu < ∞,

where the integral is finite since we can take ε > 0 such that α − ε < γ < α. Hence the
dominated convergence theorem applies, and we have

E
∣∣∣W ∗

λ (at) − λνE(R)at

a

∣∣∣α ≤ 3 cγ−1 E(Rα)
∫ ∞

−∞

∫ ∞

0

Kt(s, u)α ds u−γ−1du,

say, for sufficiently large λ and a. Using once again (16) and (45),∫ ∞

−∞

∫ ∞

0

Kt(s, u)α ds u−γ−1du ≤
∫ ∞

0

(u ∧ t)α−1u−γt du

=
α − 1

(α − γ)(γ − 1)
t1+α−γ . (63)

Thus we have found α and β = 1 + α − γ > 1, such that (59) holds uniformly in λ and
a. This completes the proof of weak convergence for the intermediate Telecom process in
Theorem 1 i).

The proof of tightness for the case of fast connection rate scaling and finite variance
rewards, that is Theorem 2 i) where the fractional Brownian motion arises in the limit,
is very similar to that of the preceding case. When we apply (28) and use the parameters
γ < α = δ = 2 and b2 = λa3−γ under the scaling FCR, then Lemma 5 yields the estimate

E
[(W ∗

λ (at) − λνE(R)at

b

)2]
≤ 2E(R2)

1
a3−γ

∫ ∞

−∞

∫ ∞

0

Kat(s, u)2 dsFU (du)

= 2E(R2)
∫ ∞

−∞

∫ ∞

0

Kt(s, u)2 ds aγFU (adu).

The same arguments as above lead to the uniform bound const t3−γ , which verifies the
tightness criterion (59) with α = 2 and β = 3 − γ > 1.

The final case for the continuous flow model is tight convergence to the Telecom
process in Theorem 2 ii). In this case we will need the following version of the previous
Lemma 5. This is simply the inequality (60), expressed in terms of (62).

Lemma 6. For the continuous flow model (2) and for any 1 < α < 2, we have the estimate

E|W ∗
λ (t) − λνE(R)t|α ≤ A(α)

×
∫ ∞

0

(
1 − exp

{
− 2

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

(1 − cos(θKt(s, u)r))n(ds, du, dr)
})

θ−α−1 dθ,

with A(α) defined in (61).

For any γ < α < δ, it follows from the lemma that

E
∣∣∣W ∗

λ (at) − λνE(R)at

b

∣∣∣α ≤ A(α)
∫ ∞

0

(1 − |Φλ,a,b(θ)|2) θ−α−1 dθ,
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where

|Φλ,a,b(θ)|2 = exp
{
− 2

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

(1 − cos(θKt(s, u)r))n(ads, adu, (b/a)dr)
}

∼ exp
{
− 2

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

(1 − cos(θKt(s, u)r)) ds u−(1+γ)du r−(1+δ)dr
}

= exp{−2θδ Jt(γ, δ)},
where

Jt(γ, δ) = A(δ)−1

∫ ∞

−∞

∫ ∞

0

Kt(s, u)δ ds u−(1+γ)du.

By the method based on Potter bounds, used repeatedly above, it follows that we can
find a constant Cα,γ,δ (changing each time it occurs below), such that the inequality

E
∣∣∣W ∗

λ (at) − λνE(R)at

b

∣∣∣α ≤ Cα,γ,δ

∫ ∞

0

(1 − exp{−2Jt(γ, δ)θδ}) θ−α−1 dθ

holds uniformly in λ, a and b. Since, for α < δ, the integral
∫ ∞
0

(1 − e−2θδ

)θ−1−α dθ is
finite, and since it was shown in (63) that Jt(γ, δ) ≤ const t1+δ−γ , this yields the final
estimate

E
∣∣∣W ∗

λ (at) − λνE(R)at

b

∣∣∣α ≤ Cα,γ,δ Jt(γ, δ)α/δ ≤ Cα,γ,δ t(1+δ−γ)α/δ.

Now, 1 < γ < α < δ implies that (1+ δ− γ)α/δ > 1, and hence the growth criterion (59)
is fulfilled. This ends the proof of weak convergence of the scaled infinite Poisson process
towards the Telecom process in Theorem 2 ii).
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monizable fractional Lévy motions. Bernoulli 8, 97-115.
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