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Abstract. We discuss a method by which the dynamics of a network of
neurons, coupled by mutual inhibition, can be reduced to a one-
dimensional map. This network consists of a pair of neurons, one of
which is an endogenous burster, and the other excitable but not
bursting in the absence of phasic input. The latter cell has more than
one slow process. The reduction uses the standard separation of
slow/fast processes; it also uses information about how the dynamics
on the slow manifold evolve after a "nite amount of slow time. From
this reduction we obtain a one-dimensional map dependent on the
parameters of the original biophysical equations. In some parameter
regimes, one can deduce that the original equations have solutions in
which the active phase of the originally excitable cell is constant from
burst to burst, while in other parameter regimes it is not. The existence
or absence of this kind of regulation corresponds to qualitatively
di!erent dynamics in the one-dimensional map. The computations
associated with the reduction and the analysis of the dynamics includes
the use of coordinates that parameterize by time along trajectories, and
&&singular PoincareH maps'' that combine information about #ows along
a slow manifold with information about jumps between branches of
the slow manifold.
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1. Introduction

Networks of voltage-gated conductance equations can be high dimen-
sional, and are often di$cult to analyze. One strategy for dealing with
this is to place heavy reliance on computer simulations. Another is to
invent simple caricatures that capture some of the behavior of the
original system. The "rst strategy can be used to display many interest-
ing phenomena, but is rarely appropriate for understanding why the
system behaves as it does. The second can yield many insights, but it is
often hard to relate those insights directly to the original system.

An intermediate strategy is to develop techniques to reduce the
original system to a much simpler system. By &&reduce'' we mean "nd
a simpler description, and give the conditions on the original system
under which the latter is guaranteed to behave like the simpler one.
Thus, the explicit reduction is the bridge connecting the analysis of the
simpler system to the behavior of the complicated one.

In this paper, we illustrate that strategy by analyzing a network of
two neurons, each described by voltage-gated conductance equations,
and connected by mutually inhibitory chemical synapses. The equa-
tions are "ve-dimensional, and we reduce them to a one-dimensional
map. In di!erent parameter ranges for the di!erential equations, the
resulting map is shown to have qualitatively di!erent solutions. Thus,
we can use the reduction to predict how changes of parameters for the
full equations change the behavior of the network.

The motivating example, discussed in Sect. 2, comes from a subnet-
work of the crustacean stomatogastric ganglia (STG) [13, 14]. One of
the model cells, labeled PD, is an autonomous oscillator; it represents
the PD-AB electrically coupled complex, which is the pacemaker
complex of the pyloric network. (The properties of the AB and PD cells
alone play no part in the analysis.)

In the absence of interaction, the other cell (LP) is excitable, but not
oscillatory. The oscillating cell is described by the Morris-Lecar equa-
tions [26], a simple set of voltage-gated conductance equations often
used to model the envelope of bursting neurons [29]. In this formula-
tion, spikes are ignored. The excitable cell has an extra current, a hy-
perpolarization-activated inward current (i

h
) [1, 10, 11, 17, 24]. The

behavior to be investigated is &&subharmonic coordination'': when the
excitable cell is hyperpolarized, it bursts once for every n'1 bursts of
the oscillator. This contrasts with behavior of many other oscillating
systems in which, as a parameter is changed, one sees n :m coordination
for all pairs of integers n and m [2, 6, 9]. As we will discuss in Sect. 5.2,
the n : 1 coordination is associated with a kind of timing regulation that
is not seen when there is n :m coordination.
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The equations used to describe the motivating network are singu-
larly perturbed (also known as &&fast-slow systems''), i.e. they have more
than one time scale. There are two fast variables (the voltages of the
two cells) and three slower ones. In Sect. 3.1, we review the basic
concepts of slow manifolds, manifolds of &&knees,'' singular PoincareH
maps and other mathematical ideas needed in the later analysis. These
ideas are relevant to the analysis of large classes of singularly perturbed
equations. In Sect. 3.2 we restrict to fast-slow cells coupled by models
of fast synapses, and describe further mathematical ideas, introduced in
[22], for analysis of such systems, including &&fast threshold modula-
tion.'' In Sects. 3.3 and 3.4, we introduce ideas needed to compute
derivatives of the singular PoincareH maps; these include coordinates
based on time di!erences, and the &&compression'' of this distance
across fast jumps.

Sections 4 and 5 discuss the reduction of the equations in Sect. 2,
and a simpler variation on them, to families of one-dimensional maps;
they also describe the behavior of periodic solutions to those maps.
Section 4 deals with simpler equations in which the extra (i

h
) current is

absent from the equations for the excitable cell; these equations are
four-dimensional. In this case, the slowest time scale is that of the
recovery variable of the excitable cell. We show that the equations can
be reduced to a one-dimensional map with a discontinuity. On each
branch the slope of the map is positive. In some simple cases, this is
shown to correspond to the excitable cell bursting on each cycle of the
oscillatory cell, or never bursting. In the more interesting cases, when
the recovery time of the excitatory cell is long enough compared to the
burst time of the oscillator, the reduction produces families of map-
pings that have been analyzed by Keener [16]. The latter analysis
shows that there is n :m coordination; indeed, as a parameter is
changed in such families, one generally gets the well-known &&devil's
staircase,'' in which some measure of the coordination pattern (such as
the ratio n/(n#m)) changes continuously with parameters, yet is con-
stant almost everywhere.

In the equations of Sect. 5, the slowest time scale is not the recovery
time of the excitable cell, which is now assumed to be in the same range
as the burst time of the oscillator. Instead, the slowest time scale is the
rise time of the i

h
current. The coordination patterns displayed by the

maps associated with the full equations are very di!erent in some
parameter ranges. Again each map has two branches, with a discon-
tinuity. In some parameter ranges (but not all), one of these branches
has a negative slope. As shown in LoFaro [23], such maps can have
periodic solutions corresponding to n : 1 coordination only, and do not
give rise to &&devil's staircase'' patterns as a parameter is changed. In
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Sects. 4 and 5, the reduction procedure is explicit, so it is possible to
compute from the equations the shape of the map, and hence the
possible periodic solutions to the original unreduced equations. We
note that both kinds of patterns have been seen in related simulations
done by Wang and Rinzel [34] and analysis done by Xie et al. [37].
Other related work includes [4, 9, 19, 20].

The equations of Sects. 2 and 5 are "ve-dimensional, with three
slow variables. The natural reduction using fast/slow analysis turns out
to be a two-dimensional map. To obtain a one-dimensional map from
this, we use further information on the slow time scales to obtain
a projection onto a submanifold of the domain of the PoincareH map.
The slow rise time of i

h
, plus the faster recovery time of the excitable

cell, forces the image of the natural two-dimensional PoincareH map to
lie close to a curve of &&pseudo-critical'' points. Still another time scale,
the reset time of i

h
when the voltage is high, determines the behavior of

the resulting one-dimensional map. By changing this time scale (but
still keeping it slow with respect to fast changes in voltage), it is
possible to get either n : 1 coordination or the full n :m coordination
patterns. We also show in Sect. 5 that when there is only n : 1 coordina-
tion, the slower cell has constant burst time each time it is active. By
contrast, when there is n :m coordination, the burst time can change
from one burst to another within the same solution.

The reduction from the two-dimensional map to the one-dimen-
sional map is similar in spirit to the usual fast-slow analysis. However,
it does not "t into the usual framework, partly because the variables
chosen for each branch of the projected manifold change from branch
to branch. Also, there need not be an order of magnitude di!erence
between the speed on the slower projected submanifold and the larger
submanifold.

Section 6 contains discussions of the computation and use of
singular PoincareH maps, and of related work. We also discuss the
current mathematics in the context of a more general question about
the functional consequences of di!erent kinds of dynamics.

2. Motivating example

The data motivating the analysis in Sect. 5 comes from a network of the
crustacean nervous system known as the stomatogastric ganglion [13,
14]. Data from two of the cells of this network are shown in Fig. 1 [21].
These two cells (PD and LP) have inhibitory synapses on one another.
In normal circumstances, the two cells burst in antiphase [8, 28, 30, 33,
34]. However, when the LP cell is given constant hyperpolarizing
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Fig. 1. A: (left) A schematic of the experimental set up. The PD and LP neurons
mutually inhibit each other; each neuron's membrane is being monitored intra-
cellularly (V electrodes), and current can be injected into the LP through a second
electrode (i electrode). (right) The activity of the two neurons with 0 current injected
into the LP neuron. The neurons exhibit 1 : 1 "ring. B: Negative current is injected into
the LP neuron until the "ring ratio is approximately 6 PD bursts per LP burst. C:
Negative current is injected into the LP neuron until the "ring ratio is approximately
12 PD bursts per LP burst.

current, the network behavior changes: the LP cell bursts once for
every n71 bursts of the oscillator. The integer n increases with the
amount of hyperpolarizing current up to a saturation value.

In a previous publication [21], we reported a simulation that
captures this behavior exhibiting only n : 1 relative coordination as the
hyperpolarization current is varied. These simulations were based on
unpublished data by Hooper [15]. Section 5 analyzes a family of
equations that includes those used in the simulation of [21]. In this
section, we present some of the simulations and a heuristic explanation
of how the equations produce subharmonics. However, the heuristic
discussion cannot explain why, in some parameter ranges, one gets
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Fig. 2. A: The Morris}Lecar equations in the oscillating regime. With the critical point
on the middle branch of the v-nullcline there exists an asymptotically stable limit cycle.
In the singular case (e;1) this limit cycle hugs the left and right branches of the
v-nullcline with &&jumps'' between these branches occurring at the local extrema. B: The
Morris}Lecar equations in the excitable regime. There is an asymptotically stable
critical point on the left branch of the v-nullcline. Solutions starting to the right of the
middle branch or below the minimum of the v-nullcline take an excursion around the
right branch before approaching the critical point.

only n : 1 solutions, while in others one gets the full devil's staircase of
all n :m modes of interaction. The analysis of Sect. 5 clari"es this by
showing that the di!erent parameter ranges lead to very di!erent
one-dimensional maps.

The PD cell is part of an oscillating pacemaker complex, and is
represented in the simulations by a two-dimensional relaxation oscil-
lator using the Morris-Lecar equations, which are often used to model
the envelope of bursting activity; the high frequency oscillations are
not included in this model. Fig. 2A gives a phase-plane portrait of these
equations. The LP cell does not burst in the absence of interaction with
other cells, and is modeled as an excitable cell. Its equations are again
the Morris}Lecar equations, this time chosen so that the cell is excit-
able rather than oscillatory (see Fig. 2B). In addition, it has an extra
ionic current, the hyperpolarization-activated current i

h
[1, 10, 11, 17,

24]. The form of the equations is given in Sect. 5 with details in the
Appendix.

The e!ect of inhibition on both the LP and PD model neurons is
the lowering of the v-nullcline which prevents the cell from "ring until
the conclusion of the burst of the opposite cell. In the relevant param-
eter regime, when the level of i

h
is small the LP cell cannot "re when

released from inhibition, but does "re at higher levels of i
h
. However,

while the LP is hyperpolarized the level of i
h
slowly increases. If there

exists a threshold such that at levels of i
h
past the threshold the LP "res

upon release from inhibition, then the LP may "re once after n bursts
of the PD.
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This does not guarantee, however, that there will be the same
number of PD bursts between LP bursts. To understand why this can
occur we must discuss the behavior of i

h
during LP depolarization. If

i
h

resets to some "xed value during an LP burst then the process
described above begins at approximately the same level of i

h
and hence

the same number of PD bursts is required for the level of i
h
to exceed

the threshold. On the other hand, if the level of i
h
decreases too slowly,

we will show that the number of PD bursts between LP bursts (and the
length of the LP burst) can be variable within a given trajectory. This
will be described in Sect. 5.

Simulations of this network show that the number of PD bursts
between LP bursts increases in steps of 1 as the amount of injected
hyperpolarizing current to the LP increases. The reduction to and
analysis of the one-dimensional maps show how changing this (or
other parameters) can lead to the &&period-adding'' phenomenon [21];
this is discussed in further detail in Sect. 6.

The results of Sect. 5 also suggest that in the parameter regime
where only stable n : 1 subharmonics occur there exists intervals of
bistability between n : 1 regimes and (n#1) : 1 regimes. This behavior
was observed in simulations of the model network in small intervals
near the transition between n : 1 and (n#1) : 1 parameter regimes [21].

3. Mathematical background

3.1. Singular PoincareH maps

We are concerned in this paper with systems of the form

e dx/dt"f (x, y), x3Rn

dy/dt"g (x, y), y3Rm
(1)

or, equivalently,

dx/dq"f (x, y)

dy/dq"e g(x, y)
(2)

where q"t/e. For (2) at e"0, there is a manifold of critical points
given by

f (x, y)"0. (3)

The set of points satisfying (3) is known as the slow manifold. A &&sub-
manifold of knees'' M

k
of (3) is a submanifold on which Lf/Lx has

a single zero eigenvalue, corresponding to a fold of (3) (see Fig. 3). With
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Fig. 3. An example of a slow manifold given by (3). In this example x3R and y3R2.
This manifold has exactly two knees; each is one-dimensional.

appropriate non-degeneracy hypotheses, this is a codimension one
submanifold of (3).

We shall be interested in singular periodic solutions to (1) or (2).
These are unions of solutions to the fast equations

dx/dq"f (x, y), y constant (4)

and the slow equations

dy/dt"g(x(y), y), x (y) satisfying (3). (5)

We shall assume that along the slow portions of the singular solution,
Lf/Lx has strictly negative eigenvalues, except where the trajectory hits
a manifold of knees. We assume that each slow piece hits such a sub-
manifold transversely. The intersection point is the transition point
between the slow segment and the next fast portion.

The fast trajectory joining a slow segment to the next slow segment
is a heteroclinic orbit of (4), joining a pair of points satisfying (3). We
assume further that for each transition point p on a manifold of knees
the qPR limit j (p) of the heteroclinic orbit from p is a point on (3) for
which the eigenvalues of Lf/Lx have real parts strictly negative. It
follows by continuity that for each nearby point q on the manifold of
knees, there is a heteroclinic orbit joining q to a point near j(p).

The PoincareH map of a di!erential equation is a map from a cross-
section of the #ow back to itself, using the #ow. A singular PoincareH
map for an equation of the form (1) or (2) is the analogue of that,
restricted to the slow manifold. The manifold of knees M

k
is codimen-

sion one in the slow manifold, and each branch forms a natural
cross-section for the #ow on the slow manifold. Thus, a singular
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PoincareH map P is a map from an open set S on the manifold of knees
M

k
back to M

k
, de"ned on a neighborhood of a point p

0
on a singular

periodic orbit. P is de"ned by using (4) and (5) successively, until the
last slow trajectory #ows to a point near p

0
in M

k
. By construction,

p
0

is a "xed point of P.
We say that p

0
is a stable "xed point of P if the eigenvalues of

dP(p
0
) are strictly less than one in absolute value. If p

0
is a stable "xed

point for P, then it follows from theorems of Mishchenko and Rozov
[25] and Bonet [3] that for (1) with e90, there is a unique stable
periodic orbit near that of P.

3.2. Coupled oscillatory/excitable systems

The work of Mishchenko and Rozov and Bonet allows one to reduce
the question of the existence and stability of a periodic orbit to the
existence and stability of a "xed point of a singular PoincareH map. In
this subsection, we introduce the form of the system we will consider in
Sects. 4 and 5, including coupling by &&fast threshold modulation.'' The
work of this section will imply that there are well-de"ned singular
PoincareH maps for the families of equations in Sects. 4 and 5. The
stability issue requires more explicit computation, using some ideas
applicable only to fast-slow systems; these are introduced in Sects. 3.3
and 3.4.

By an oscillatory/excitable system we shall mean equations of the
form

dv/dq"F(v, w), v3R
(6)

dw/dq"e G(v, w), w3Rk.

We require that there be a range of w for which v>F(v, w) is qualitat-
ively cubic, with two branches (denoted low and high) on which
LF/Lv(0. There is then a pair of codimension one submanifolds of
F(v, w)"0 that are local maximum and local minima for F(v, w).
These are the manifolds of knees for (6) (see Fig. 3). (If w is scalar,
F(v, w) is a curve and the &&manifolds'' of knees are just a pair of points.)
For (6) to be oscillatory, we require that it have a stable singular
periodic orbit. For it to be excitable, we require that it have a stable
critical point on the low branch and that a su$ciently large perturba-
tion from that point leads to a larger excursion around the high branch
before returning to the critical point (see Fig. 2).

We now take a pair of such systems and couple them to get a more
complicated system still of the form (2). The coupling is of the form
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Fig. 4. The graph of y"gN (vL ). gN is assumed to be essentially constant on the low and
high branches of F(vL , wL )"0.

called fast threshold modulation (FTM) in [31]. In this kind of coup-
ling, the "rst (voltage) equation of (6) is replaced by one in which an
extra term representing a synaptic current is added. The synaptic
current term has the form gN (vL ) (v

syn
!v), where v

syn
is a constant (the

reversal potential of the synapse), vL"vL (t) is the voltage of the pre-
synaptic cell, and gN (vL ) is a sigmoidal function that is zero for vL su$-
ciently low and saturates for vL su$ciently high. We assume that gN is
essentially constant on the low and high branches of F(vL , wL ) (Fig. 4).
Thus, the conductance gN (vL ) of the synaptic current depends only on
whether the cell is &&o! '' (i.e., on the low branch) or &&on'', (i.e. on the
high branch); it does not depend on the position of the presynaptic cell
within a branch. When the presynaptic cell is o!, the null-surface of the
postsynaptic cell is

F(v, w)"0; (7)

when the presynaptic cell is on, the null-surface of the postsynaptic
cell is

F(v, w)#a(v
syn

!v)"0 (8)

where a is the (approximately) constant value of gN (vL ) on the right
branch of the presynaptic cell. For the values of a and v

syn
considered

here, the extra term in (8) displaces the qualitatively cubic surface in (7)
either upward or downward (and changes its shape). An upward shift
corresponds to an excitatory current and a downward shift to an
inhibitory current. Figure 5 illustrates the inhibitory coupling e!ect on
the postsynaptic cell using the model equations given in the appendix.
Note that the added current can change a system from oscillatory to
excitatory (as in the case considered here) or vice versa.
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Fig. 5. An example of the inhibited and uninhibited slow manifolds of (7) and (8) using
model equations (82) and (83) in the appendix. The e!ect of inhibition is to lower the
v-nullcline with a slight change in shape.

Sections 4 and 5 include a discussion of the construction of
slow manifolds, manifolds of knees and singular PoincareH maps for
oscillatory/excitable systems coupled via FTM. We now go to the
mathematical ideas used in those sections in the computation of
stability.

3.3. Time metrics and compression across jumps

Fast threshold modulation coupling conveys information only at the
time of a jump of one of the cells; in between, the cells are essentially
uncoupled, with each postsynaptic cell aware only of the branch of its
presynaptic cell. Thus, a natural computation of stability of a periodic
orbit for the coupled system places special emphasis on the behavior of
the coupled system when either cell jumps. For this it is useful to have
special coordinate systems in phase space based on time between
points. We introduce this coordinate system and its application in
a general setting that applies to the model described in Sect. 4. Modi"-
cations to this method will be required in the higher dimensional
model described in Sect. 5.

Consider a pair of autonomous scalar di!erential equations

xR
1
"f

1
(x

1
) (9)

xR
2
"f

2
(x

2
) (10)

de"ned on a pair of open intervals I
1

and I
2

respectively. If f
i
(x

i
)90

for all x3I
i
, i"1, 2 then each vector "eld can be used to introduce
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a time-based coordinate system on the appropriate interval. Fix points
p
i
3I

i
. Then the functions

q
i
(x

i
)"P

x
i

p
i

dx
i

f
i
(x

i
)

(11)

are di!eomorphisms from I
i
to R that assign to each point a time

coordinate dependent on the appropriate di!erential equation. This
time coordinate is simply the time to #ow from p

i
to x

i
.

Let j: I
1
>I

2
be a di!eomorphism such that x

2
"j (x

1
). In the

following sections j will be the jump map induced by the fast subsystem
that takes a point on one branch of the slow manifold to a point on
another branch with the same slow variable coordinates. The time
metric allows us to compute changes in &&distance'' induced by the map
j. The central notion in that computation is that of &&compression
across a jump,'' an idea "rst used by Somers and Kopell [31]. Consider
two points xa6xb in I

1
and their images j

s
(xa) and j

s
(xb) in I

2
. We

de"ne the compression across the jump of the interval [xa, xb] as

Cab"
time between j (xa) and j(xb)

time between xa and xb
. (12)

When the quantity in (12) is less than one in absolute value, the
distance (in the time metric) between xa and xb decreases across a jump.

The instantaneous compression at xa is

lim
xb?xa

Cab,C(xa). (13)

Letting xb"xa#h we can rewrite (12) using (11) as

Cab"
:j(xa`h)
j(xa)

[ f
2
(x

2
)]~1dx

2
:xa`h
xa

[ f
1
(x

1
)]~1dx

1

. (14)

Taking the limit as hP0 gives

C(xa)"
f
1
(xa)

f
2
( j(xa))

j@(xa). (15)

Thus the instantaneous compression ratio is the value of the vector
"eld at the jump-o! point divided by the value of the vector "eld at the
jump-on point times the derivative of the di!eomorphism j.

In the applications described in this paper, the di!eomorphism j is
described by the fast equations (4) and is therefore the identity function
when expressed as a function of x. In this case the instantaneous
compression ratio is given by

C(xa)"
f
1
(xa)

f
2
( j (xa))

. (16)
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Fig. 6. Compression across a jump. The points (pa, M2
) and (pb, M2

) are on a knee of
the slow manifold. The time-distance between these points is the time to #ow from pa to
pb. If we assume pa and pb to be below the threshold m

1
then the jump from M

2
causes

pa and pb to jump to the points j(pa) and j(pb) on the branch H
1
. The time distance

between these points is the time to #ow from j (pb) to j (pa). The compression ratio is the
time from j (pb) to j (pa) divided by the time from pa to pb.

3.4. Compression and fast-slow systems

The compression calculations we use in this paper are easiest to
describe when w is scalar for each of the oscillatory/excitable systems.
The coupled system is then four-dimensional, with a two-dimensional
slow manifold. The manifolds of knees in the singular system are
curves, with one cell at a local maximum or minimum and the other
cell away from such a point.

We shall denote the high (&&on'') and low (&&o! '') branches of the
cubic nullclines in the absence of inhibition by H and ¸. Subscripts on
H and ¸ denote the cell. The same notation with a hat on the H or
¸ denotes nullclines for the inhibited cells. Thus, for example,
]̧
2

denotes the low branch of cell 2 when the latter is receiving
inhibition from cell 1.

The distance between two points will be de"ned only for points
on the same branch of the curve of knees. For ease of exposition, we
specify that the coupling is inhibitory and choose a particular branch
of the curve of knees. Assume, for example, that cell 2 is at its local
maximum and cell 1 is on the low branch of its inhibited cubic given by
(8) (see Fig. 6). Let pa and pb denote points on ]̧

1
and j (pa) and j (pb)

points on H
1

having the same w
1

coordinates as pa and pb. When both
]̧
1
and H

1
are parameterized using w

1
then the function j is the identity

function. The distance between pa and pb is de"ned to be the time for
a singular trajectory of cell 1 to go between the cell 1 components of the
two points. This time can be determined from the rescaled (6) and
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satis"es
dw

1
dt

"G
1
(vL (w

1
), w

1
) (17)

where v
1

and w
1

are the coordinates of cell 1 and vL (w
1
) is the para-

meterization of the low branch ]̧
1

of (8) in terms of w
1
. Similarly, the

time from j(pb) to j (pa) can also be determined from the rescaled (6) and
satis"es

dw
1

dt
"G

1
(v(w

1
), w

1
) (18)

where v(w
1
) parameterizes the branch H

1
by w

1
. By applying the ideas

of Sect. 3.3 we compute the instantaneous compression ratio at pa in
the jump from ]̧

1
to H

1
to be

C
L
K
ÇHÇ

(pa)"
G

1
(vL (w

1
),w

1
)

G
1
(v (w

1
),w

1
)

. (19)

In other words, the instantaneous compression ratio C (pa) is simply
the ratio of the singular vector "eld evaluated at the jump-o! point to
the singular vector "eld evaluated at the jump-on point. This notation
is indicative of the notation used in all compression calculations;
subscripts indicate the jump-o! and jump-on branches, in that order.

In Sect. 4 we will compute the derivative of the singular PoincareH
map by factoring it into maps between branches of the curves of knees,
and computing the derivative of each factor in terms of compression
across jumps. The computation in Sect. 5 is more elaborate because of
the higher dimension involved, and we leave till that section the extra
structure that will be needed.

4. Complex dynamics due to slow recovery of the excitable cell

In this section we analyze a simpler set of equations than the ones given
in the motivating example of Sect. 2. In this simpler example, there is
no i

h
current, and the equations are four-dimensional rather than

"ve-dimensional. The motivation for this section is two-fold: "rst, we
use it to introduce some concepts and techniques. Secondly, we wish to
contrast the mechanisms that produce complex dynamics in this case
with the mechanisms that produce the dynamics introduced in Sect. 2
and analyzed below in Sect. 5.

There are four subsections of this section. The "rst introduces the
equations and the hypotheses. The second describes the slow manifolds
and manifolds of knees, and de"nes the singular PoincareH map
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associated with these equations. The singular PoincareH map is shown
to be a one-dimensional map with a discontinuity, such that each of the
two parts has positive slope. In the third subsection we give the
possible maps that satisfy those restrictions, and discuss the kinds of
periodic solutions such maps can have. In the "nal subsection, we show
how to compute the associated one-dimensional map from a given set
of equations. This last step provides the connection between the
biophysical properties embodied in the parameters of the equations
and the resulting behavior of the system.

4.1. Equations and hypotheses

The four-dimensional equations, like the equations in Sect. 2, describe
an oscillator and an excitable cell coupled by mutual inhibition. The
major di!erence is that the i

h
current is removed in cell 1, the excitable

cell. The full equations are

dv
1
/dq"F

1
(v

1
, w

1
; I

1
)#gN (v

2
) (v

syn
!v

1
)

dw
1
/dq"eG

1
(v

1
, w

1
)

(20)
dv

2
/dq"F

2
(v

2
, w

2
; I

2
)#gN (v

1
) (v

syn
!v

2
)

dw
2
/dq"eG

2
(v

2
, w

2
)

These have the form of the speci"c equations given in the Appendix,
with the h-current set to zero. We assume that (20) satis"es the
following hypotheses.

H1: For the fast v
1

and v
2

equations of (20), we assume that there are
four sets of stable critical points, each two-dimensional, corresponding
to high or low branch for each cell. This is easily veri"ed for the
equations given in the appendix.

H2: In the absence of inhibition, cell 1 has a stable critical point on the
unexcited branch ¸

1
and cell 2 has an unstable critical point on the

middle branch. The parameter v
syn

and the function gN are chosen so
that both cells have stable critical points on branch ]̧

i
, i"1, 2 in the

presence of inhibition. With these choices the nullclines for the unin-
hibited and inhibited cells are as in Fig. 7.

H3: The signs of G
1

and G
2

are assumed to be such that w
i
decreases

above G
i
(v

i
, w

i
)"0 and increases below it. This implies that cell 2 is an

oscillator in the absence of inhibition.
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Fig. 7. The nullclines for cells 1 and 2 in the uninhibited and inhibited states. The
stable branches of each uninhibited cell are labeled ¸

i
and H

i
. The stable inhibited

&&low'' branches are labeled Ķ
i
.

H4: When cell 1 "res, it "res for a long enough period of time that cell
2 can recover from its previous "ring. Thus, cell 2 can "re immediately
upon release of inhibition from cell 1. Geometrically, this means that
the cell 2 singular trajectory is on ]̧

2
and below the minimum of the

uninhibited cell 2 nullcline at the end of cell 1 "ring (see Fig. 7). We
make no such assumptions on the relationship between the cell 2 "ring
time and the cell 1 recovery time. Indeed, as will be shown below, the
recovery time of cell 1 is one of the important determinants of the
network behavior; to produce the most complicated behavior to be
described below, this time cannot be too short.

4.2. The singular PoincareH map

In Sect. 3, we discussed the general notion of slow manifolds, manifolds
of knees and singular PoincareH maps. We now say what these objects
are for (20).

We denote the four sets of stable critical points described in H1 by
HH, H¸, ¸H and ¸¸. For example, H¸"M(p

1
, p

2
) Dp

1
3H

1
, p

2
3 ]̧

2
N.

(The hats are not used in this notation but are implicit: if cell 1 is on its
high branch, cell 2 is receiving inhibition, whether cell 2 is on its high or
low branch.) The other three sets are de"ned analogously. These are
the slow manifolds of (20) and are illustrated in Fig. 8A.

Of the above four sets, only H¸, ¸H, and ¸¸ are of interest for
periodic solutions. The reason is that trajectories of the fast equations
never jump to the HH set from another of the sets; thus the HH set is
never part of a singular periodic trajectory. On each of the H¸, ¸H,
and ¸¸ slow manifolds, there is a curve which is a branch of the
manifold of knees.
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Fig. 8. A: The stable branches of the slow manifold of (15). Each is the Cartesian
product of a stable branch of cell 1 (either inhibited or uninhibited) and a stable branch
of cell 2. The point D is the point on Ķ

1
with the same w

1
-coordinate as the minimum

m
1

on the uninhibited nullcline ¸
1
. B: The knee of branch ¸H (denoted K

LH
) is the

product of Ķ
1

and the point M
2
.

1. For ¸¸, the curve is M(p
1
, p

2
) Dp

1
3¸

1
, p

2
"min(¸

2
),m

2
N.

2. For H¸, the curve is M(p
1
, p

2
) Dp

1
"max(H

1
),M

1
, p

2
3 ]̧

2
and

p
2

below m
2
N.

3. For ¸H, the curve is M(p
1
, p

2
) Dp

1
3 ]̧

1
, p

2
"max H

2
,M

2
N.

The knee of branch ¸H is illustrated in Fig. 8B and is denoted
K

LH
there. Any trajectory starting at a point on ¸¸, ¸H or H¸ must

reach the appropriate curve of knees in "nite (slow) time, following
equations (20). This is a consequence of the fact that the branches ¸

1
,

]̧
1
, and ]̧

2
each have a critical point that prevents motion of one of the

cells beyond it (see Figs. 8A, B). Thus other knees of each branch which
lie beyond these critical points can be ignored. In item 2 above the
restriction that p

2
be below the minimum of ¸

2
in the knee H¸ comes
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from hypothesis H4; this implies that p
2

is below m
2

by the time
p
1

reaches M
1
.

As explained in Sect. 3, upon reaching a point on the manifold of
knees, a singular trajectory jumps according to the fast equations to
another piece of the slow manifold. The following proposition sum-
marizes the destinations of the jumps from the manifolds of knees.

Proposition 4.1. 1. ¹he fast trajectory from a point on the ¸¸ branch of
knees tends to a point on the ¸H slow manifold.

2. A point on the H¸ branch of knees also goes to a point on the ¸H
slow manifold.

3. On the ¸H branch of knees, the jump is a discontinuous map: for
p
1
3 ]̧

1
and above the minimum of ¸

1
(m

1
), the trajectory jumps to ¸¸; for

p
1

below m
1
, the trajectory jumps to H¸.

Proof. Part 1 is immediate from Figs. 8A, B: upon reaching the min-
imum of ¸

2
, cell 2 "res. Assertion 2 follows from the hypothesis that

cell 2 recovers quickly enough from inhibition. Thus, when cell 1 stops
"ring and releases cell 2 from inhibition, cell 2 "res. Assertion 3 is also
immediate from Figs. 8A, B: when cell 1 is released from inhibition, its
destination depends on whether its upward jump is impeded by the
¸
1

nullcline. K

Each curve of knees is a cross-section of the slow manifold, and can
be used to de"ne a singular PoincareH map. In our case, an especially
convenient cross-section is the ¸H curve of knees, for which cell 2 is at
M

2
, the max of H

2
. The PoincareH map P de"ned on the ¸H curve of

knees, takes a point p
1
3 ]̧

1
to another point on ]̧

1
. Starting from the

point (p
1
, M

2
) the trajectory undergoes a sequence of fast jumps and

slow #ows until cell 2 reaches M
2
again. It follows from Proposition 4.1

and H3 that this singular orbit must return to the knee of ¸H. The map
P is discontinuous, with a discontinuity at D, the point in ]̧

1
at the

same height as the minimum of ¸
1

(see Figs. 9 and 10). For ease of
notation, we drop the subscript 1 on p

1
when describing a point in the

domain of P. We let P~ denote P for points p above D and P` denote
P for points below D. For p"D, we consider P to be doubly de"ned
as the limits of P~ and P` as pPD.

Figure 9 illustrates the construction of P~. Consider the initial
condition (p, M

2
) on the ¸H knee. Because p is above the threshold for

"ring, upon release from inhibition p jumps to the point marked j (p)
and M

2
to the point marked j(M

2
). The point ( j (p), j(M

2
)) is on branch

¸¸. These points then #ow under the slow system until reaching the
knee of ¸¸ when cell 2 reaches the point m

2
. Note that the critical point

on ¸
1

prevents cell 1 from reaching the knee m
1
. We denote the state of
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Fig. 9. A graphical representation of the map of knees P~. Because p is above D, The
"rst jump takes p to j (p) on ¸

1
. The "rst #ow maps this point to q which in turn jumps

back to Ķ
1

and "nally #ows to the point P~(p).

Fig. 10. A graphical representation of the map of knees P`. Because p is below D, the
"rst jump takes p to j(p) on H

1
and M

2
to j(M

2
) on Ķ

2
. The "rst #ow maps these points

to M
1

and q respectively. The second jumps takes M
1

to j(M
1
) on Ķ

1
and q to j (q) on

H
2
. They then #ow until j (q) reaches M

2
. The corresponding point on Ķ

1
is P`(p).

cell 1 by q in Fig. 9. Another jump now occurs, this time to branch ¸H
and the point ( j (q), j(m

2
)). Finally, the system #ows until cell 2 returns

to M
2
. The value of cell 1 at this point is P~(p).

Figure 10 illustrates the case where p is below the threshold. This
time the system jumps to branch H¸ with cell 1 inhibiting cell 2. The
system #ows until j (p) reaches M

1
and hence the knee of H¸. At this

point cell 2 is at the point q on ]̧
2

which is below the threshold by
assumption H4. Thus the next jump takes the system to branch ¸H on
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which it #ows until cell 2 returns to M
2
. The value of cell 1 at this point

is P`(p).

Remark 4.1. Assumption H4 simpli,es the description of the singular
PoincareH map P. P is still well-de,ned if this assumption is not made.
However, derivative calculations used in subsequent sections to describe
dynamical properties of the model are no longer valid. In the notation
given above, this assumption states that the time to -ow from j(M

2
) to

j (m
2
) on ]̧

2
is short relative to the burst length of cell 1. Numerical

calculations using the model equations given in the appendix suggest that
this assumption is reasonable.

4.3. Possible behavior of the map P

We shall now show that both P` and P~ are non-decreasing (orienta-
tion preserving). (The work in Sect. 4.4 implies the stronger result that
the derivatives of P` and P~ are strictly positive.) We then present
a catalogue of possible one-dimensional maps that are piecewise in-
creasing, and describe some of the behavior of each of them. Our
convention is that increasing p means increasing values of the w

1
-

component of p.
We analyze separately the functions P` and P~, again using

Figs. 9 and 10. Now considerP~, and let pa and pb be two points in its
domain with pa'pb. The trajectories of each of those initial points are
as in Fig. 9, with two jumps, and two #ows. Note that each jump and
each #ow is order preserving. Thus P~(pa)'P~(pb), so dP~/dp70.

We now consider pa'pb in the domain of P`. Each of the two
associated trajectories is as in Fig. 10, again with two jumps and
two #ows. The images j (pa), j (pb)3H

1
after the "rst jump satisfy

j (pa)'j (pb), i.e., j (pa) has a larger w
1
-component. This implies that

q
1
(pa)(q

1
(pb), where q

1
(pa) (respectively q

1
(pb)) is the time for cell 1 to

#ow from j(pa) (respectively j (pb)) to M
1
. Thus, the trajectory of cell 2

corresponding to initial point point pb for cell 1 has a longer time of
#ow along ]̧

2
while cell 1 is excited than the trajectory corresponding

to pa. This implies that when cell 1 reaches M
1
, the positions qa and

qb on ]̧
2

satisfy qa'qb. The second jump is initiated when cell
1 reaches M

1
, so the positions of the two trajectories on H

2
after the

second jump satis"es j(qa)'j(qb). Hence, the time q
2
(pa) from j(qa) to

M
2

is shorter than the time q
2
(pb) from j(qb) to M

2
, giving cell

1 a longer time to #ow from j (M
1
) on ]̧

1
in case b than in case a. The

resulting image, after two jumps and two #ows, is by de"nitionP` and
the above shows that P`(pa)'P`(pb), so dP`/dp70.
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Fig. 11. Behaviors of P whenP`(D)(P~(D) (case I). A: There exists at least one "xed
point in the domain of P~ and all points in the domain of P are attracted to one of
these "xed points. This corresponds to 0 : 1 "ring and small amplitude oscillations of
cell 1. B: There exists at least one "xed point in the domain of P` and all points in the
domain of P are attracted to one of these "xed points. This corresponds to 1 :1 "ring of
cell 1 and cell 2. C: Both P~ and P` have attracting "xed points. The domain of P~ is
mapped into itself and the domain of P` is mapped into itself. This corresponds to
a bistability where, depending on the initial condition the model, exhibits either 0 :1 or
1 :1 "ring.

We now describe some of the behavior of discontinuous maps both
pieces of which have a positive derivative. We divide up our description
into cases.

I. Simplest: P~(D)'P`(D). In this case, there is always a "xed point
for P, and sometimes more than one. In Fig. 11A, P~ has a "xed point
and P` does not. For each p3P` there exists a positive integer n
such that (P`) n(p) lies in the domain of P~. A "xed point of P~
corresponds to a periodic orbit in which cell 1 never "res. All initial
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conditions tend to a "xed point of P~ and hence to this state. This
corresponds to small amplitude oscillations of cell 1. In Fig. 11B,
P` has a "xed point and P~ does not. A "xed point of P` corres-
ponds to a periodic orbit in which cell 1 "res in every cycle of the cell 2
oscillation. All points in the domain of P~ are eventually iterated into
the domain of P`. In Fig. 11C, both P` and P~ have "xed points
corresponding to no "ring or "ring on every cycle; the limiting behav-
ior of a given trajectory then depends on initial conditions. The "xed
points in cases (A)}(C) are stable if the slope of P at that point is less
than one in absolute value.

II. More interesting: P~(D)(P`(D). As in case I, it is possible to
have "xed points for P` and P~ corresponding to no "ring or "ring
on every cycle (see Figs. 12A, B). In the more interesting sub-case,
neither branch has a "xed point (Fig. 12C). We focus on this case,
which itself can have di!erent behaviors.

All points in the domain of P are eventually iterated into the
intersection of the images of P` and P~. This interval J is forward
invariant and we can restrict our analysis to J. The map P restricted to
J is as in Fig. 13A or B.

The cases in Figs. 13A and B correspond to the &&no-overlap'' and
&&overlap'' cases. Both of these have been analyzed by Keener [16]. In
the no-overlap case, the behavior is very similar to that of continuous
circle maps, with the existence of periodic points determined by a rota-
tion number n/(n#m) (n and m positive integers) that varies continu-
ously with parameters [22]. A rotation number of n/(n#m) corres-
ponds to a periodic orbit with n iterates of P~ and m iterates of P`. In
other words, cell 1 "res m times for every n#m oscillations of cell 2. As
some parameter (such as the point of discontinuity) is changed, the
graph of rotation number versus that parameter forms a &&devil's
staircase'' [5], hitting all rational rotation numbers between any two in
the range of that function. (The point of discontinuity can be varied by
changing the amount of inhibitory current I injected into cell 2.) We
will see that the map derived in Sect. 5 can have very di!erent behavior.
The overlap case has potentially more complicated behavior, including
chaotic trajectories. We note that if DdPB/dpD61, the overlap is auto-
matically ruled out.

4.4. Detailed neuronal behavior and the choices of P

In this section, we discuss what properties of the original equations (20)
determine if P is in case I or case II, and compute dPB/dp where the
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Fig. 12. Behaviors of P when P~(D)(P`(D) (case II). A: There exists a "xed point in
the domain of P~ and all points in the domain of P are attracted to this "xed point.
This corresponds to no "ring of cell 1. B: There exists a "xed point in the domain of
P` and all points in the domain ofP are attracted to this "xed point. This corresponds
to 1: 1 "ring of cell 1 and cell 2. C: Neither P~ nor P` possess "xed points. All points
are eventually mapped into the interval J which is forward invariant.

coordinates of p are the time coordinates introduced in Sect. 3.3. From
the latter, we can "nd conditions under which there are stable periodic
points. These results, unlike the others in this section, depend on
further information about the slow equations of (20).

We "rst factor each of P~ and P` into a pair of one-dimensional
maps; P~"f

2 3
f
1

and P`"g
2 3

g
1
. We start with P~ and use the fact

that the trajectory of cell 2 over one cycle is not perturbed by the "ring
of cell 1; hence it is determined independent of the initial position of
cell 1 (see Fig. 14). Let f

1
be the "rst jump and #ow, and f

2
be the second

jump and #ow. f
1

(respectively f
2
) has domain in ]̧

1
(respectively ¸

1
)

and maps into ¸
1

(respectively ]̧
1
). (Note that these domains can be
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Fig. 13. A: The non-overlapping regime of case II. The map P has a well-de"ned
rotation number independent of initial condition. A rational rotation number of
n/(n#m) corresponds to m "rings of cell 1 for every n#m "rings of cell 2. B: The
overlapping case. In this scenario more complex dynamics can occur.

Fig. 14. The functions f
1

and f
2
. f

1
maps p3 Ķ

1
to f

1
(p)3¸

1
. f

2
maps q3¸

1
to

f
2
(q)3 Ķ

1
. Thus P~(p)"f

2
( f

1
(p)).

considered curves of knees, since cell 2 is at a local max or min on
each.)

To factorP`, we must keep track of both cell 1 and cell 2. This time
we factor the full map instead of just the cell 1 component. Here g

1
has

domain in ]̧
1

and maps into ]̧
2
; it is de"ned by computing the time

q
1
(p) it takes for the point j (p)3H

1
to reach M

1
, and letting g

1
(p) be

the point in ]̧
2

that #ows from j (M
2
) for time q

1
(p) (see Fig. 15 and

compare to Fig. 10). By assumption H4, g
1
(p) is below m

2
. The function

g
2

takes points in ]̧
2

into ]̧
1
. For a point q3 ]̧

2
, let q

2
(q) be the time

from j (q)3H
2

to #ow to M
2
, and let g

2
(q) be the point reached on

]̧
1

after #owing from j(M
1
)3 ]̧

1
for time q

2
(q). (Note that both of the
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Fig. 15. The functions g
1

and g
2
. g

1
maps p3 Ķ

1
to g

1
(p)3 Ķ

2
. g

2
maps q3 Ķ

2
to

g
2
(q)3 Ķ

1
. Thus P`(p)"g

2
(g

1
(p)).

above are maps from one curve of knees to another.) By construction,
g
2
(q)"g

2
(g

1
(p))"P`(p).

We now discuss conditions under which P is in case I or case II. In
case II we have P~(D)(P`(D) i.e.

f
2 3

f
1
(D)(g

2 3
g
1
(D). (21)

We will compute appropriate bounds on the left and right hand sides of
this inequality to provide su$cient conditions for P being in case I or
case II. For case II, this bound will be interpreted in terms of physiol-
ogical properties of cell 1 and cell 2. We also give additional conditions
for the interesting case IIc.

Proposition 4.2. ¸et q
D
"g

1
(D). If q

2
(q

D
)!q

2
(m

2
) is greater than the

time to -ow from j(M
1
) to D on ]̧

1
then P is in case I (see Fig. 15).

Proof. Let E
1

denote the critical point on branch ¸
1
. Since m

1
(E

1
and D"j(m

1
) we know that m

1
(f

1
(D). This implies that

f
2
(m

1
)(f

2 3
f
1
(D) and thus f

2
(m

1
) is a lower bound of f

2
. Denote the

#ow on ]̧
1

by w
1
"w

L
(t;w

0
). Since f

2
(m

1
) is the point found by #owing

on ]̧
1

from j (m
1
)"D for time q

2
(m

2
), we have

f
2
(m

1
)"w

L
(q

2
(m

2
);D). (22)

By construction, g
2
(q

D
) is the point on ]̧

1
determined by #owing

from j(M
1
) for time q

2
(q

D
) so that

g
2
(q

D
)"w

L
(q

2
(q

D
); j(M

1
)). (23)

By the group property, #owing from j (M
1
) for time q

2
(q

D
) is the same as

"rst #owing from j (M
1
) for time q

2
(q

D
)!q

2
(m

2
) and then #owing from

Voltage-gated equations to a one-dimensional map 503



Fig. 16. The graphical interpretation of (28). If the time to #ow from j (M
1
) to j (E

1
) on

Ķ
1
(denoted ¹

1
) is greater than q

2
(EK

2
)!q

2
(m

2
) (denoted ¹

2
) then (28) holds andP is in

case II.

this point for time q
2
(m

2
). That is,

g
2
(q

D
)"w

L
(q

2
(q

D
); j(M

1
))

"w
L
(q

2
(m

2
); w

L
(q

2
(q

D
)!q

2
(m

2
); j(M

1
))). (24)

By assumption, w
L
(q

2
(q

D
)!q

2
(m

2
); j (M

1
))(D. Since f

2
(m

1
) is found by

#owing from D for time q
2
(m

2
) and g

2
(q

D
) is found by #owing from

a point below D also for time q
2
(m

2
) it follows that

g
2 3

g
1
(D)"g

2
(q

D
)(f

2
(m

1
)(f

2 3
f
1
(D). (25)

K

Let EK
2

denote the critical point on branch Ķ
2
.

Proposition 4.3. ¸et q
2
(m

2
) denote the time to -ow from j (m

2
) to M

2
on

branch H
2

and let q
2
(E]

2
) denote the time to -ow from j (E]

2
) to M

2
on

H
2
. If the time to -ow from j (M

1
) to j (E

1
) on ]̧

1
is greater than

q
2
(E]

2
)!q

2
(m

2
) then (21) holds and P is in case II (see Fig. 16).

The physiological interpretation of Proposition 4.3 is that if the
recovery time of cell 1 is greater than the additional time cell 2 "res due
to inhibition then P is in case II (see Fig. 16).

Proof. Since g
1
: ]̧

1
> ]̧

2
and all trajectories on ]̧

2
are bounded below

by the critical point E]
2
, it follows that E]

2
(g

1
(D). Since g

2
is orienta-

tion preserving,

g
2
(E]

2
)(g

2 3
g
1
(D). (26)
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Similarly, since m
1
(E

1
and D"j(m

1
) it follows that f

1
(D)(E

1
.

Hence, since f
2

is orientation preserving,

f
2 3

f
1
(D)(f

2
(E

1
). (27)

It now follows from (26) and (27) that if

f
2
(E

1
)(g

2
(E]

2
) (28)

then P is in case II.
By construction, g

2
(EK

2
) is the result of #owing from j (M

1
) on Ķ

1
for

time q
2
(EK

2
) and f

2
(E

1
) is the result of #owing from j(E

1
) on Ķ

1
for time

q
2
(m

2
) (see Fig. 16). If the time to #ow from j (M

1
) to j (E

1
) on Ķ

1
is

greater than q
2
(EK

2
)!q

2
(m

2
) then (19) holds and P is in case II. K

We now compute dPB/dp starting with P~. We use the factoriz-
ation P~"f

2 3
f
1
. In time coordinates, the #ow portion of f

1
on Ķ

1
or

f
2

on ¸
1

is translation by a "xed amount of time determined by the
cell 2 trajectory. Thus df

i
/dp"dj

i
/dp, where j

i
is the jump associated

with f
i
. The derivatives of such jumps were computed in Sects. 3.3 and

3.4 in a more general context. In our case, they are

dj
1
/dp"C

LK ÇLÇ
(p)

(29)
dj

2
/dq"C

LÇL
K
Ç
(q)"1/C

LK ÇLÇ
( j (q))

where p3 Ķ
1

is the origin of jump 1, q"f
1
(p)3¸

1
is the origin of jump

2 and j(q) is the point on Ķ
1

at the same height as q (see Fig. 9). Thus,

dP~

dp
"

C
LK ÇLÇ

(p)
C

LK ÇLÇ
( j(q))

. (30)

We compute dP`/dp using P"g
2 3

g
1
. Again using time coordi-

nates, we have that dg
i
/dp"dj

i
/dp, where j

i
is the jump associated with

g
i
. Note that each jump j

i
is now from Ķ

i
to H

i
. By the constructions in

Sect. 3.3, we have that

dP`

dp
"C

LK ÈHÈ
(g

1
(p))C

LK ÇHÇ
(p). (31)

It is easy to see that for graphs of the form in Fig. 13, the overlap-
ping case cannot occur when each branch of P has slope less than one.
The slopes are determined by (30) and (31), but it is not immediate how
the functions in (20) determine the numbers in (30) and (31). We now
relate the latter derivatives to the #ows on the slow manifolds.
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We start with (30), which is the more subtle. For a jump from Ķ
1

to
¸
1
, it follows from (19) in Sect. 3 that

C
LK ÇLÇ

(p)"
G

1
(vL

1
(w

1
), w

1
)

G
1
(v

1
(w

1
), w

1
)

(32)

where w
1

is the w
1
-component of p, v

1
(w

1
) and vL

1
(w

1
) are the

v
1
-components along ¸

1
and Ķ

1
of j(p) and p respectively. A similar

formula holds for the other factor in (30).
The following observations provide a simple criterion for showing

that this ratio of compression numbers is less than one. We "rst note
that C

LK ÇLÇ
(p) is unde"ned at j(E

1
) since the vector "eld on ¸

1
is 0 at E

1
.

If p'j(E
1
) then p'j (q)'j(E

1
). Thus it su$ces to show that C

LK ÇLÇ
(p)

is positive and increases as the point p moves down the curve (i.e. that
dC

LK ÇLÇ
/dp(0) for points above j (E

1
). This implies that the denomin-

ator is larger than the numerator in (30). Since the direction of #ow on
¸
1

and Ķ
1

is the same for points above j (E
1
), it follows from (32) that

C
LK ÇLÇ

(p)'0 in this region. On the other hand, if p(j (E
1
) then

p(j(q)(j (E
1
). Thus for points below j(E

1
) we must show that

C
LÇLÇ

(p) is negative and dC
LK ÇLÇ

/dp(0. In this region the #ow is
downward on ¸

1
and upward on Ķ

1
so that C

LK ÇLÇ
(p)(0. We shall use

(32) to determine when dC
LK ÇLÇ

/dp(0 and hence when dP~/dp(1.
We shorten the notation in (32) by writing G

1
(v

1
(w

1
), w

1
) as G

1
(w

1
) and

G
1
(vL

1
(w

1
), w

1
) as GK

1
(w). The conditions below are closely related to

those introduced in [18] to get stable antiphase solutions between two
oscillators coupled via excitatory fast threshold modulation.

Proposition 4.4. Suppose that

d
dw

1

[GK
1
(w

1
)!G

1
(w

1
)]'0, (33)

d
dw

1

GK
1
(w

1
)(0, (34)

[G
1
(w

1
)!GK

1
(w

1
)]'0. (35)

¹hen dC
LK ÇLÇ

/dp(0.

Remark 4.2. In [18], it was shown that families of equations standardly
used to model voltage-gated conductance equations satisfy the hypotheses
of Proposition 4.4. For the geometric interpretation of these conditions
see [18].
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Proof of Proposition 4.4. Using (32) and the quotient rule, dC
LK ÇLÇ

/dp
has the same sign as

GK @
1
(w

1
)G

1
(w

1
)!G@

1
(w

1
)GK

1
(w

1
)"GK

1
(w

1
)

d
dw

1

[GK
1
(w

1
)!G

1
(w

1
)]

#GK @
1
(w

1
)[G

1
(w

1
)!GK

1
(w

1
)] (36)

In the "rst product, the "rst factor is negative by general assumption
about the geometry and the second is positive by (33). In the second
product, the "rst factor is negative by (34) and the second is positive by
(35). Thus (36) is less than zero. K

We now go to dP`/dp and evaluate (31) more explicitly. It is easier
in this case than in (30) to see when the expression is less than one,
because each of the factors of (31) is less than one in absolute value for
a large class of equations. The "rst factor of (31) may be written as

G
2
(vL

2
(w

2
), w

2
)

G
2
(v

2
(w

2
), w

2
)

(37)

where now the v
2
(w

2
) and vL

2
(w

2
) denote the values of v

2
along the

curves H
2

and Ķ
2

respectively. Similarly, the second factor of (31) may
be written as

G
1
(vL

1
(w

1
), w

1
)

G
1
(v

1
(w

1
), w

1
)

. (38)

That (37) and (38) be less than one in absolute value is the statement
that there is compression across the jump between these branches. It
was shown in [18] that such compressions are standard features of
voltage-gated conductance equations used to model nerve cells. The
basic idea behind this argument is that for i"1, 2, G

i
(v

i
, w

i
) is &&small''

since w
i
is &&close'' to the critical point on Ķ

i
and G

i
(v

i
, w

i
) is &&large'' on

H
i
since w

i
is &&far'' from the w

i
-nullcline de"ned by G(v

i
, w

i
)"0. This is

made explicit in [18]. The above results are summarized as follows.

Proposition 4.5. If equations (20) satisfy the hypotheses of Propositions
4.3 and 4.4 then the map P is in case IIc.

5. Dynamics due to the slow rise time of another current

In this section we return to the full "ve-dimensional equations. The
addition of the new current allows the introduction of two new time
scales, the rise time of the new current during the silent period, and the
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reset time of that current during the active period. We show that by
making the rise time su$ciently slow (but not necessarily an order of
magnitude slower than, e.g., the cell 1 recovery time), the system can
again be reduced to a one-dimensional map. The behavior of this
one-dimensional map depends critically on the reset time. The full
equations have the form

dv
1
/dq"F

1
(v

1
, w

1
, s; I

1
)#gN (v

2
) (v

syn
!v

1
)

dw
1
/dq"eG

1
(v

1
, w

1
)

ds/dq"e[s
=

(v
1
)!s]/j(v

1
) (39)

dv
2
/dq"F

2
(v

2
, w

2
; I

2
)#gN (v

1
)(v

syn
!v

2
)

w
2
/dq"eG

2
(v

2
, w

2
).

Details are given in the Appendix.
To get the reduction, we note that the fast equations for the "ve-

dimensional equations have the form

dv
1
/dq"F

1
(v

1
, w

1
, s; I

1
)#gN (v

2
) (v

1
!v

syn
)

(40)
dv

2
/dq"F

2
(v

2
, w

2
; I

2
)#gN (v

1
) (v

2
!v

syn
)

and the slow equations have the form

dw
1
/dt"G

1
(v

1
, w

1
)"[w

=
(v

1
))!w

1
]/j

w
(v

1
)

ds/dt"[s
=

(v
1
)!s]/j

s
(v

1
) (41)

dw
2
/dt"G

2
(v

2
, w

2
)"[w

=
(v

2
))!w

2
]/j

w
(v

2
)

where v
1
"v

1
(w

1
, s) and v

2
"v

2
(w

2
). Figure 17 shows the nullsur-

faces dv
1
/dq"0, with and without inhibition, and the nullsurface

dw
1
/dq"0. Each of these is two-dimensional in (v

1
, w

1
, s) space, and

are the analogues of the curves shown in Fig. 7 for cell 1. The analogue
of the local maxima and minima M

1
, MK

1
, and m

1
, mL

1
are now the

curves M
1
(s), MK

1
(s), and m

1
(s), mL

1
(s). Cell 2 remains two-dimensional

with nullclines as in Fig. 7.
The natural singular PoincareH map associated with this new setup

is a function from the knee of the inhibited LH branch to itself. In other
words, cell 2 is at M

2
(as before) and cell 1 is on the inhibited low

branch Ķ
1

which is now two-dimensional. Thus the domain of this
singular PoincareH map is two-dimensional. As before, the domain is
divided into two parts (before by a point, this time by a curve)
corresponding to whether or not cell 1 will "re in that cycle of cell 2. As
before, the dividing curve is the image of the local minimum of ¸

1
(in
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Fig. 17. The inhibited and uninhibited v
1
-nullclines of cell 1 with i

h
. Because of the

addition of the variable s describing i
h
, the phase space associated with cell 1 is now

three-dimensional and the corresponding nullclines are two-dimensional. The knees
M

1
and m

1
are curves parameterized by s as are the intersections of the w

1
-nullcline

with the inhibited and uninhibited v
1
-nullclines.

this case m
1
(s)) in Ķ

1
under the jump map. That curve is the analogue of

the point D in the previous section.
Nontrivial dynamics correspond to trajectories that spend some

time in each of the two domains. In the previous section, such trajecto-
ries arose from the long time scale of the recovery variable of cell 1,
making it possible for more than one cycle of cell 2 to happen before
cell 1 is ready to "re again. In this section, the mechanism giving rise to
the interesting dynamics is fundamentally di!erent, and depends more
on the interplay of di!erent time scales than before.

In this case, the recovery time of cell 1 is comparable to (or faster
than) the burst time of cell 2. This implies that at the end of a burst of
cell 2, a cell 1 trajectory is near the intersection of the surface wR

1
"0

and the surface Ķ
1
. This intersection is a curve we shall call EK

1
(s), the

analogue of the point EK
1

in Sect. 4. If s evolves very slowly (so can be
treated as a parameter), a trajectory would "re or not in a given cycle
depending only on whether the point on EK

1
(s) is above or below the

point on j(m
1
(s)) with the same value of s (see Fig. 18). If the curves EK

1
(s)

and j (m
1
(s)) cross, then nontrivial dynamics can occur when trajecto-

ries go back and forth across this intersection. Note that EK
1
(s) plays

a more central role in this scenario than EK
1

does in Sect. 4.
This scenario does not require s to evolve an order of magnitude

more slowly than the recovery variable of cell 1 on Ķ
1
, but if it does not,

one must be a little more careful in the description. With a milder
hypothesis, it is still true that the system can be approximated by
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Fig. 18. The projection of Ķ
1

onto the (s, w
1
) plane. To the left of s*, EK

1
(s) is above

j(m
1
(s)) and hence trajectories jumping from this segment of EK

1
(s) jump to the uninhib-

ited lower branch ¸
1
. To the right of s*, EK

1
(s) is below j (m

1
(s)) and trajectories jumping

from here jump to the uninhibited high branch H
1
.

a PoincareH map whose domain is one-dimensional rather than two.
However, the curve of this domain is not necessarily EK

1
(s) but a curve

that approaches it as the rate of change of s decreases to zero. More
speci"cally, consider the "rst two equations of (41), with v"v

1
(w

1
, s)

and v
2
"v

2
(w

2
) chosen to correspond to dynamics of Ķ

1
(i.e., cell 2

"ring). Under hypothesis (H2) given below, these equations have a
critical point at the intersection of s"1 and EK

1
(s). Further hypotheses

(H4 and H5) imply that the eigenvalues of the linearization at this
critical point are real, negative, and unequal. We shall refer to any
trajectory tangent to the eigenvector of the least negative eigenvalue as
a &&slow stable manifold (SSM).'' All solutions on Ķ

1
having an initial

condition with s,D 1 approach the critical point tangent to SSM. The
smaller the ratio9j

w
(v

1
)/j

s
(v

1
) on Ķ

1
in (41) the faster solutions

approach SSM. Moreover, as this ratio goes to zero, SSM approaches
the curve EK

1
(s). We use the curve SSM as the domain of the reduced

PoincareH map; the actual PoincareH map, restricted to SSM, does not
return exactly to SSM, but close to it and the image is then projected
onto SSM.

In Sect. 5.1 we spell out the hypotheses under which the geometric
picture described above is valid. In Sect. 5.2 we analyze di!erent
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behaviors compatible with those hypotheses. These include the stair-
case (n :m coordination) phenomena of Sect. 4, but also n : 1 coordina-
tion. We also comment here on how the mode of coordination (n : 1 or
n :m) a!ects the regularity of the timing of the burst of the slower cell. In
Sect. 5.3 we look at how parameters in the biophysical description of
the equations a!ect the behavior of the reduced map.

5.1. Hypotheses, slow manifolds and PoincareH maps

The equations for cell 2 are as in Sect. 4, and we assume the same
hypotheses:

H1: Without inhibition, cell 2 is an oscillator. In the presence of
inhibition it has a stable critical point. Its recovery time from bursting
is fast enough compared with the "ring time of cell 1 (the minimal time
cell 1 spends on H

1
after a "ring due to being released from inhibition)

that cell 2 can "re on release of inhibition from cell 1. This is similar to
H4 of Sect. 4.1.

H2: For each "xed value of s, cell 1 has a stable critical point both
without inhibition and in the presence of inhibition. On Ķ

1
this is the

curve EK
1
(s). In addition, we assume that s

=
(v

1
),1 on ¸

1
and Ķ

1
while

s
=

(v
1
),0 on H

1
. Thus s increases on ¸

1
and Ķ

1
and decreases on H

1
.

Since i
h
is an inward cation current, the nullcline surface dv

1
/dq"0

rises with increasing s. Thus we assume

H3: m@
1
(s)'0, M@

1
(s)'0, EK @

1
(s)'0. This hypothesis can be veri"ed by

direct calculation for the equations in the Appendix.

We now add timescale hypotheses. In Sect. 4, the central hypothesis
that insures that cell 1 neither "res each cycle nor remains silent is that
the recovery time of cell 1 is su$ciently long compared with the "ring
time of cell 2. We shall assume the opposite here, that cell 1 recovers by
the end of the "ring time of cell 2:

H4: On Ķ
1
, j

w
(v

1
) is su$ciently small compared to the "ring time of

cell 2 (j
w
(v

1
) controls the recovery rate dw

1
/dt of cell 1).

H5: On ¸
1

and Ķ
1
, j

s
(v

1
) is independent of v

1
and su$ciently large

relative to the "ring time of cell 2. We will denote the value by j
L
.

Similarly, j
s
(v

1
) is independent of v

1
on H

1
and denoted j

H
.

To get nontrivial dynamics, we introduce another hypothesis that
insures that cell 1 will "re only from a proper subset of Ķ

1
. This

hypothesis says that above some level of i
h

(i.e., value of s), cell 1 can
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rebound at the end of a cycle of inhibition from cell 2; below that level
there is no inhibitory rebound.

H6: Let j (m
1
(s)) denote the image in Ķ

1
of the curve m

1
(s)3¸

1
. The

curves j (m
1
(s)) and SSM intersect in a unique point s*, with j (m

1
(s))

below SSM for s(s* and j (m
1
(s)) above SSM for s's*. See Fig. 18.

As in Sect. 4, only three of the four branches of the slow manifold
are relevant to periodic solutions, since no trajectory jumps to the HH
branch. Again, a trajectory leaves a branch when it hits a &&manifold of
knees,'' and these jump-o! sets are cross-products of slow manifolds of
cell 1 and cell 2, with one component at a local maximum or minimum.
The statement of Proposition 4.1, about the destination of each jump,
holds for the current situation as well. The proof is identical, with part
(3) now a consequence of Hypotheses H4 and H6. As before, the
singular PoincareH map is constructed by starting with cell 2 at M

2
and

cell 1 at a point on Ķ
1
.P is de"ned to be the resulting point on Ķ

1
when

cell 2 next reaches M
2
. P is again discontinuous, with a curve of

discontinuities at j(m
1
(s)). We continue to use the notation P~ (respec-

tively P`) for the branch of P in which cell 1 does not "re (respectively
"res).

From Hypotheses H4, and H5, we can de"ne a &&reduced singular
PoincareH map,'' one that is one-dimensional. We let Q` (respectively
Q~) be P` (respectively P~) restricted to SSM. In other words, given
a p3SSM, Q(p)"n

3
P(p) where n is the projection from a tubular

neighborhood ; of SSM to SSM that leaves the s-coordinate of
P unchanged. Note that Q~ is de"ned for s6s* andQ` for s7s*. For
s"s* the map Q is doubly de"ned by each of the one-sided limits.

5.2. Diwerent slopes, diwerent behavior

We shall now show that Q~ is always orientation preserving, but
Q` could be either orientation preserving or reversing, depending on
another time scale not yet mentioned. We shall then discuss the
behavioral consequences of having the slope be negative.

For Q~, the argument is the same as for P~ in Sect. 4, this time
using a parameterization in s instead of w

1
. As before, each jump and

each #ow is order preserving. This follows from (H2) and (H5) describ-
ing the properties of ds/dt on ¸

1
and Ķ

1
.

Now consider Q` and let pa, pb be two points in the domain of Q`,
with the s-coordinate of pa greater than the s-coordinate of pb. After the
"rst jump, the image of the points pa and pb are in H

1
, with unchanged

values of s and w
1
. Thus, we continue to represent them on the same
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Fig. 19. Trajectories of j (pa) and j (pb) under (H7). Hypothesis (H7) assumes that both
trajectories intersect M

1
(s) near s"0. Because j(EK

1
(s)) is increasing q

1
(pa)(q

1
(pb)

under the conditions presented in (H8).

(s, w
1
) plane. The upper curve in Fig. 19 is M

1
(s). The points j(pa), j (pb)

give rise to trajectories of the slow #ow on H
1
, which reach M

1
at times

q
1
(pa), q

1
(pb) respectively. During this time, s decreases and w

1
in-

creases. The behavior of the system depends crucially on the time scale
of s during this #ow.

Suppose, for example, that

H7: s decreases fast enough along H
1

that s+0 at the time a traject-
ory reaches M

1
(s).

Note that H7 does not require that s decrease on the fast time scale of
v
1
, or even that it be much faster than w

1
on H

1
. This is similar to

hypothesis H4 which requires that s increase slowly enough, (but not
in"nitely slow) on Ķ

1
. Fig. 19 shows the slow trajectories of j (pa) and

j (pb) on H
1

under hypothesis H7. Suppose further that

H8: the s-coordinate of pa greater than the s-coordinate of pb implies
that q

1
(pa)(q

1
(pb).

This would be true, for example, if dw/dt is dependent essentially on
w
1
only, not on v

1
, which can be a!ected by the value of s. Using H3 we

see that such independence holds if w
=
(v) is almost independent of

v
1

along H
1
. H8 also holds if s decreases on H

1
much faster than

w
1

increases, so s+0 for most of the trajectory. H8 can fail to hold if
dw

1
/dt restricted to H

1
does depend in an essential way on s.
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Fig. 20. The cell 2 portion of Q`. From (H7) and (H8), q
1
(pa)(q

1
(pb) implies that

when the a and b trajectories on H
1

reach the knee M
1
(s) the cell 2 component of qa on

Ķ
2

is above the cell 2 component of qb on the same branch. The jump to H
2

does not
change this orientation. Since q

2
is the time to #ow to M

2
it follows that q

2
(qa)(q

2
(qb).

Under hypotheses H7 and H8, Q` may be orientation reversing. To
see this, we consider the second half of Q`, with a jump back to Ķ

1
and

a #ow along Ķ
1
. Let qa and qb be the points in j (M

1
)] Ķ

2
that are the

images of the points pa and pb in Ķ
1
]M

2
under the "rst half of Q`. H7

implies that the singular solutions originating at the cell 1 component
of qa, qb both jump into a small neighborhood of the point having
s-coordinate 0 and w

1
-coordinate m

1
(0) on Ķ

1
. After jumping, each

solution #ows until cell 2 reaches M
2
. The times of this #ow (q

2
(qa) and

q
2
(qb)) depend on the position of cell 2 on Ķ

2
when cell 1 jumps

downward. H8 implies that the w
2
-component for cell 2 is higher for

the a-trajectory. In other words, q
2
(qa)(q

2
(qb) (see Fig. 20). If this

di!erence is large relative to the nearness of the a and b solutions after
the jump to Ķ

1
then Q`(pb)'Q`(pa), so Q` reverses orientation (see

Fig. 21). Figure 24 shows a numerical approximation of the map Q in
this regime. Conditions guaranteeing orientation reversal are discussed
in Sect. 5.3. Figure 24 shows a numerical approximation of the the
graph of Q in this parameter regime.

Now suppose we allow s to decrease slowly enough on H
1

so that
H7 is violated (see Fig. 22 and compare with Fig. 19). The #ow on
Ķ
1

after the down-jump is as in Fig. 23. If H8 is also violated so
q
1
(pa)'q

1
(pb) then q

2
(qa)'q

2
(qb) and so Q`(pa)'Q`(pb), i.e. Q` is

orientation preserving. Figure 25 shows a numerical approximation of
the map Q in this regime. If H7 is violated but H8 holds, there may or
may not be orientation reversal. Though we still have q

2
(qa)'q

2
(qb),
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Fig. 21. The #ow on Ķ
1
of Q`. Both the a and b components on Ķ

1
start near M

1
(0). By

(H6) only the value of the s-coordinate is dependent on the time of #ow. If
q
2
(qa)(q

2
(qb), it follows that Q`(pa)(Q`(pb) and hence Q` is orientation reversing.

Fig. 22. Trajectories of j(pa) and j(pb) when (H7) is violated. When (H7) is violated then
the slow trajectories of j (pa) and j(pb) are not close to M

1
(0) when reaching the knee.

the a and b trajectories do not start su$ciently near each other (see
Fig. 23) and the b-trajectory may or may not overtake the a trajectory
in the longer time that it has to #ow.

We have now seen that under hypotheses H1}H8, the resulting
reduced singular PoincareH map may have (Q`)@(p)(0. In Sect. 5.3, we
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Fig. 23. An example of an orientation preserving Q` when (H7) is violated. If (H8)
holds (i.e. q

2
(qa)(q

2
(qb) ) it is still possible Q`(pb)'Q`(pa) since the a and b compo-

nents do not start from the same point on j (M
1
(s)).

Fig. 24. A numerical approximation of the map Q when Q` is decreasing. This "gure
was generated by taking initial conditions near EK

1
(s) for cell 1 and near the point

M
2

for cell 2. The initial condition for s was incremented from 0 to 1. For each s, Q(s)
was approximated by the value of s when the w

2
coordinate of the trajectory reached

a maximum.

will compute the slopes and provide conditions under which this
condition on the derivative holds. In addition, we will show that if p is
given in time coordinates then (Q~)@(p)"1 and D(Q`)@(p) D(1 in para-
meter ranges related to the above discussion. We shall assume these
properties in the description of behavior we give in the remainder of
this section.

516 T. LoFaro, N. Kopell



Fig. 25. A numerical approximation of the map Q when Q` is increasing. This "gure
was generated by taking initial conditions near EK

1
(s) for cell 1 and near the point

M
2

for cell 2. The initial condition for s was incremented from 0 to 1. For each s, Q(s)
was approximated by the value of s when the w

2
coordinate of the trajectory reached

a maximum.

Figure 26 illustrates the two possible forms of the graph of Q under
the derivative restrictions imposed above. In A, Q~(s*)(Q`(s*) and
Q` has an asymptotically stable "xed point. All points tend to this
"xed point under iteration corresponding to 1 :1 "ring of cell 1 and
cell 2. In B, Q~(s*)'Q`(s*) and the interval [Q`(Q~(s*)), Q~(s*)] is
forward invariant under iteration of Q and all points in the domain of
Q are mapped into this interval. Thus it is su$cient to restrict our
attention to this interval. The map Q is nonoverlapping (i.e. the graph of
Q` is completely below the graph of Q~) if and only if

Q~(Q`(Q~(s*)))'Q`(s*) (42)

(see Fig. 26C). The derivative restrictions given above insure that (42)
holds. If these conditions are relaxed then Q may be overlapping and
display chaotic behavior [23]. Maps having the qualitative features
illustrated in Fig. 26B were analyzed in [23] and shown to have very
di!erent behavior from the maps discussed in Sect. 4. In particular,
when Q is nonoverlapping the stable periodic solutions exhibited by
these maps are associated only with stable n : 1 behavior of the two
cells, with possible bistability of n : 1 and (n#1) :1 as some parameter
(such as amount of hyperpolarizing current) is varied. A typical bifur-
cation diagram is shown in Fig. 27. The black and gray lines indicate
distinct attracting periodic orbits. For parameter values having a single
attracting orbit, only black is shown. For example, at a"0.2 there
exists an attracting "xed point (black) and an attracting period 2 orbit
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Fig. 26. Possible con"gurations of the graph of Q. In A Q~(s*)(Q`(s*) and there
exists an attracting "xed point for Q`. All points tend to this "xed point under
iteration. This corresponds to 1: 1 "ring of cell 1 and cell 2. In B Q~(s*)'Q`(s*) and
the interval [Q`(Q~(s*)), Q~(s*)]. is forward invariant. This interval is labeled [a, b].
In C we restrict to the invariant interval [Q`(Q~(s*)), Q~(s*)]. to show that (42) holds.
In this scenario there exists at least one attracting periodic orbit of period n and
possibly a second attracting periodic orbit of period n#1. This corresponds to n : 1
and (n#1) : 1 "ring between cell 1 and cell 2.

(gray) but at a"0.4 there exists only an attracting period 2 orbit
(black). The bifurcation between these these two types of behaviors
occurs at approximately a"0.25.

The nonoverlapping regime corresponds to the behavior seen in the
motivating example given in Sect. 2. The bistability of period n and
n#1 orbits seen in Fig. 27 were also seen in the simulations of the
model discussed in Sect. 2.

Remark 5.1. =e can now see why maps with only n : 1 coordination have
the property that the burst time of the slow cell remains the same from
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Fig. 27. A typical bifurcation diagram for a family of functions Qa satisfying the
nonoverlapping condition. The black and gray lines indicate attracting periodic orbits.
For example, at a"0.2 there exists an attracting "xed point (black) and an attracting
period 2 orbit (gray) but at a"0.4 there exists only an attracting period 2 orbit (black).

burst to burst, while the maps with n :m coordination need not display this
kind of regulation. In the maps that display n :m coordination, the number
of bursts of the fast cell between bursts of the slow cell varies from cycle to
cycle. ¹his corresponds to variation ( from slow cycle to slow cycle) in the
position of the trajectory on Ķ

1
as it jumps to H

1
. If the trajectory jumps

from a lower value of w
1
, the time to reach M

1
is longer and this time is

(by de,nition) the burst time of the slow cell. By contrast, in the case of
maps with n : 1 coordination, the trajectory is strictly periodic, with the
same number of fast cycles per slow cycle. For each slow cycle the
trajectory then always jumps from the same point in the jump-up curve
and hence has a constant burst time. See the discussion in Sect. 6 for
further remarks.

5.3. Biophysical parameters and slopes of QB

We now undertake a more rigorous look at the reduced map Q to
identify the essential biophysical factors that determine each of the
scenarios discussed in Sect. 5.2. In particular, we will address the
following questions.

1. What is (Q~)@(p)?
2. When is Q`(s*)(Q~(s*)?
3. Under what conditions does H8 hold true; i.e. when is q

1
(p) a de-

creasing function of the s-coordinate of p?
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4. If H8 holds, what additional properties are necessary to insure that
(Q`)@(p)(0?

5. When H7 and H8 hold true, under what conditions is Q restricted to
Im(Q) nonoverlapping? In particular, when is !1((Q`)@(p)(0?

In order to keep the computation as simple as possible, we make
the following simplifying assumption.

H9: G
1
(v

1
, w

1
) is independent of v

1
on H

1
.

Remark 5.2. ¹his assumption simply says that the timescale function
j
w
(v

1
) is constant and that w

=
(v

1
),1 on H

1
(see (41)). ¹his assumption is

reasonable given the sigmoidal nature of w
=
(v

1
) and the role of j

w
(v

1
).

Assumptions H2, H4, H5, and H9 allow us to generalize the ideas of
Sect. 3.3 and introduce time coordinates on each branch of both cell 1
and cell 2. Using assumptions H2 and H5 the di!erential equation
describing the evolution of s on both ¸

1
and Ķ

1
is given by

ds
dt
"(1!s)/j

L
. (43)

Using H5 and H9 the di!erential equations on H
1

reduce to

ds
dt

"!s/j
H

(44)

dw
1

dt
"(1!w

1
)/j

w
. (45)

The jump function j: Ķ
1
>H

1
can be represented in several ways

depending on the coordinate system used to parameterize each branch.
A natural parameterization of both Ķ

1
and H

1
is found by using (s, w

1
)

coordinates. In this coordinate system, which we will refer to as
a spatial coordinate system, the jump map, denoted j

s
in these coordi-

nates, is simply the identity function since a jump from Ķ
1

to H
1

leaves
(s, w

1
) unchanged.

Assumptions H2, H5, and H9 allow a second coordinate system in
which s is replaced by a function of t. This is a time-based coordinate
system. Consider the solution s

L
(t; 0) to (43) satisfying s(0)"0. This

assigns to each t70 a unique s-value in [0, 1). Similarly, the solution
s
H
(t; 1) to (35) satisfying s (0)"1 assigns to each t70 a unique s-value

in (0, 1]. s
L
(t; 0) is monotone increasing and s

H
(t; 1) is monotone de-

creasing. Hence each is invertible with inverses given by

s~1
L

(s)"P
s

0

j
L

1!p
dp (46)
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&
&

&
"

&
&

&
"

and

s~1
H

(s)"P
s

1

!

j
H
p

dp (47)

respectively.
It follows that Ķ

1
can be parameterized by (t, w

1
) coordinates

simply by replacing s with s
L
(t; 0) in the spatial coordinate system. This

the the time-based coordinates of Ķ
1
. Similarly, the time-based coordi-

nates of H
1

are found by replacing s with s
H
(t; 1) in its spatial coordi-

nate system.
Using the commutative diagram below, we can compute the

representation of the jump function in time-based coordinates and
will denote it by j1

t
.

Ķ
1

H
1

(s,w
1
) j1s/id

&&&&&" (s,w
1
)

s
L

s
H

(t,w
1
) j1t

&&&&&" (t,w
1
)

(48)

From the commutative diagram in (48) we see that

j1
t
(t, w

1
)"(s~1

H 3
j1
s 3

s
L
(t; 0), w

1
)"(s~1

H 3
s
L
(t; 0), w

1
). (49)

It now follows from (43) and (44) that

C
LK ÇHÇ

(p) :"
dj1

t
dt

"!

j
H
(1!s

L
(t; 0))

j
L
s
L
(t; 0)

60 (50)

where p is the point on Ķ
1

with time-based coordinates (t, w
1
). Thus, as

in Sect. 4, the derivative of a jump is simply the compression ratio
associated with that jump.

The analysis presented above also applies to a jump from H
1

to Ķ
1
.

In this case if q
1
3H

1
then

C
HÇL

K
Ç
(q

1
) :"

dj1
t

dt
"!

j
L
s
H
(t; 1)

j
H
(1!s

H
(t; 1))

60. (51)

The time-based coordinate systems de"ned above extend to curves
on Ķ

1
and H

1
that can be parameterized by s. For example, the knee

M
1
(s) of H

1
can be parameterized by time since

M
1
(s)"M

1
(s
H
(t; 1)). (52)
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Note that this curve can be parameterized by t even though M
1

is not
invariant under the #ow on H

1
. In what follows we will be using these

coordinates to parameterize the slow stable manifold, it's image under
the jump map on H

1
, and the image of M

1
under the jump function

to Ķ
1
.

Using the same ideas as above for cell 2, we introduce time coordi-
nates on Ķ

2
and H

2
using the di!erential equations on each of these

branches. On Ķ
2

we use the dw
2
/dt equation of (41) on Ķ

2
with initial

condition j2
s
(M

2
) to de"ne the function w

L2
(t; j2

s
(M

2
)). This function

assigns to each t3[0, R) a w
2
-value and is monotone decreasing.

We take the knee M
2

of branch H
2

as a reference point for
introducing time coordinates on H

2
. However, instead of using the

di!erential equation describing motion on H
2

to de"ne time coordi-
nates, we change the sign on the right hand side to give

dw
2

dt
"!G

2
(v

2
, w

2
). (53)

This de"nes time coordinates so that each point is assigned a non-
negative t value. Let w

H2
(t;M

2
) denote the solution to this equation

with initial condition M
2
. If t is the time coordinate of a point q on H

2
,

then t is the time to #ow from q to M
2
. w

H2
(t;M

2
) is monotone

decreasing.
The computation of the time-based coordinate representation of

j2: Ķ
2
>H

2
is similar to that described above. In particular,

j2
t
(t)"w~1

H2
(w

L2
(t; j2

s
(M

2
))); (54)

if q
2

is a point on Ķ
2

with time coordinate t
2

and spatial coordinate
w
2
"w

L2
(t
2
; j2

s
(M

2
)) then

C
LK ÈHÈ

(q
2
) :"

dj2
t

dt
(t
2
)"!

GK
2
(w

2
)

G
2
(w

2
)
70. (55)

Here GK
2
(w

2
) is the vector "eld on Ķ

2
and G

2
(w

2
) is the vector "eld

on H
2
.

Using the framework established above, we can express the reduced
PoincareH map Q in time-based coordinates. Recall that Q~"f

2 3
f
1

where f
1
: SSM]M

2
>¸

1
]m

2
and f

2
: ¸

1
]m

2
>SSM]M

2
. Using

time-based coordinates the answer to question 1 above is quite simple.

Proposition 5.1. If p is a point on SSM]M
2

with time-based coordinate
t then (Q~)@(t),1.

Proof. Since p is expressed in time coordinates and the s di!erential
equation is the same on ¸

1
and Ķ

1
we get

Q~(t)"t#P
H
#P

L
(56)
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where P
H

and P
L

are the durations of burst and interburst intervals of
cell 2 respectively. Since Q~ corresponds to a cycle in which cell 2 does
not "re, P

H
#P

L
is constant and hence (Q~)@(t),1. K

Remark 5.3. ¹he fact that (Q~)@(t),1 can be interpreted as saying that
there is no compression associated with the jumps that comprise Q~. ¹his
is di+erent than in Sect. 4. ¹his di+erence follows from the fact that the
rate of increase of s on both ¸

1
and Ķ

1
is assumed to be identical and the

fact that time distance on both ¸
1

and Ķ
1

is computed in terms of s. ¹hus
each jump between ¸

1
and Ķ

1
leaves the time distance between two points

unchanged.
By contrast, in Sect. 4 the w

1
-variable was used to de,ne time distance

and the w
1

vector ,elds di+ered on ¸
1

and Ķ
1

(as they do in the
,ve-dimensional model). ¹hus each jump associated with P~ induced
a compression that caused the derivative to be di+erent from 1.

Each of the remaining questions concerns the nature of Q`; we
begin by describing the time coordinate representation of this function.
Recall that Q`"g

2 3
g
1

where g
1
: SSM]M

2
>M

1
] Ķ

2
and

g
2
: M

1
] Ķ

2
>SSM]M

2
. Let X(s) be the parameterization of SSM

by s. We can express both g
1

and g
2

in time coordinates since each of
X(s) on Ķ

1
, M

1
(s) on H

1
, j (X(s)) on H

1
, and Ķ

2
can each be param-

eterized using time coordinates. Let p3SSM have time coordinates
(t, X(s

H
(t; 1))) and let q

1
(t) denote the time to #ow from the point j (p) on

H
1

to the knee M
1
. We can express g

1
in time coordinates by

g
1
(t)"( j1

t
(t)!q

1
(t), q

1
(t)) (57)

where j1
t
(t) denotes the jump function on cell 1. The interpretation of

(57) is as follows. The "rst component of g
1

maps the time coordinate
on X(s) to the time coordinate on M

1
. This is found by subtracting q

1
(t),

the time to #ow to M
1

from j (p), from the time coordinate of j(p) given
by j1

t
(t). The second component of g

1
returns the time coordinate on

Ķ
2

at the end of the #ow portion of g
1
. Since the jump portion of

g
1

maps M
2

to the reference point j (M
2
) on Ķ

2
, this is simply q

1
(t).

Now let (q
1
, q

2
) be a point on M

1
] Ķ

2
having time coordinates

(t
1
, t

2
). Then

g
2
(t
1
, t

2
)"j1

t
(t
1
)#j2

t
(t
2
) (58)

The "rst term of this sum converts from time coordinates on H
1
to time

coordinates on Ķ
1

(the jump from H
1

to Ķ
1
) and the second term

converts from time coordinates on Ķ
2

to H
2

(the jump from Ķ
2

to H
2
).

These are added since j2
t
(t
2
) is the time to #ow to M

2
from the point q

2
.

The following proposition addresses question 2 and is the ana-
logue of Proposition 4.3 which gave su$cient conditions for the
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four-dimensional model of Sect. 4 to be in case II. The condition
imposed below is similar to that imposed in Proposition 4.3; we
demand that the additional time that cell 2 #ows on H

2
after being

released from inhibition be small relative to the standard interburst
interval of cell 2. Let t* be the time coordinate of s* on Ķ

1
. Then the

minimal burst duration of cell 2 is j2
t
(q

1
(t*)).

Proposition 5.2. If j2
t
(q

1
(t*))!P

H
(P

L
then Q`(t*)(Q~(t*).

Proof. Let g
1
(t*)"(t*

1
, t*

2
) so that Q`(t*)"j1

t
(t*
1
)#j2

t
(t*
2
). Equation

(45) implies that j1
t
(t*
1
)6t* (since the #ow on H

1
decreases s) and thus

Q`(t*)6t*#j2
t
(t*
2
). (59)

Equation (57) implies that t*
2
"q

1
(t*) and hence by assumption

j2
t
(q

1
(t*))(P

H
#P

L
. Therefore

Q`(t*)(t*#P
H
#P

L
"Q~(t*). (60)

K

We next proceed with question 3 which describes the nature of q
1
.

Proposition 5.3. If j
H

is su.ciently small relative to j
w
, then q@

1
(t)(0. If

j
w

is su.ciently small relative to j
H
, then q@

1
(t)'0.

Proof. Let the time coordinate representation of the slow stable mani-
fold be given by w

1
"X(s)"X(s

L
(t; 0)) and let p have time coordinates

(t, X(s
L
(t; 0)) on the slow stable manifold. Since q

1
(t) is the time to #ow

from j1(p) to M
1

on H
1

it is implicitly de"ned by

w
H
(q

1
(t);X(s

L
(t; 0)))"M

1
(s
H
(q

1
(t); s

L
(t; 0))) (61)

where w
H
(t;w

0
) is the solution of (45) with initial condition w

0
. Since

the jump from Ķ
1

to H
1

leaves s-coordinates unchanged, s
L
(t; 0) is the

s-coordinate of j1(p) on H
1

and j1(p) has time coordinate j1
t
(t) (see (48)).

Thus we can use the group property of #ows to rewrite (61) as

w
H
(q

1
(t);X(s

L
(t; 0)))"M

1
(s
H
( j1

t
(t)#q

1
(t); 1)). (62)

Di!erentiating (62) implicitly yields

q@
1
(t)"

dM
1

ds
Ls

H
Lt

dj1
t

dt
!

Lw
H

Lw
1

dX
ds

Ls
L

Lt
Lw

H
Lt

!

dM
1

ds
Ls

H
Lt

. (63)

Since Lw
H
/Lt'0, Ls

H
/Lt(0 and M@

1
(s)'0, the denominator of (63) is

positive. Thus the sign of q@
1
(t) is determined by the numerator of (63).
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The terms in the numerator of (63) satisfy the following:

1. dM
1
/ds'0 by (H3),

2. Ls
H
/Lt(0 by (H2),

3. dj1
t
/dt(0 by (50),

4. Lw
H
/Lw

1
'0 by (45),

5. dX/ds'0 by (H3), and
6. Ls

L
/Lt'0 by (H2).

Only items 2}4 in the above list depend on j
H

and j
w
. From (44) we

compute that s
H
(t; 1)"e~t@jH and hence

Ls
H

Lt K
(j
t
Ç(t)`qÇ(t)

;1)

"

1
j
H

e~(j
t
Ç(t)`qÇ(t))@jH. (64)

From (45) we get that w
H
(t;w

1
)"1!(1!w

1
)e~t@j8 and thus

Lw
H

Lw
1
K
(qÇ(t)

; X (sL(t; 0)))
"e~qÇ(t)@jw.

(65)

By substituting these and the expression for dj1
t
/dt given in (50) we see

that the numerator of (63) can be written as

dM
1

ds
1!s

L
(t; 0)

j
L
s
L
(t; 0)

e~(jÇ
t
(t)`qÇ(t))@jH!

dX
ds

Ls
L

Lt
e~qÇ(t)@jw. (66)

We conclude that if j
H

is su$ciently small relative to j
w
, then q@

1
(t)(0

and if j
H

is su$ciently large relative to j
w
, then q@

1
(t)'0. K

We now proceed with question 4. Since the derivative of each jump
is the compression ratio associated with that jump (see (50), (51), and
(55)), we get that

Dg
1
(t)"[C

L
K
ÇHÇ

(p)!q@
1
(t), q@

1
(t)] (67)

and

Dg
2
(t
1
, t

2
)"C

C
HÇL

K
Ç
(q

1
)

C
LK ÈHÈ

(q
2
)D . (68)

If g
1
(p)"(q

1
, q

2
) and (q

1
, q

2
) has time coordinates (t

1
, t

2
) then

(Q`)@(t)"C
LK ÇHÇ

(p)C
HÇL

K
Ç
(q

1
)!q@

1
(t)[C

HÇL
K
Ç
(q

1
)!C

LK ÈHÈ
(q

2
)]. (69)

The "rst term of this di!erence is non-negative (see (50) and (51)) and
the bracketed quantity of the second term is non-positive (see (51) and
(52)). Thus a necessary condition to insure that (Q`)@(t)60 is q@

1
(t)60.

To insure that (Q`)@(t) is strictly negative we need to be more careful
since q@

1
(t) and the compression ratios for cell 1 depend of the rate

constant j
H
.
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Proposition 5.4. If j
H

is su.ciently small then (Q`)@(t)(0.

Proof. Using the de"nitions of C
L
)

ÇHÇ
and C

HÇL
)

Ç
given in (50) and (51)

and the de"nitions of s
L

and s
H

derived from (43) and (44) we get that

lim
jH?0

C
L
)

ÇHÇ
(p)C

HÇL
)

Ç
(q

1
)" lim

jH?0

e~t@jL

1!e~t@jL

e~tÇ@jH

1!e~tÇ@jH
"0 (70)

and

lim
jH?0

C
HÇL
)

Ç
(q

1
)"! lim

jH?0

j
L
e~tÇ@jH

j
H
(1!e~tÇ@jH)

"0. (71)

Thus

lim
jH?0

(Q`)@(t)"C
L
)

ÈHÈ
(q

2
) lim
jH?0

q@
1
(t). (72)

From (55) C
LK ÈHÈ

(q
2
)'0 and by Proposition 5.3

lim
jH?0

q@
1
(t)60. (73)

We are done if we can show that this limit is strictly negative. Only
Ls

H
/Lt and dj1

t
/dt depend on j

H
in (63). Using (43), (44), and (50) we get

lim
jH?0

Ls
H

Lt K
j
t
Ç(t)`qÇ(t)

" lim
jH?0

e~(j
t
Ç(t)`qÇ(t))@jH

j
H

"0 (74)

and

lim
jH?0

A
Ls

H
Lt K

j
t
Ç(t)`qÇ(t)

B
dj1

t
dt

" lim
jH?0

1!s
L
(t; 0)

j
L
s
L
(t; 0)

e~(j
t
Ç(t)`qÇ(t))@jH"0. (75)

Thus

lim
jH?0

q@
1
(t)"!

Lw
H

Lw
1

dX
ds

Ls
L

Lt
Lw

H
Lt

(0 (76)

and (Q`)@(t)(0 if j
H

is su$ciently small. K

In the special case of instantaneous reset, (69) reduces to a simpler
form. In this scenario, the s coordinate of g

1
is identically 0 at the

conclusion of the #ow portion of g
1
. This corresponds to s

H
(t; 1)"0 in

(51) so that
C

HÇL
K
Ç
(t
1
)"0. (77)
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Substituting this into (69) yields

(Q`)@(t)"q@
1
(t)C

LK ÈHÈ
(t
2
). (78)

Since instantaneous reset corresponds to j
H
P0 it follows from

Proposition 5.3 that (Q`)@(t)(0.
We conclude with the answer to question 5.

Proposition 5.5. If j
H

is su.ciently small and j
L
is su.ciently large then

!1((Q`)@(t)(0 and thus Q is nonoverlapping.

Proof. Equations (72) and (76) imply that

lim
jH?0

(Q`)@(t)"!

Lw
H

Lw
1

dX
ds

Ls
L

Lt
Lw

H
Lt

C
LK ÈHÈ

(q
2
). (79)

Using the solutions to (34) and (36) we get

lim
jH?0

(Q`)@(t)"
(1!X(1!e~t@jL))X@(1!e~t@jL) e~t@jL

j
w
j
L

C
LK ÈHÈ

(q
2
). (80)

Hypothesis (H3) guarantees that X@(0)90 and thus by choosing
j
L

su$ciently large we can make this quantity less than 1 in absolute
value. Thus for j

H
su$ciently small and j

L
su$ciently large

!1((Q`)@(t)(0. K

6. Discussion

The calculations used in this paper use a &&singular PoincareH map,''
which combines estimates from the #ow on a slow manifold with
estimates of &&compression'' across a jump between branches of a slow
manifold. The notion of &&compression across a jump'' was central in
the work of Somers and Kopell [31] with two-dimensional relaxation
oscillators; in that case, however, the #ow on each slow branch can be
seen as a pair of uncoupled one-dimensional #ows. In the current
problem and in related work [32], there is more than one slow variable
in one or more of the cells and the emergent dynamics depends
critically on the interactions of the slow variables. Other related papers
that produce dynamics similar to the ones in this paper from voltage-
gated conductance equations include [27, 34, 36]. These are all simula-
tion papers.

In this paper, the crucial slow variables are the recovery time of
each of the cells, and the rise time and reset time of the slow ionic
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current i
h
. All of these processes are slow relative to the rate of change

of the voltage, but there are not orders of magnitude di!erence among
the slow rates themselves. However, more subtle di!erences in these
rates are important in determining the dynamics. A su$ciently slow
rise time of the i

h
(relative to the recovery time of cell 1) leads to

a singular PoincareH map that is essentially one-dimensional, while
a su$ciently fast reset time of that current, during the activation of
cell 1, leads to the timing regulation discussed in Sect. 5 and below.

Computations similar in spirit were used by Terman et al. [32] in
their work on the e!ects of slowly decaying inhibition. Again, there are
several slow variables whose rates of change have similar orders of
magnitude, and whose sizes are critical in determining some property
of the system (in that case, whether the synchronous solution is stable).
In that paper, the relevant slow processes are the decay time of the slow
inhibition, recovery time of the cells, and the burst time of the cells; in
di!erent parameter regimes, di!erent combinations of those para-
meters govern stability.

The reduction and analysis allow one to see with much greater
clarity how the time scales interact to produce behavior with poten-
tially important functional consequences. In the current paper, the
functional issue concerns the constancy of the burst time of the slow
cell (cell 1) from cycle to cycle. Though the data that inspired this work
were produced in circumstances that do not necessarily occur in
physiological ranges, they raise issues related to the coordination of the
fast pyloric rhythm and the slow gastric rhythm in the stomatogastric
ganglion [35]. Recent models [27] suggest that the slow rhythm
depends for its existence on the coupling with the faster rhythm; to the
extent that the burst length of the gastric rhythm helps time the
neurons of the circuit, the timing regulation is an important issue.
Furthermore, burst length can also a!ect the size of interburst inter-
vals, due to currents that prolong the latter when the former is long
[36]; thus regulation of burst lengths can be important in other aspects
of timing regulation as well.

Figure 28 illustrates the change in burst length when coordination
is not n : 1. The burst length of cell 1 (part A) is long when it "res after
2 bursts of cell 2, but is shorter when it "res after only one burst of
cell 1. Figure 28 was generated using a modi"cation of the equations
given in the Appendix in the absence of i

h
. For cell 1 the function j

w
(v

1
)

was modi"ed in such a way as to increase the burst length while leaving
the interburst time relatively unchanged. This increases the time be-
tween points on branch H

1
and thus reduces the compression asso-

ciated with the jump from branch Ķ
1

to H
1
. The a!ect of this is

two-fold. First it increases the parameter range in which non-integer
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Fig. 28. A change in burst duration. A: The voltage of cell 1 (v
1
) plotted as a function of

time (t). B: The voltage of cell 2 (v
2
) plotted as a function of time (t). In cases of n:

m coordination the burst length of the excitable cell (cell 1) can change from burst to
burst. Note that when cell 1 "res after 2 bursts of cell 2 the burst length is long, but
when cell 1 "res after 1 burst of cell 2 the burst length is short.
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subharmonics can be found. Secondly, it makes the change in burst
length from burst to burst more signi"cant.

The reduction and analysis also allow one a clearer picture of how
changes in biophysical parameters results in changes in the dynamics.
In addition to insights about n : 1 versus n :m coordination, the reduced
map, plus the reduction procedure, allows one to see what determines
the n in the n : 1 regime. In [23] it is shown that a one parameter family
of non-overlapping maps having the qualitative features of the map
Q (see Fig. 26B) undergoes a sequence of period-adding bifurcations as
the discontinuity of the map is shifted rightward. In addition, it is
shown that intervals of bistability occur prior to each bifurcation.

The discontinuity in the reduced PoincareH map Q described in this
paper occurs at the point s* which is the intersection of the slow stable
manifold on Ķ

1
and the projection onto Ķ

1
of the knee m

1
(s) on branch

¸
1
. Thus, in the parameter regime where !1((Q`)@(t)(0, period-

adding bifurcations occur as the value of s* is increased. In [22] it is
shown that s* increases as one increases the parameter I representing
the level of hyperpolarizing current applied to cell 1 (in the limiting
case where SSM"EK

1
(s)). Period-adding and hysteresis was observed

in the numerical investigation of the model equations described in the
Appendix [21, 22] when the parameter I was increased.

7. Appendix

The equations used in the simulations are slight modi"cations of the
non-dimensional Morris-Lecar equations [26, 29]. We denote the
voltages of the LP and PD cells by v

1
and v

2
respectively. The w

1
and

w
2

variables are loosely modeled on the activation of an outward
current. The level of i

h
is called s. The equations used in these simula-

tions are slight modi"cations of those used in [21] and are

dv
1
/dq"F

1
(v

1
, w

1
; I

1
)#H(v

1
, s)#am

=
(v

2
) (v

syn
!v

1
)

dw
1
/dq"eG

1
(v

1
, w

1
)

ds/dq"e[s
=
(v

1
)!s]/j

s
(v

1
) (81)

dv
2
/dq"F

2
(v

2
, w

2
; I

2
)#am

=
(v

1
)(v

syn
!v

2
)

dw
2
/dq"eG

2
(v

2
, w

2
).

The basic currents and recovery dynamics have the form:

F
i
(v, w;I)"I#g

k
w(v

k
!v)#gl(vl!v)#g

ca
m

=
(v)(1!v), (82)

G
i
(v, w)"[w

=
(v; vN

3
)!w]/j

w
(v) (83)
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for i"1, 2. The functions m
=
(v), w

=
(v;vN

3
), and j

w
(v) are given by

m
=

(v),
1
2 A1#tanhA

v!vN
1

vN
2
BB, (84)

w
=

(v; vN
3
),

1
2 A1#tanhA

v!vN
3

vN
4
BB, (85)

j
w
(v),1/coshA

v!vN
5

2vN
4
B. (86)

The values of the cell independent constants are vN
1
"!0.01, vN

2
"0.15,

vN
4
"0.3, vN

5
"0.22, g

k
"2, v

k
"!0.7, gl"0.5, vl"!0.5, g

ca
"10.1,

e"0.1, a"0.5 and v
syn

"!0.1.
Di!erent values of vN

3
were used for cell 1 and cell 2 to insure that

cell 2 was not able to burst when inhibited by cell 1 (see H1). For cell
1 we let vN

3
"0.12 and for cell 2 we let vN

3
"0.0. We set I

2
"0.35 to

insure that cell 2 oscillates in the absence of inhibition; I
1

was varied.
The e!ect of i

h
has the form

H (v
1
, s)"g

s
s(v

s
!v

1
) (87)

with g
s
"0.5 and v

s
"0.3. The dynamics of the i

h
current are de"ned

by the functions j
s
(v) and s

=
(v) which are given by

j
s
(v)"

33.33
(1#e(v~vÏ)@vÎ)

, (88)

s
=

(v)"
1

1#e(v~vÑ)@vÐ
(89)

where vN
6
"0.04, vN

7
"0.05, vN

8
"0.075, and vN

9
was varied.

The numerical simulations were done using the software PHASE-
PLANE [7] and dstool [12]. The integration method employed was
either a fourth order Runge}Kutta with small step size or the variable
step size Gear's method.
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