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Abstract 

 
We present an alternative definition of contagion between financial markets, which is based on a measure of 

local correlation. We say that there is contagion from market X to market Y if there is more dependence 

between X and Y when X is doing badly than when X exhibits typical performance, that is, if there is more 

dependence at the loss tail distribution of X than at its center. The dependence is measured by the local 

correlation between X and Y. This yields a test for contagion, which does not require the specification of crisis 

and normal periods. As such, it avoids difficulties associated with testing for correlation breakdown, such as 

hand picking subsets of the data, and it provides a better understanding of the degree of dependence between 

financial markets. 
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1. INTRODUCTION 

One commonly believes that international financial markets are more dependent during a crisis than they 

are during calmer periods. This extra dependence during times of crisis is often referred to as contagion between 

markets. If present, it may mitigate the benefits of diversification precisely when those benefits are needed most 

and have serious consequences for investors. Thus, gauging dependence between international financial markets 

is of great interest not only to financial theorists but to practitioners as well. 

Proper diversification across financial markets requires an understanding of the dependence between them. 

This dependence is typically quantified through the correlation coefficient. Using correlation alone to describe 

dependence is problematic for asset allocation because if forces the investor to suppose that returns are normally 

distributed
1
, involving only variances and covariances, or to use a quadratic utility function. If the investor is 

primarily concerned with catastrophic losses either one of these choices may be unattractive. This is because 

normally distributed returns do not assign sufficient probability mass to large losses and a quadratic utility 

measures risk through variance and therefore without regard to the tails of the distribution. A safety-first risk 

averse investor
2
 concerned primarily with guarding against large losses would not use linear models and 

correlation as a measure of dependence. He or she would be concerned about a greater dependence in the tails 

rather than in the center of the multivariate distribution that governs market returns. This increased dependence 

can be due to (or defined as) contagion, that is that large losses in one market contribute to large losses in other 

markets. 

                                                           
* Corresponding author: Email: murad@bu.edu We would like to thank Ashis Gangopadhyay, Vladas Pipiras and Stilian 

Stoev for many valuable comments which led to an improved exposition of this material. This research was partially 

supported by the NSF Grants ANI-9805623 and DMS-0102410 at Boston University. 
1 More generally, elliptically distributed. 
2 Such an investor acts so as to minimize the probability of catastrophic losses (see Roy 1952; Levy and Sarnat, 1972; Arzac 

and Bawa, 1977; and Jansen, Koedijk and de Vries, 2000). 
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Figure 1. The conditional correlation of a standard bivariate normal distribution with unconditional 

correlation ρρρρ = 0.3 

Notes: The figure illustrates the sensitivity of conditional correlation to the choice of conditioning event. We display tail 

conditioning events A = {|X| > FX
�1 (p)} and B = {X > FX

�1 (p)}. The situation described in the text, where volatility is 

large, corresponds to the two-sided case where one conditions on event A. In the one sided case, where one conditions on B, 

the conditional mean increases and the conditional variance decreases, leading to a decrease in ρ B. 

 

There is no universally accepted definition of contagion in the financial literature. Typical definitions 

involve an increase in the cross-market linkages after a market shock. See Pericoli and Sbracia (2001) or Forbes 

and Rigobon (2002), for example. The linkage between markets is usually measured by a conditional correlation 

coefficient, and the conditioning event involves a short post-shock or crisis time period. Contagion is said to 

have occurred if there is a significant increase in the correlation coefficient during the crisis period. This 

phenomenon is also referred to as correlation breakdown. Statistically, correlation breakdown corresponds to a 

change in structure of the underlying probability distribution governing the behavior of the return series. Most 

tests for contagion attempt to test for such a change in structure, but these tests may be problematic. One 

difficulty was pointed out by Boyer, Gibson and Loretan (1999) who showed that the choice of conditioning 

event may lead to spurious conclusions. The conditioning event is usually taken to be a short time period 

following a crisis event and may lead one to believe that there is a change of structure, that is, an increase in the 

unconditional correlation during the crisis period, even when there is none. For example, suppose  

(X, Y) � � (µ X , µ Y , σ2
X , σ2

Y , ρ) 

and suppose A is any event such that 0 < PX (A) < 1. A simple calculation shows that 
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This implies that | ρA | > | ρ | whenever Var(X | X ∈ A) > Var(X). These variances are estimated using their 

corresponding sample variances. If the event is chosen by looking where the data are more variable, one 

automatically ensures that Var(X | X ∈�A) > Var(X) and hence  | ρA | > | ρ | even though there has been no 

change of structure. This is called heteroscedasticity bias. Such a bias exists in a typical test for contagion, 

where one identifies a crisis event in a given market and defines a short crisis period (often by looking at the 

data). This crisis period determines the conditioning event A in equation (1). In such a test, the (squared) 

volatility, Var(X | X ∈ A), of market X during the short crisis period is typically higher than the normal 

(unconditional) volatility Var(X). (These volatilities are estimated by the sample variance of the (daily) returns 

evaluated on the time interval under consideration.) Therefore one might mistakenly believe that a change of 

structure of the distribution of (X, Y) has taken place when in fact this is merely an artifact of the choice of 

conditioning event. 

Figure 1 illustrates how the choice of conditioning event affects the conditional correlation. It traces out the 

conditional correlation for a pair of standard bivariate normal random variables X and Y with unconditional 

correlation ρ = 0.3. The conditioning events are chosen to be A = {|X| > FX
�1 (p)} and B = {X > FX

�1 (p)}. In a 
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financial context the event A would correspond to conditioning on high volatility periods, typical of the 

conditioning event of standard contagion tests. Event B corresponds to conditioning on large losses. Under the 

assumption of normally distributed returns, large losses are asymptotically independent, i.e., ρ
�B � 0 as p � 1, 

while the conditional correlation ρ
�A increases if one chooses the conditioning event as A, which is associated 

with an increase in volatility. Neither of the two graphs in Figure 1 provides evidence of a change of structure of 

the underlying distribution since, by construction, the unconditional distribution has constant correlation of ρ = 

0.3. 

Forbes and Rigobon (2002) also recognize the difficulty in testing for contagion in this way. They propose a 

solution in which they test a bias corrected version of the correlation coefficient. Their corrected version, which 

is supposed to account for the relative increase in volatility of market X during the crisis period relative to the 

normal (unconditional) volatility, is given by 

 ρ~  = ρ
�A [1 + δ (1 - ρ 2A

 
 )]

 �1�2 
(2) 

where δ = Var(X | X ∈ A) � Var(X) � 1. The correction factor δ represents the relative increase in the volatility 

of market X during the crisis period relative to normal conditions. Equation (2) is found by simply substituting δ 

into equation (1), solving for the unconditional correlation ρ, and denoting it ρ~ . 

This corrected version of the correlation coefficient, called a heteroscedasticity corrected correlation, is 

viewed as the unconditional correlation of markets X and Y during the crisis period. The authors then test for 

contagion as follows: 

 H0:  ρ~   �  ρ  (no contagion) 

 H1:  ρ~   >  ρ  (contagion) 

Using this test, contagion is rarely observed during the 1987 US Stock Market Crash, the 1994 Mexican Peso 

Crisis and the 1997 East Asian Crisis. 

The difficulty with the Forbes and Rigobon procedure is that the power of the test
3
 is very low due to the 

short crisis period. It is very difficult to detect a change of structure (contagion) even when present. To see why 

this is so, suppose ρ changes from ρ
�1 = ρ

�
 to ρ

�2 = ρ~  > ρ
�
, that is, there is indeed contagion. Estimate ρ

�i, by the 

sample correlation ri, i = 1, 2; but note that ρ
�1 is estimated using n1 large, and ρ

�2 is estimated using n2 small. 

Forbes and Rigobon use a stable period of about n1 � 466 days and a crisis period of about n2 � 35 days. The 

probability distribution of the sample correlation estimator ri is difficult to obtain so Dungey and Zhumabekova 

(2001) propose to apply a Fisher transformation (see Kendall, Stuart and Ord, 1987, Section 16.32) in order to 

make the distribution of ri closer to normal. The distribution of the estimator ρ̂ i = (1/2) log [(1 + ri ) � (1 - ri )] 

of  ρ i  is  approximately  normally  distributed
4
  with  mean  iρ  = (1/2) log [(1 + ρ

�i ) � (1 - ρ
�i )]  and variance 

s
2

i = 1 � (ni - 3). Assuming independence, the corresponding normal test is   

                                                   Z = ( ρ̂ 1 - ρ̂ 2 ) � ( s
2

2 + s
2

1 )
 1�2 (3) 

Notice the dependence of the test on the sample size n2 of the crisis period. The small value of n2 yields a large 

s
2

2 and makes it very difficult for the test to detect a difference in the estimated correlations. Dungey and 

Zhumabekova (2001) show through simulation that the test is unable to detect a change in structure of the 

underlying distribution due to the small sample size of the crisis period. They sample from two populations with 

statistically significantly different correlations in quantities similar to those used in the Forbes and Rigobon tests 

and find that the test in unable to reject the (incorrect) null hypothesis of equal correlations. When applying a 

longer sample period for the crisis to the Forbes and Rigobon data, which yields a smaller volatility for the 

market during the crisis, Dungey and Zhumabekova find more evidence of contagion. The authors conclude that 

correlation tests of this sort are an unattractive approach to testing for contagion. 

We propose a different approach. At a more intuitive level, contagion may be defined as an increase in the 

probability of a crisis in one market, given a crisis in another market.
5
 This corresponds to some sort of 

                                                           
3
 The power of a test is its ability to reject the null hypothesis (no contagion) when it if false. It is the probability of not 

making a type two error. 
4
 This assumes ρ

�i is small and ni moderately large, say ni > 50. These assumptions may not always be true in practice. 
5
 This is the first of five representative definitions of contagion in the financial literature from Pericoli and Sbracia (2001). 
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increased dependence in the loss tails of the joint probability distribution of returns of financial markets 

compared to the center of the distribution. Such increased dependence may always have been present, but 

because tail events are by definition rare, they have often been ignored and only the center of the distribution 

has been modeled. 

Only recently has attention been paid to the modeling of tail of the joint distribution of financial markets. 

Two recent papers in this area are Hartmann, Straetmans and de Vries (2001) and Longin and Solnik (2001). As 

we do here, the authors concentrate on measures of dependence relevant to specific parts of the underlying 

probability distribution. Tools from Extreme Value Theory are used to quantify dependence in the tails of the 

distribution. In each paper, the distribution of (X, Y) is assumed to be in the domain of attraction of a 

multivariate extreme value distribution. Hartmann et al. (2001) use a nonparametric measure called the stable 

tail dependence function and tools from univariate extreme value theory to calculate the expected number of 

crashes given that at least one crash has occurred. This statistic is calculated on equity and government bond 

returns for the G-5 markets to show evidence of cross-market contagion. Longin and Solnik (2001) use a 

parametric model from extreme value theory to describe the joint tail of the probability distribution. The 

dependence parameter of their parametric model is then related to the correlation of the model transformed 

marginals. The model is applied to monthly returns of the G-5 markets and leads the authors to reject the 

modeling of the loss tail by the multivariate normal distribution. 

In this paper, we consider a definition of contagion based on a local correlation coefficient and provide a 

test for contagion. The local correlation coefficient has the look and feel of the traditional correlation coefficient 

but is a nonparametric measure designed to handle nonlinear forms of dependence. The measure of local 

correlation does not require the specification of a crisis and non-crisis period or the use of a heteroscedasticity 

correction as in (2). It was first proposed by Bjerve and Doksum (1993) as a means of characterizing the 

strength of association between a response variable Y and covariate X over a range of values of the covariate. 

The measure of local correlation has many appealing properties and we propose to use it to test for contagion. 

We recognize that this simple definition of contagion may leave many unsettled. After all, we avoid all 

discussion of transmission channels, speculative attacks, etc. Our goal is to find if contagion between markets is 

present using only the data. We do not introduce bias by choosing specific periods of time or subsets where 

volatility is large. We also show that it may not be possible to describe the dependence between financial 

markets using a single measure, correlation, based on what may be an over-simplified linear model. 

This paper proceeds as follows. In Section 2 we motivate and define the measure of local correlation. We 

illustrate with an example its ability to characterize different degrees of association and we list several of its 

properties. Contagion, based on local correlation, is defined in Section 3 and a test for contagion is introduced. 

The estimation procedure is described in Bradley and Taqqu (2005b) and its application to financial markets can 

be found in Bradley and Taqqu (2005a). We use, in that article, twelve international equity market return series 

from Datastream and test for contagion between the US and a given international market. In addition, we show 

how local correlation and the correlation curve may be used to quantify the dependence between bond and 

equity markets. An understanding of this dependence is crucial to an investor deciding on how best to allocate 

his or her assets across the bond and equity markets. We make the software written in support of this work 

freely available and describe its use in the appendix of Bradley and Taqqu (2005a). 

 

2. LOCAL CORRELATION 

Correlation is an often misunderstood and therefore misused measure of dependence. Although ubiquitous 

in the finance literature, correlation is but one of many different possible measures of dependence. The two 

recent books of Joe (1997) and Drouet-Mari and Kotz (2001) detail many others. Correlation is a measure of 

linear dependence, that is, two random variables X and Y with finite second moment are perfectly correlated if 

and only if Y = α + βX almost surely. The correlation between two random variables X and Y determines their 

dependence structure when the distribution of (X, Y) is Gaussian, or more generally, elliptical.
6
 See Embrechts 

et al. (2002) and Bradley and Taqqu (2003) for details. In cases where the distribution of (X, Y) is non-elliptical, 

correlation may be a misleading measure of dependence. This is why we introduce a test for contagion based not 

on correlation, but on local correlation. This will allow us to avoid many of the difficulties associated with the 

traditional approaches to gauging dependence between markets which are based on correlation. 

The concept of local correlation was proposed in by Bjerve and Doksum (1993) and Doksum et al. (1994). 

Their goal was to extend the connection between regression slopes, strength of relationships and variance 

                                                           
6
 Elliptical distributions may be thought of as distributions whose constant density contours are ellipsoids in R n. 
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explained by regression to nonlinear models. Their measure of strength of relationship, namely local correlation, 

is appropriate outside the world of normal distributions. We shall now define it. Suppose first that  

 (X, Y) � � (µ X , µ Y , σ2
X , σ2

Y , ρ) 

As is well known, 

 Y | X = x  � � { µ  Y  +  ρ (σ Y � σ X ) (x - µ  X) ;  σ2
Y (1 - ρ 2

 ) } (4) 

The linear regression model is 

 Y = α  +  βX  +  σ ε (5) 

where ε � � (0, 1) is independent of X. In this case 

 m(x) def  � (Y | X = x) = α  + βX 

with regression slope m� (x) = β. It also follows that the regression slope β is ρ σ Y � σ X and therefore 

 ρ = β ( σ X � σ Y ) (6) 

From linear regression theory, we may also write the variance σ 2
Y of Y as a sum of the variance explained by 

the regression, namely β2
 σ 2

X, and the residual (unexplained) variance σ 2
, that is, 

 σ2
Y = β2

 σ 2
X  + σ 2

 (7) 

and hence 

 ρ = σ X β  �  (σ 2
X β2

   + σ 2
 )

 1�2 (8) 

Relation (8) shows that the correlation ρ is determined by σ X, the regression slope β, and the regression residual 

variance σ 2
. Assuming σ X and the residual variance σ 2

 constant, the correlation is an increasing function of the 

regression slope β. Assuming σ X and the regression slope β constant, the correlation is a decreasing function of 

the residual variance σ 2
. 

Suppose that X and Y represent the returns in two different markets. Traditional tests for contagion assume 

σ 2
 constant and test for a statistically significant change in the regression slope β during crisis and normal 

periods. We will allow here the regression slope β and residual variance σ 2
 to vary as a function of the covariate 

X = x. This motivates the following definition of local correlation. 

Definition 2.1: Let X and Y be two random variables with finite variance. The local correlation between Y 

and X at X = x is given by 

 ρ 
(x) = σ X β(x) � [ σ2

X β2
(x)   + σ 2

(x) ]
 1�2 (9) 

where σ X denotes the standard deviation of X, β(x) = m� (x) is the slope of the regression function m(x) = � (Y | 

X = x) and σ 2(x) = Var(Y | X = x) is the nonparametric residual variance. 

Note that this definition assumes that the distribution of the covariate X is continuous so that the slope β(x) 

= m� (x) can be defined. Whereas the correlation was appropriate for the case in (5), the local correlation 

provides a measure of dependence for the more general model 

 Y = m(X) + σ (X) ε (10) 

where ε is mean zero, unit variance and is independent of X. Thus X affects Y in two ways: through the mean 

level m(X) and through the standard deviation σ(X) associated with the noise ε. These may be different at 

different values of X = x. The local correlation ρ(x) depends not only on the slope β(x) = m� (x) but also on 

σ (X), and for a given value of the slope β(x), the larger σ (X), the smaller |ρ (x)|. 

The standard linear regression model (5) is, in fact, particularly restrictive because there are not many joint 

distributions consistent with it. That model implies a linear regression function � (Y | X = x) = α + βx and a 
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constant scedastic function Var(Y | X = x) = σ 2
. The bivariate normal distribution is one of the few joint 

distributions whose regression (conditional mean) and scedastic (conditional variance) functions satisfy these 

criteria. Not even the marginals of a bivariate Student's t distribution (which is an elliptical distribution) may be 

fit by this model.
7
 Therefore, the generality of (10) is better suited to modeling the dependence between markets 

outside the world of normality.  

 

 

Figure 2. The correlation curve ρρρρ(x), local mean m(x), slope ββββ(x), and residual standard deviation σσσσ(x) for 

the Twisted Pear Model 

Notes: The true values are given by the solid lines. The dashed lines are the estimated values using the local 

polynomial modelling technique described in Bradley and Taqqu (2005b) based on a sample of size N = 2000. 

The upper right graph includes equi-density contours of the model. 

 

Consider the following example from Doksum et al. (1994) known as the Twisted Pear Model. In equation 

(10), let ε � � (0; 1),  (X, Y) have the joint density f(x; y) = f(y | x)f(x) where f(x) is �(1.2; (1/3)
 2

) and f(y | x) 

is �(m(x); σ 2
(x)) with 

m(x) = (x/10) exp (5 � x � 2) and σ 2
(x) = ([1 + x � 2] � 3)

 2
 

Contours of the joint density are given in Figure 2. The figure clearly shows two elements of the 

dependence between X and Y at work. The first is the change in the conditional mean β(x) = m� (x) of Y as a 

function of the covariate X = x. The second is the variation about that mean, namely σ (x), which clearly shows 

the heteroscedastic nature of Y as a function of covariate X. In this example, the local slope β(x) is decreasing 

and the local residual variance σ 2
(x) is increasing. The local correlation measure captures both elements of the 

dependence, showing that the dependence starts out very strong for x near zero and decreases to zero as x 

approaches 2. It is simple to show that the local correlation satisfies many of the axioms that a global correlation 

measure is required to satisfy.  

                                                           
7
 The scedastic function for a bivariate Student's t υ distribution, υ > 2, is given by Var(Y | X = x) = (υσ 2 � υ � 1) {1 + (x � 

µ x )
2 � υσ 2

X } where σ 2 = σ 2
Y (1 � ρ 2 ), and so is a non-constant function of covariate x. (When υ ≤ 2, the variances of X 

and Y are infinite). The regression function, � (Y | X = x), is linear and exactly the same as in the case where (X, Y) are 

normal. See, for example, Spanos (1999, p. 344). 
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Here we list several properties satisfied by local correlation. See Bjerve and Doksum (1993) for a more 

complete list.  

 

Property 1:    -1 � ρ (x) � 1 

Property 2:    ρ (x) is invariant with respect to location and scale changes in X and Y. 

Property 3:    In the case of a true linear model, ρ (x) reduces to the standard correlation measure. 

Property 4:    ρ (x) = ρ for all bivariate normal distributions. 

Property 5:    X and Y independent implies ρ (x) = 0 for all x. 

Property 6:   If Y = m(X) is a non-constant function of X then σ (X) = 0 in (10) and one expects perfect 

dependence between X and Y. Indeed, one gets ρ (x) = ±1 for all x, where the sign of m� (x) determines the sign 

of ρ (x). In contrast, the linear correlation analog requires the function m to be linear in X in order to get ρ  = ±1. 

 

3. A DEFINITION OF CONTAGION BASED ON LOCAL CORRELATION 

Let X denote the return of market X and Y denote the return of market Y over some fixed time horizon. 

Figure 3 illustrates the cumulative distribution function FX (x) = P [X ≤ x} of X. Since the local correlation ρ (x) 

measures the strength of the dependence between X and Y at different points of the distribution of X, we us it to 

define (spatial) contagion. 

Definition 3.1: We say that there is contagion from market X to market Y if 

 ρ (xL) > ρ (xM) (11) 

where xM = FX
�1

(0.5) is the median of the distribution of X and xL = FX
�1

(0.025) is a low quantile of the 

distribution. 

 

Contagion is therefore present when there is more dependence in the loss tail of the distribution, as 

measured by local correlation, than there is in the center of the distribution. Notice that our definition does not 

require any definition of crisis and normal periods and is not temporal in nature.  

Nevertheless, the notion of crisis lurks in the background because large negative losses typically occur in 

crisis situations. We are therefore comparing what happens in crisis situations with what happens in tranquil 

periods. The estimation procedure will involve interpolation and hence the behavior around xM and xL. 

 

Figure 3: Distribution of a random variable X: [median xM and low (2.5%) quantile xL = FX
�1

(0.025)] 

Note: xM and xL appear in the definition of contagion. 
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The choice of the 2.5% quantile can be modified in accordance with one's notions of crisis. In some cases 

the 2.5% quantile can be reached when the data is highly concentrated around the median. In this case, while 

contagion may have been found it may be irrelevant. This is why one must examine the data and see whether the 

losses incurred at this quantile are significant enough for one to care. Due to the heavy-tailed nature of 

international equity returns, the losses at this quantile are likely to be significant. 

We can now define a test for contagion which checks for more dependence between X and Y when market 

X performs poorly than when market X has typical performance. Formally, we test 

 H0:  ρ (xL)  �  ρ (xM) (no contagion) 

 H1:  ρ (xL)  >  ρ (xM)  (contagion) 

where xL and xM are as above. 

The statistical implementation of this test is described on Bradley and Taqqu (2005b) and its application to 

financial markets can be found in Bradley and Taqqu (2005a). Using this test, we find evidence of contagion 

from the US equity markets to equity markets of several developed countries. We also find evidence of flight to 

quality from the US equity market to the US government bond market. 
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