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Cells that produce intrinsic theta oscillations often contain the
hyperpolarization-activated current Ih . In this article, we use models and
dynamic clamp experiments to investigate the synchronization properties
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of two such cells (stellate cells of the entorhinal cortex and O-LM cells
of the hippocampus) in networks with fast-spiking (FS) interneurons.
The model we use for stellate cells and O-LM cells is the same, but the
stellate cells are excitatory and the O-LM cells are inhibitory, with in-
hibitory postsynaptic potential considerably longer than those from FS
interneurons. We use spike time response curve methods (STRC), ex-
panding that technique to three-cell networks and giving two different
ways in which the analysis of the three-cell network reduces to that of
a two-cell network. We show that adding FS cells to a network of stel-
late cells can desynchronize the stellate cells, while adding them to a
network of O-LM cells can synchronize the O-LM cells. These synchro-
nization and desynchronization properties critically depend on Ih . The
analysis of the deterministic system allows us to understand some ef-
fects of noise on the phase relationships in the stellate networks. The
dynamic clamp experiments use biophysical stellate cells and in silico
FS cells, with connections that mimic excitation or inhibition, the latter
with decay times associated with FS cells or O-LM cells. The results ob-
tained in the dynamic clamp experiments are in a good agreement with
the analytical framework.

1 Introduction

The hippocampus and entorhinal cortex (EC) are two major functional units
of the medial temporal lobe memory system (Witter & Wouterlood, 2002).
In these structures, the neural mechanism of memory is believed to be
organized by the theta rhythm (4–12 Hz), which has been shown to exist in
the EC and the CA1 region of the hippocampus in vivo and in vitro (Adey,
Sunderland, & Dunlop, 1957; Adey, Dunlop, & Hendrix, 1960).

In both EC and the CA1, there is a cell type known to be able to au-
tonomously produce oscillations in theta frequency range. In CA1, it is the
oriens lacunosum-moleculare inhibitory interneurons (O-LM), shown to be
critical for internal generation of the theta rhythm within area CA1 (Gilles
et al., 2002). In medial entorhinal cortex (mEC) it is spiny stellate cells, also
shown to possess robust theta-rhythmic properties (Dickson, Magistretti,
Shalinsky, Hamam, & Alonso, 2000). However, the ability of individual
cells to produce a theta rhythm does not imply the ability of a network to
produce a coherent theta rhythm. Indeed, Rotstein et al. (2005) have shown
through simulations that models of O-LM cells do not robustly synchronize
unless there are other kinds of interneurons in the network, such as fast-
spiking (FS) cells. The purpose of this article is to look more closely at the
synchronization properties of networks that include these theta-producing
cells in order to understand how the stellate cells and the O-LM cells inter-
act with other cells in the superficial entorhinal cortex and hippocampus,
respectively, to produce coherent theta and other rhythms.
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Both of the cells described above have the hyperpolarization-activated
current (h-current, Ih), thought to be important for the creation of the theta
rhythm (White, Budde, & Kay, 1995; Dickson et al., 2000; Gillies et al., 2002).
In these works, it has been shown that the interaction between Ih and other
cation currents plays a critical role in subthreshold oscillations in stellate
cells and in intrinsic membrane potential oscillations in O-LM cells. In this
work, we explore how Ih interacts with inhibition to shape synchronization
properties.

The effects of ionic currents on synchronization have been explored
in other work (Crook, Ermentrout, & Bower, 1998; Ermentrout, Pascal,
& Gutkin, 2001; Kopell, Ermentrout, Whittington, & Traub, 2000; Acker,
Kopell, & White, 2003; Lewis, 2003). When the coupling is weak, this can
be done with methods that average the effects of spikes over the cycle,
but, as shown in Acker et al. (2003), this technique fails if the coupling is
strong. One method that does not require weak coupling uses a spike-time-
response curve (STRC), a function that measures the effects of a spike of
a presynaptic cell on the timing of the next spike of the postsynaptic one.
If there is no “memory” of the previous spike, STRCs can be used to con-
struct spike time difference maps (STDM), which convey information about
whether a pair of cell synchronizes (details are in section 2).

The STRCs and STDMs are a bridge between cellular biophysics and the
behavior of a network in both in silico models and in vitro experiments.
These techniques were used in Acker et al. (2003) and Netoff et al. (2004) to
understand how the synchronization of a pair of stellate cells depends on
key ionic currents important to the theta rhythm. In this article we expand
that technique to networks involving more than one cell type and more
than two neurons. We start with a network of two O-LM cells to provide a
deeper understanding of the Rotstein et al. (2005) results and a foundation
for and contrast to the work then presented on the larger networks: (1) a
pair of stellate cells and a FS interneuron and (2) a pair of O-LM cells and an
FS interneuron. The theoretical work on the EC network is supplemented
by new experimental data produced using a dynamic clamp. These data
both confirm the basic ideas of the model and present a puzzle that the
theory is able to explain.

For the rest of the article, we refer to O-LM cells as O-cells, stellate cells as
S-cells, and FS interneurons as I-cells. Here we consider three networks (see
Figure 1). The first is mutual slow (20 ms decay time) GABAA-mediated
inhibition of a pair of O-LM cells (see Figure 1A). The next is a network
with two S-cells connected with one I-cell with (5 ms decay time) GABAA-
mediated synapses from I-cell to S-cells and fast (3 ms decay time) AMPA-
mediated synapse from S-cells to I-cell (see Figure 1B). The third is a network
with two O-cells, each mutually coupled to an FS inhibitory cell with slow
GABAA-mediated synapses from the O-cell to the I-cell and fast GABAA

synapse from the I-cell to the O-cell (see Figure C). In the second case,
we show that the network can sometimes be reduced to that of a pair of
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Figure 1: The networks: (A) O-O network with slow GABAA-mediated
synapses; (B) the S-I-S network with fast GABAA synapse from the I-cell to
the S-cell and fast AMPA-mediated excitatory synapse from the S-cells to the
I-cell; (C) the O-I-O network with slow GABAA-mediated synapses from the
O-cell to the I-cell and fast GABAA synapse from the I-cell to the O-cell.

stellate cells coupled by inhibition, perhaps also with an artificial inhibitory
autapse on each stellate cell. However, aspects of the full three-cell system
must be taken into account to understand the effects of noise, as occurs in
the biological system. In the third case, the analysis of the three-cell system
is a perturbation of the analysis of the network with one O-LM cell and
one FS cell; the analysis shows why the I-cell synchronizes the two O-cells
and shows the role of the long decay time of the inhibition produced by the
O-LM cells.

2 Methods

2.1 Computational

2.1.1 Models of Neurons and Networks. The biophysical models of O-, S-,
and I-cells use single-compartment representations of ionic currents that
govern changes of membrane potential. They contain the standard com-
ponents of the Hodgkin-Huxley model, fast Na+, delayed-rectifier K+, and
leak currents. In addition, S-cells and O-cells contain the hyperpolarization-
activated current (Ih), which consists of fast and slow components, and an
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extra inward current active during the interspike interval. For the stel-
late cell, this is the persistent sodium current (INap) as in previous models
(Dickson, Magistretti, Shalinsky, Fransén, et al., 2000). For the O-LM cells we
use the same formulation to model the extra inward current, although O-LM
cells are not known to have the specific INap current (Saraga, Wu, Zhang, &
Skinner, 2003). An additional stationary current component Iapp is chosen
such that the neuron spikes periodically with a desired natural frequency.
Values of the parameters are taken mainly from Acker et al. (2003) and
Rotstein et al. (2005). The dynamic equations and parameters are summa-
rized in the appendix.

It is known that both S- and O-neurons exhibit subthreshold oscilla-
tions that constrain the firing rate to 5 to 20 Hz over a large range of lev-
els of depolarization (Lacaille, Williams, Kunkel, & Schwartzkroin, 1987;
Maccaferri & McBain, 1996; Alonso & Garcı́a-Austt, 1987; Dickson,
Magistretti, Shalinsky, Hamam, et al., 2000). In most of the simulations,
we chose the natural frequency of the S- and O-cells to be approximately
10 Hz. However, the results are robust to changes in these natural frequen-
cies. The S-cells are connected to the I-cells using fast AMPA glutamatergic
synapses; the I-cells are connected to S-cells using fast GABAergic inhibition
(see Destexhe, Mainen, & Sejnowski, (1998) and Terman, Kopell, and Rose
(1998) for models). Evidence for these connections comes from subthresh-
old responses of S- and I-cells to synaptic inputs (Jones & Buhl, 1993; Traub,
Whittington, Colling, Buzsaki, & Jefferys, 1996; Cunningham, Daries, Buhl,
Kopell, & Whittington, 2003), although it is not known whether excitatory
postsynaptic potentials (EPSPs) onto the I-cells come from S-cells or pyra-
midal cells. The I-cells were connected to the O-cells using the same model
as in Rotstein et al. (2005). The O-cells are connected to each other and to the
I-cells using slow (but still GABAA-mediated) GABAergic inhibition (Hájos
& Mody, 1997). The synapse decay time (defined as the time it takes for
the synaptic conductance to decrease to 37% of its maximum value) for the
fast inhibition is taken to be approximately 5 ms, the measured value from
the experimental data presented with this article. The synapse decay time
for the slow inhibition is taken to be approximately 20 ms, the decay time
measured for O-LM synapses onto pyramidal cells. The decay time of in-
hibitory postsynaptic potentials (IPSPs) from these cells onto interneurons
has not been measured (however, see further discussion in Rotstein et al.,
2005). Intermediate decay times of inhibition are also discussed.

2.1.2 Spike Time Response Method. The spike time response curve (STRC)
measures how much a given perturbation changes the timing of a period-
ically spiking real or model cell (Acker et al., 2003). The input arrives a
time � after the cell has spiked. We denote by f (�) the difference between
the perturbed interspike interval and the natural interspike interval T (pe-
riod of uncoupled cell); thus, f (�) > 0 means the spike is delayed, and
f (�) < 0 means the spike is advanced. The graph of the function f (�) is
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Figure 2: (a) Construction of spike time response curves. � is the time at which
the inhibitory pulse arrives. T is the natural (unperturbed) interspike interval.
f (�) is the difference between the interspike interval perturbed by the inhibitory
pulse and T . (b) Spike time difference map is mapping that takes the difference
in timing between the spikes of the two cells on one cycle (�) to the difference
between those times on the next cycle (�̄).

the STRC (see Figure 2A). STRCs are essentially the same, up to a factor,
as phase response curves (Ermentrout et al., 2001; Winfree, 1980); we find
it more natural to work directly with time in a context of hybrid three-cell
networks studied in this article. In what follows, we deal with several types
of cells. Unless it is clear from the context, the corresponding STRC function
will be denoted by f AB(�), where A and B refer to the presynaptic cell and
the postsynaptic cell, respectively.

We now consider a pair of cells that each fire periodically and are mu-
tually coupled. Under some assumptions, discussed below, we can form a
spike time difference map (STDM). The STDM takes the difference � in the
spike times of the two cells in one cycle to that difference �̄ in the next cycle
(see Figure 2B). We write the map as

�̄ = � + FAB(�). (2.1)
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The equilibrium state of equation 2.1, defined by

FAB(�) = 0, (2.2)

is stable if

−2 < F ′
AB(�) < 0. (2.3)

Otherwise, the equilibrium state is unstable (Strogatz, 1994). For more de-
tails about this method, see Acker et al. (2003).

Spike time response curves were obtained using custom software im-
plemented in C++. Numerical integration was performed using standard
adaptive step-size Runge-Kutta algorithm. The results of the simulations
were visualized using Gnuplot’s graphic interface and Matlab.

The STRCs and STDMs are influenced by all parameters in the system.
The parameters that play the largest role in the analysis are g (the amplitude
of the inhibitory conductance), gh (the conductance of the h-current), Iapp
(applied DC current), and τ (the decay time of the inhibition). Unless we
deal with one type of synapse, the synaptic amplitude is denoted by gXY,
where X and Y are the pre- and the postsynaptic neurons, respectively. In
the simulations below, τ , g, and gh are varied independently, while Iapp is
varied simultaneously with gh to preserve the natural frequency (see the
appendix).

2.2 Experimental. Methods in this article are similar to those used in
Netoff et al. (2004). More detailed descriptions can be found in that article.
All experimental results were obtained with entorhinal cortex stellate cells.
The O-LM cells were assumed to be sufficiently similar in their intrinsic
properties to stellate cells that STRC curves could be measured by inputs
to stellate cells. The differences between the stellates and the O-LM cells
in the networks are the kind of input that the cells receive. For example,
the O-LM cells get input from other O-LM cells, which is inhibitory with a
decay time of 20 ms. The stellate cells get only fast inhibition, with a decay
time of 5 ms.

2.2.1 Electrophysiology. All experiments were conducted as approved
by the Boston University Institutional Animal Care and Use Commit-
tee. Long-Evans rats 14 to 21 days old were anesthetized with isoflurane
and decapitated. The brain was removed and chilled in ACSF (in mM,
126 NaCl, 1.25 NaH2PO4, 1.4-2 MgSO4, 26 NaHCO3, 10 Dextrose, 2 CaCl2)
and then sliced using a Vibratome to 350 µm thickness. Slices were bathed
in a 34◦C bath for 30 minutes and then let rest at room temperature for
30 minutes before experiments. Slices were then transferred to a heated
(34–36◦C) chamber (Warner Instruments, Hamden, CT), mounted on a fixed
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microscope stage. Slices were perfused with heated ACSF aerated with
95% O2 and 5% CO2. Neurons within slices were visualized using dif-
ferential interference contrast video microscopy (Zeiss AxoSkop FS2+,
Dage/MTI CCD camera). Whole cell patch clamp recordings were ob-
tained using patch pipettes (4–6 M�) fabricated from borosilicate glass
(1.0 O.D. 0.75 I.D., Sutter Instruments, Novato, CA) and filled with
(in mM), 120 K-gluconate, 10 KCl, 10 HEPES, 4 Mg-ATP, 0.3 Tris-GTP,
10Na2 − phospocreatine, and 20 creatine kinase and brought to pH 7.25
with KOH.

Recordings of stellate cells were made from the cell-dense layer 2. Stel-
late cells were identified electrophysiologically under current clamp, based
on the presence of slow, inward-rectifying cation current (Ih) and brief
first-spike latency (Alonso & Klink, 1993). All neurons included in this
study were identified as S-cells. All the experiments were done without
any pharmacological blockers of background activity. In previous work on
the construction of STRCs in stellate cells, such blockers were found not to
change the qualitative behavior of the results (Netoff et al., 2004).

2.2.2 Dynamic Clamp and Spike Time Response Curves. A real-time exper-
imental control system (Dorval, Christini, & White, 2001) was used for a
number of manipulations in these experiments, including controlling spike
rate, delivering artificial synaptic conductance inputs, and building hybrid
neuronal networks. The system is built on top of a real-time version of the
Linux operating system. It is publicly available and can be downloaded
from our web site (http://bme.bu.edu/ndl). The dynamic clamp was run
at 10 kHz with a jitter on the order of 10–15 µs and response latency of one
time step.

Spike time response curves were generated by delivering artificial in-
hibitory conductance inputs (IPSGs) to periodically firing neurons and
measuring induced changes in spike timing. Artificial synaptic inputs were
delivered only once per six firing cycles to minimize interactions of the
synaptic inputs to allow us to track and control the baseline firing rate (see
below) and confirm that the effects of artificial synaptic inputs lasted only
one cycle (Netoff et al., 2004). The phase of the synaptic input was cho-
sen using a pseudo-random Sobol sequence (Press, Teukolsky, William, &
Brian, 1992) to sample the phase interval optimally with a finite number of
choices.

The synaptic conductance waveform used followed the form gsyn =
gs(e−t/τr − e−t/τ )/k, where gs is the maximal synaptic conductance, t is the
time since the initiation of the synaptic event, τr is the synaptic rise time
constant, τ is the synaptic decay time constant, and k is a normalization fac-
tor. Synaptic time constants used were measured directly from spontaneous
synaptic events in the S-cells as previously reported (Netoff et al., 2004). We
found τr = 2.5 ms and τ = 5 ms for IPSGs. The current injected is calcu-
lated in real-time Is = gsyn(Vm − Vs), where Vm is membrane potential and
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Vs is the synaptic reversal potential. This signal was scaled appropriately,
converted to an analog signal, and passed to the current-drive channel of
the bridge-balance amplifier (Axon Instruments 700B, Union City, CA). The
measured value of Vm was updated, and a new value of Is calculated and de-
livered, at a clock rate of 10 kHz. For EPSGs, τr = 1.68 ms and τ = 6.21 ms
were used. The reversal potentials of excitatory and inhibitory synapses
were 0 mV and −70 mV, respectively.

The experiments measuring STRCs were done at a control period of
100 ms, while the ones concerning antiphase (see Figure 8) used a baseline
period for an uncoupled cell at about 137 ms. The latter were done first
and showed the antiphase, as expected. However, it was difficult to get
the uncoupled stellate cells to fire periodically at that slow rate, and so the
STRC experiments were done at a higher control frequency.

The h-current was altered by blocking with ZD7288 and by adding that
current artificially with the dynamic clamp. Unfortunately, the blocking
experiment was not technically possible because ZD7288 depolarizes the
cell, which can then compensate using the dynamic clamp’s spike rate con-
troller. However, the neurons consistently went into depolarization block
after 1 or 2 minutes, preventing a good estimation of the STRC using
our technique. Addition of extra h-current was done as in Dorval et al.
(2001).

Spike time response curves were determined from responses to hundreds
of artificial synaptic perturbations. Both the x-values (time of synaptic input
minus time of last postsynaptic action potential) and y-values (change in
timing of next action potential, relative to the unperturbed value) were
typically normalized by the average unperturbed interspike interval. The
average values of STRC were fit as explained in curve fitting section of the
appendix.

3 Results

3.1 O-O Network. In this section we consider a network that consists
of two mutually coupled O-cells (see Figure 1A). The STRC relevant for this
network is fOO(�), for which τ = 20 (see Figure 3A for dependence of these
curves on gh ; Figure 3B shows the experimentally determined STRC for one
value of gh). As shown, the numerical STRCs are qualitatively similar to
experimental STRCs (see section 4 for details).

Suppose O1 spikes at time t1, and O2 spikes at time t2 > t1. Denote t2 − t1
by �. The spike of O2 makes O1 spike at time t̄1 = t1 + T + fOO(�), where
T is the period of the O-cell. The second spike of O1 makes O2 spike at
time t̄2 = t2 + T + fOO(t̄1 − t2). Therefore, �̄ = t̄2 − t̄1 = t2 + T + fOO(T +
fOO(�) − �) − (t1 + T + fOO(�)) = fOO(T + fOO(�) − �) − fOO(�) + �.

Here we assume that neither cell spikes twice in the absence of firing
of the other, so the cells alternate their action potentials. The necessary
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Figure 3: A family of slow inhibitory STRCs (τ = 20 ms, gOO = 0.20) depend-
ing on the conductance of the h-current (gh). (A) STRCs computed from the
model. The values of gh are 1.5, 1.0, 0.5, and 0.3 (solid, dashed, dot-dashed, and
dotted, respectively). The conductance of the h-current and the bias DC current
are varied simultaneously to maintain the neuron’s natural spiking period at
∼ 100 ms. The corresponding compensatory values of Iapp are −2.007, −0.879,
0.257, and 0.695. The reversal potential is −70 mV. (B) STRCs measured in the
dynamic clamp experiment, gOO = 5 nS (dots). (C) Spike time difference maps
for the O-O network. Line types are the same as in A.
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conditions for this are t̄1 > t2 and t̄1 < t2 + T . That is, T + fOO(�) − � > 0
and fOO(�) − � < 0. Equivalently,

� − T < fOO(�) < �. (3.1)

Condition 3.1 is met for all STRCs in Figure 3A. Then for the spike time
difference map, we have

�̄ = ψOO(ψOO(�)) = � + FOO(�), (3.2)

where

ψOO(�) = T + fOO(�) − �. (3.3)

The function ψOO(�) is interpreted as follows. While fOO(�) measures
the spike time change (positive or negative) caused by the stimulus that
arrives at time � after the previous spike, the function ψOO(�) mea-
sures the difference between the time of the stimulus and the time of
the next spike. In the O-O network, where cells are mutually coupled,
the time difference between the stimulus and the next spike for the first
cell is equal to the time difference between the previous spike and the
stimulus for the second cell. This leads to the second power of ψOO in
equation 3.2.

These STRCs were used to construct the STDMs according to
equations 3.2 and 3.3. The STDMs for the four different values of are plotted
in Figure 3C. The STDMs have x-intercepts at 50 to 60 ms, with the slope
between −2 and 0. These intercepts are referred to as antiphase equilibrium
points.

In all situations shown above, with gh not equal to zero, the
antiphase solution is stable according to equation 2.3. Changes in
strength of the synaptic coupling do not change the stability of the
antiphase solution (data not shown). A decrease in gh causes the po-
sition of the x-intercept to increase; that is, the interspike interval of
the coupled O-cells is effectively shortened compared to the uncoupled
cells.

There is also an in-phase solution, corresponding to � = 0. Figure 3C
shows that this point is unstable when gh = 1.5, our baseline value, but
becomes stable as gh decreases; note that the slope of F at � = 0 changes
from positive to negative. That the decrease in the h-current, with τ =
20, facilitates the stability of the synchronous solution was confirmed by
numerical simulations (Rotstein et al., 2005).



2628 D. Pervouchine et al.

3.2 S-I-S Network

3.2.1 Reduction to 2-Cell Network. This network (see Figure 1B) contains
three cells, so it is not immediately clear from the previous work how to
use STDM methods to examine the stability of any solutions. We first show
that under some hypotheses, the analysis of this network can be reduced to
that of a related two-cell network. The hypotheses are:

1. The I-cell does not fire in the absence of phasic inputs from the S-cells.

2. An EPSP from either of the S-cells is sufficient to make the I-cell fire.

3. The firing pattern has the I-cell spike between the spikes of the S-cells,
which alternate in firing (i.e., S1 − I − S2 − I − S1 − I . . .);

4. The effect of the I-cell inhibition on the S-cell that causes the I-cell to
spike is small (because of the timing of the inhibition on that cell) and
can be ignored without changing the qualitative results.

5. The delay between the firing of an S-cell and the firing of the I-cell
that it induces is minimal and can be ignored.

Hypothesis 4 is the central one in the reduction to a two-cell model. By
removing the effect of an I-cell on the S-cell that caused the I-cell to spike,
the effect of an S-cell spike becomes a (slightly) delayed inhibition on the
second S-cell. Therefore, at least when the two S-cells do not spike very
close in time, the network is a pair of S-cells connected by inhibition. This
is very similar to that of the O-O network analyzed in the previous section,
but with a smaller decay time of the inhibition (τ = 5 is the value measured
for IPSPs onto the stellate cells). After the analysis of this two-cell network,
we will revisit hypotheses 4 and 5.

The STRC relevant to this situation is f I S, in which the S-cell gets inhibi-
tion with a decay time of τ = 5 ms. Figure 4A shows numerical simulations
of these STRCs with several levels of gh . The major effect of the h-current
is to advance the spike of the S-cell; the larger the gh , the larger this effect.
Parts B1 and B2 of Figure 4 show the experimentally determined STRCs,
with inhibitory pulses fed to a real S-cell via dynamic clamp (see methods);
Figure 4B2 is done with extra Ih current added with the dynamic clamp. As
shown, the numerical and experimental STRCs behave in similar ways as
gh is changed: adding extra gh causes the advance portion of the STRC in the
beginning of the period (i.e., where f (�) < 0) to increase. The experimental
STRCs are consistent across cells, as Figure 5 shows.

The STDM that embodies the above hypotheses can help us understand
if there is an antiphase solution and if it is stable; this STDM cannot say any-
thing about the stability of solutions in which the S-cells are synchronous,
since that solution violates the above hypotheses; synchrony needs to be
looked at separately. The derivation of the STDM is exactly the same as that
of the previous section, this time using the STRC corresponding to τ = 5.
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Figure 4: A family of fast inhibitory STRCs (τ = 5 ms, gI S = 0.20) depending
on gh . The rest of the legend is the same as in Figure 3 (gh = 15 nS). Panel B2 has
an additional 10 nS of gh applied compared to B1.
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three cells are shown for basal level of gh (A), and for increased level of gh (B;
additional 10 nS of gh applied). Slow inhibitory STRCs (τ = 20 ms) (C).
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For later work, we will need these equations explicitly, so we write the
STDMs as

�̄ = ψI S(ψI S(�)) = � + FSS(�), (3.4)

where

ψI S(�) = T + f I S(� + δ) − �. (3.5)

T is the natural spiking period of the S-cell, and δ is the time lag between
firing of an S-cell and the firing of the I-cell that it induces (see hypothesis 5).
The domain of validity of equation 3.4 is given by

� − T < f I S(� + δ) < �. (3.6)

Now assume that the value of δ is equal to 0. Then condition 3.6 is met
for all STRCs in Figure 4A. The STDMs for the S-I-S network is given in
Figure 4C. Note that the antiphase solution is stable for all values of the
conductance of the h-current shown in the figure. As in the O-O case, the
stability and position of the antiphase equilibrium points do not change
with changing the strength of the inhibitory synaptic coupling (data not
shown). A decrease in gh causes the equilibrium phase to increase. This
observation correlates with the dynamic clamp experiments, where adding
extra h-current component noticeably shortened the interspike interval in
the S-I-S network (data not shown).

3.2.2 Embedding 2-Cell Network Back in the 3-Cell Network. We now revisit
assumption 4 and show that it does not make a qualitative difference in the
behavior of the network. We replace the connection from the I-cell to the
S-cell (e.g., S1) that caused it to spike, but (for now) keep the delay from the
S-cell spike to the I-cell spike at zero. We assume that there is a small time
delay in the onset of inhibition in the S-cell, corresponding to the buildup
of inhibition.

The inhibition on S1 creates a kind of self-inhibition that delays the
next spike of the S-cell. However, it does not introduce another degree of
freedom, since that inhibition occurs with a time course fixed with respect
to the time of the S-cell spike. Thus, the S-I-S network can still be treated as
a two-cell network, but with an inhibitory “autapse” on the S-cell.

To see quantitatively the effect of this addition, we compare the usual
STRC of inhibition onto an S-cell, with one computed by adding (artifi-
cial) self-inhibition onto the S-cell. Since the self-inhibition changes the
“natural” period of the S-cell, we change the timescale of the latter to
be the same as the S-cell without self-inhibition. Figure 6 shows that
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Figure 6: Fast inhibitory STRCs computed with adding self-inhibition onto the
S-cell (dashed-dotted) and without it (solid). The time axis was scaled to 100 ms
in both cases. The natural periods of the S-cell with and without self-inhibition
were 100.0 and 102.6 ms, respectively.

the difference between them is tiny. Thus, the essential effect of the self-
inhibition is a scaling of the STRC, which does not change qualitative
behavior.

However, such scaling has an important consequence for the entire S-I-S
network: if we compare an isolated stellate cell with an S-cell in the network,
the period of the S-cell changes much less for the coupled cell when Iapp is
varied (data not shown).

3.2.3 Infinitesimal Delays. An excitatory synapse to some kinds of neu-
rons (type 1) can cause a spike in the postsynaptic cell after some delay. The
delay can be very sensitively depending on initial conditions and the size of
the EPSP. In the previous sections, we assumed that the delay from the time
the I-cell received excitation to the time it fired was zero (assumption 5).
We now revisit that hypothesis, assuming that S-to-I synapses are strong;
in this case, the delay is nonzero but very small and the same from cycle to
cycle.
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First, we estimate analytically how the antiphase solution changes when
δ is varied infinitesimally. Let �δ be the value of � for the antiphase solution
when the delay is δ. It is a fixed point not only of FSS but also of ψI S, that is,

T + f I S(�δ + δ) − �δ = �δ. (3.7)

From equation 3.7, f I S(�0) = 2�0 − T . Using the first-order Taylor expan-
sion of f I S(�δ + δ) at � = �0 and expressing �δ from the linear equation
obtained, we get

2�δ = 2�0 + f ′
I S(�0)(�δ + δ − �0),

and therefore

�δ = �0 + f ′
I S(�0)

2 − f ′
I S(�0)

δ. (3.8)

Thus, the change in �δ per 1 ms of delay is f ′
I S(�0)/(2 − f ′

I S(�0)); it is close
to zero when f ′

I S(�0) is small and increases as f ′
I S(�0) gets close to 2. Note

that in Figure 4C, �0 is close to the middle point of the period, where f ′
I S(�0)

ranges from 0.5 to 1. Thus, we predict that the change in �δ is the same order
of magnitude as δ, or may be even smaller depending on f ′

I S(�0).
We now go back to equation 3.4 and compute FSS(�) numerically using

ψI S(�) from equation 3.5. Note that the function ψI S(�) is defined for
� ∈ [δ, T − δ]. The function FSS(�) is shown in Figure 7 for several values
of δ. Note that the change in �δ is smaller than δ, as predicted by equation 3.8,
and the antiphase solution remains stable as δ increases up to 15 ms.

Thus, when S-to-I synapses are strong, the stability of the antiphase
solution does not change even with delays as long as 15 ms. However,
weak S-to-I synapses lead to a different result, as we show in the next
section.

3.2.4 Large Delays and Noise. We now explain an otherwise puzzling
observation about the S-I-S experimental data. The first set of experiments
done with the three-cell network and the dynamic clamp technology used
weak synaptic connections from the S-cells to the in silico I-cells. In this
situation, the results did not replicate the predicted antiphase behavior
between the S-cells. Instead, the phase lags appeared almost random, clus-
tering about both antiphase and in-phase fixed points. When a larger value
of the S-I synaptic conductance was taken, the predicted antiphase was
found (see Figure 8). These experiments were done with a control period
of approximately 140 ms instead of the 100 ms used in the experiments
described above.
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Figure 7: Spike time difference maps for the S-I-S network with delays:
δ = 0 ms (solid), 5 ms (dashed), 10 ms (dot-dashed), and 15 ms (dotted);
gI S = 0.04, gSI = 0.10.

To understand the origin of this phenomenon, we look at the sources
of variation in our system. There are two independent such sources. One
is the delayed response of the I-cell to weak phasic EPSPs coming from
the S-cells. The other is the noise that arises from ionic currents in the
S-cells (e.g., persistent Na+ current) and leads to spread of their firing
times.

We next ask whether each of these sources alone can account for the
difference in distribution of phases between S-cells in the dynamic clamp
experiment. Figure 9 shows simulation of the full three cell network at the
following conditions: with weak versus strong S-to-I synapses and high
versus low levels of noise. The noise in S-cells, which was modeled by
stochastic persistent Na+ channels (see the appendix), leads to an even
distribution of phases only if S-to-I synapses are sufficiently weak, that is,
if the delay δ is sufficiently large. Thus, one needs both a high level of noise
and large delays in order to get such distribution of phases (compare to
Figure 8).

The critical question here is how the system escapes from the antiphase
fixed point, which is stable in the deterministic case even if δ is large (see
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Figure 8: Evolution of spike time differences between two patch-clamped
S-cells coupled through an I-cell with artificial synapses. The period of the un-
coupled cells is 137 ms. Upper panel (weak synapses): The excitatory synapses
are gSI = 10 nS. The inhibitory synapses are gI S = 3 nS. The average lag from
EPSG to firing of I-cell is 16 ms. Bottom panel (strong synapses): The excita-
tory synapses are gSI = 30 nS. The inhibitory synapses are gI S = 15 nS. The lag
between the peak of the EPSG and the action potential of I-cell is 6 ms. The
histograms on the right show the distribution of spike time differences across
the experiment. Note that the cells are not exactly antiphase due to differences
in the cells involved. This is reflected in the fact that the upper trace of the
bottom panel, giving the phase lag from cell 1 to cell 2, is not exactly the same
as the lower trace of the bottom panel, giving lag from cell 2 to cell 1. Though
both excitatory and inhibitory conductances were changed, the later modeling
revealed that it is primarily the excitatory conductance change that accounted
for the results.

previous section). Consider the function ψI S(�) computed from equation 3.5
for δ = 0 and δ = 20 (see Figure 10). The antiphase equilibrium points cor-
respond to intercepts of ψI S(�) with the main diagonal. For both δ = 0 and
δ = 20, the antiphase solutions are stable because the slope at the intercept
is between −1 and 1, and hence the slope of the full map ψ2

I S(�) is also
between −1 and 1.

The noise in the S-cells can be interpreted geometrically as adding a
random term to the value of ψI S(�) (which can be negative or positive)
on each iteration of the map. In Figure 10 we show five such iterations for
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Figure 9: Distribution of spike time differences (STD) between S-cells in S-I-S
network with weak (gSI = 0.01) and strong S-to-I synapses (gSI = 0.05) at two
levels of noise: high (Nmax = 500) and low (Nmax = 5000). The S-cells were biased
to fire on average with 120 ms interval.

δ = 0 and δ = 20, starting at the same initial conditions and applying the
same sequence of random perturbations to both. For δ = 0, the trajectory
remains in the vicinity of the antiphase fixed point, while for δ = 20 it
goes much further; that is, an identical sequence of perturbations can cause
more spread distribution of phases when S-to-I synapses are weak than
when they are strong. This explains why the predicted antiphase behavior
in the dynamic clamp experiment was observed only at larger values of S-I
synaptic conductance.

3.2.5 Inhibition and h-Current. The difference in network behavior be-
tween τ = 20 and τ = 5 shows up only when the conductance of the h-
current is very small or zero. When the h-conductance in the O-O network
is reduced, the antiphase fixed point remains stable, while the in-phase
fixed point changes from unstable to stable (see Figure 3C). Thus, in the
O-O network, both in-phase and antiphase fixed points are stable when
the h-conductance is reduced. Note the appearance of two other fixed
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Figure 10: The map ψI S(�) defined by equation 3.5. The values of δ are 0 ms
(left panel) and 20 ms (right panel). The dashed line represents a trajectory of
the iterated map. The initial conditions are t0 = 50 ms for both values of δ. The
sequence of perturbations (dotted segments between asterisks) is 13 ms, −3 ms,
10 ms, −9 ms, and 5 ms for both values of δ.

points—neither in-phase nor antiphase (see Figure 3C, dotted line); they
are both unstable as predicted by the slopes at the fixed points. In the S-I-S
network, a decrease in the h-conductance does not change the stability of
either fixed point; the in-phase remains stable, and the antiphase remains
unstable (see Figure 4C).

In Figure 11 we focus on the transition of the h-current conductance from
small to infinitesimal level (gh � 0). In the S-I-S network, the in-phase solu-
tion changes from unstable (gh small) to stable (gh � 0), while the antiphase
remains stable. Since for gh � 0 they are both stable, two other unstable
fixed points appear as above. In the O-O network, the antiphase fixed point
changes from stable (gh small) to unstable (gh � 0). Note that the STDM
for gh � 0 is not defined at the ends of the period due to violation of
equation 3.1. Although in this case we cannot rigorously predict syn-
chrony, we expect the in-phase to be stable as points everywhere else in the
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Figure 11: The transition of the h-current conductance from small to infinitesi-
mal level in the S-I-S network (A) and the O-O network (B). (Top panels) STRCs
for gh = 0.1 (dot-dashed) and gh = 0 (solid). (Bottom panels) The correspond-
ing STDMs (same line types). The values of the compensatory DC current are
Iapp = 0.895 for gh = 0.1 and Iapp = 1.314 for gh = 0.0. The other parameters are
gI S = 0.04, gSI = 0.10, and gOO = 0.01.

period go away from one another. All these observations are summarized
as follows:

τ = 20 τ = 5

In-phase Antiphase In-phase Antiphase
Large Ih Unstable Stable Unstable Stable
Low Ih Stable Stable Unstable Stable
gh � 0 Stable Unstable Stable Stable

The domain of stability for the antiphase solution is the region between
the pair of fixed points surrounding the antiphase fixed point; for the in-
phase solution, it is the union of regions surrounding � = 0 and � = T . In
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each of these cases, the domains can be read off from Figures 3C, 4C, and
11A. This formulation does not work for Figure 11B, where the domains of
stability cannot be correctly defined (see section 4). For young animals, the
real neurons are most likely to operate with Ih lower than in adults (Richter,
Klee, Heinemann, & Eder, 1997); one may expect gh � 0 in animals with Ih

knocked out.

3.3 O-I-O Network. In the previous section, we reduced a three-cell
model to a two-cell model by showing that the I-cell inhibition could be
replaced by inhibition to the other S-cell produced by each S-cell, along
with self-inhibition. In this section, we reduce a three-cell network that
consists of two O-LM cells and one FS cell (see Figure 1C) to a per-
turbation of a two-cell network that consists of one O-LM and one FS
cell.

We start with those two cells, the O-cell producing IPSPs in the I-
cell with a decay time of τ = 20 ms and the I-cell producing an IPSP
in the O-cell with a decay time of τ = 5 ms (synapse rise time is un-
changed). As explained in section 2, each of these pulses is associated
with a STRC. Using the previous notation, these STRCs are denoted by
fOI (�) and f I O(�). Since the O-cell has the same currents and parameters
as the S-cell, f I O(�) is the same as f I S(�), which was previously shown in
Figure 4A. The function fOI (�) is plotted in Figure 12A; it is very simi-
lar to fOO(�) when gh = 0 because the model of O-cell without h-current
differs from the model of I-cell only by the presence of persistent sodium
current.

We first use these STRCs to show that there is a stable fixed point
for the O-I network. Assume that the O-cell spikes first, and let θ de-
note the time difference until the spike of the I-cell. From the STRCs,
we can compute the function ψOI (θ ) = TI + fOI (θ ) − θ , and similarly
for ψI O(θ ) = TO + f I O(θ ) − θ , with the indices O and I reversed. These
play the same role as ψI S in the S-I-S network (see equation 3.4)
in producing the STDM, the map that takes θ to the time differ-
ence in the next cycle, which we call θ̄ . We write this map in the
form

θ̄ = θ + FOI (θ ) = ψOI (ψI O(θ )). (3.9)

Here FOI plays the same role as FOO and FSS of the previous sections.
As before, the right-hand side is a composition of two maps. In this case,
however, the maps are not the same, reflecting the lack of symmetry in the
network. The function FOI is plotted in Figure 12B for several values of gh .
Recall that a zero of the map F is a fixed point of the map (see equation 3.9).
For each value of gh , there is a stable antiphase fixed point; the in-phase
fixed point is also stable, but its domain of attraction is tiny.
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Figure 12: (A) The STRC fOI (�). The conductance of O-to-I synapse is 0.02.
(B) The STDMs for the O-I network. The values of gh are 1.5, 1.0, 0.5, and 0.3
(solid, dashed, dot-dashed, and dotted, respectively). The compensatory DC
currents are the same as in Figure 3; gOI = 0.02.

We now show that the entire O-I-O network can be considered as a
perturbation of an O-I network in which value gOI is doubled. The latter
network corresponds to the O-I-O network in which the two O-cells are
synchronous, and hence the effect of the simultaneous inhibition on the
I-cell is twice that of a single cell. Let t1, t2, and t3 be the spike times of O1, O2,
and I , respectively, and let t̄1, t̄2, and t̄3 be their spike times on the next cycle.
We assume that the cells spike in this order: � = t2 − t1 > 0 and θ = t3 −
t2 > 0. We have t̄1 = t1 + TO + f I O(� + θ ) and t̄2 = t2 + TO + f I O(θ ). Then
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Figure 13: The map �̄ = �̄(�) defined by equation 3.10. Three solid curves
correspond to θ = 50 ms, θ = 25 ms, and θ = 0 ms, as marked in the figure.
The dashed lines represent trajectories of the iterated map, which starts at � =
35 ms. Asterisks, diamonds, and circles denote iterations of �̄ for θ = 50 ms,
θ = 25 ms, and θ = 0 ms, respectively.

�̄ = t̄2 − t̄1 = � + f I O(θ ) − f I O(� + θ ). For fixed value of theta, consider
the map

�̄ = � + f I O(θ ) − f I O(� + θ ) = � + FOO(�). (3.10)

The function �̄ is shown in Figure 13. Note that if θ is large enough (θ = 50),
then the three-cell network approaches a regime in which the two O-cells
are synchronous after one or two cycles; this happens for a relatively large
range of initial values of �. Even after first interation, the two O-cells are
close enough to be considered as one “composite” cell, with inhibition onto
the I-cell twice as strong as one of a single cell. After � becomes close
to zero, θ achieves its equilibrium according to equation 3.9. For smaller
values of θ , � does not converge to zero. Thus, it is important that θ is large
enough, that is, if the I-cell does not spike shortly after one of the O-cells.
The latter condition holds when the O-to-I synaptic conductance is large
enough and synapse decay time is long (τ = 20). With weak O-to-I synapses
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or fast decay of the inhibition, the synchrony in the O-I-O network becomes
unstable.

4 Discussion

The methods used here are closely related to those of phase response curves
(Winfree, 1980), long used to understand how periodic input to an oscillator
can entrain the latter. In more recent work, those methods have been used
to investigate the circumstances in which a pair of coupled oscillators inter-
acting via pulses can synchronize or not (Goel & Ermentrout, 2002; Oprisan,
Prinz, & Canavier, 2004; Gutkin, Ermentrout, & Reyes, 2005; Acker et al.,
2003; Kopell & Ermentrout, 2002). The methodological novelty of the anal-
ysis in this article is the use of such methods for more than two cells. In
two distinct ways, a three-cell network was shown to behave like a related
two-cell network. For the network of two stellates and a FS cell, the latter
was shown to behave, in some parameter regimes, as if the stellates were
coupled directly by fast-decaying inhibition. The added FS cell acted to
make the S-cells go in antiphase. When an FS interneuron was added to
a network of O-LM cells, the network behaved (again, in some parameter
regimes) like one with a single O-LM cell, with twice the coupling to the
I-cell; the added FS cell synchronized the O-LM cells, which do not synchro-
nize in the absence of that kind of cell. The central difference between the
two situations is that the stellate cells excite the FS cell, while the O-LM cells
inhibit the FS cell. Different methods of analysis were needed for the two
cases. We note that the analysis we did with the three-cell networks cannot
be done with weak coupling, since the synchrony described depends on
the coupling being strong enough. Also, in Netoff, Acker, Bettencourt, and
White (2005), it was shown experimentally that physiologically relevant
inputs give rise to outputs that violate weak coupling assumptions (see
also Preyer & Butera, 2005, for synapses in an invertebrate preparation).

The STRCs obtained in the dynamic clamp experiment are in good agree-
ment with analytical STRCs (see Figures 3 and 4). The inhibitory stimuli that
arrive in the beginning of the period cause advance of the next spike; for
S-cells this advance is more substantial than for O-LM cells and increases
with increasing gh . In the middle of the period, inhibition delays the next
spike for both O-LM and S-cells. The most significant distinction between
analytical and experimental STRCs is observed for the S-cells at the end of
the period, where the model neuron is affected by the inhibition much less
than the in vitro neuron. This leads to an underestimation in the analysis of
the domain of stability of the in-phase solution in the S-I-S network.

The reduced two-cell analysis of the S-I-S network can be extended to
account for the behavior when there is a significant delay between the firing
of an S-cell and that of the I-cell. This occurs when the excitation from an
S-cell to an I-cell is sufficiently weak (Ermentrout & Kopell, 1998). Analysis
showed that such a delay does not change the antiphase behavior of the
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S-cells in a deterministic case, but in cooperation with noise inherently
present in I-to-S synapses, it results in great variability of phases between
S-cells.

A two-cell reduction is also possible for larger networks with all-to-all
connections consisting of more than one I-cell and more than two S-cells. In
such a network, there is another source of variability—one that comes from
the initial conditions and results in formation of synchronous cell assemblies
(clusters) in both S- and I-cells populations. In the situation relevant to the
theta rhythm (approximately 10 Hz), there are two such cell ensembles for
the S-cell population and one ensemble for the I-cell population, which
behave as aggregate units very similarly to the S-cells and the I-cell in the
three-cell network. Depending on the initial conditions, these units may
contain different number of cells; this leads to nonequivalent synapses and,
as a consequence, to lack of the symmetry in that network.

The difference in network behavior caused by delays is explained by
Figure 9 only if assumptions 1 to 5 are valid. Direct simulations show that
the I-cell sometimes skips a cycle as a result of overlap of phasic EPSPs
from the S-cells when S-to-I synapses are weak. This violates assumption
2 and results in a pattern of firing that is different from one stated in the
assumption 3; the latter was necessary for construction of the map (see
equation 3.4). Also, assumption 4 is violated when δ is large. In this situation,
another force plays a more dominant role: both S-cells receive common
inhibition, which is known to facilitate synchrony in other excitatory cells
(Terman et al., 1998; Börgers & Kopell, 2003). This common inhibition can
help to explain several synchronous spikes, which appeared in Figure 8
even with strong S-to-I synapses.

The fact that our STDMs are not applicable to the analysis of synchrony
in the O-O network (see Figure 11) has to do with the usual assumption
of the STRC method that each stimulus influences only the next spike, not
the subsequent ones. This is not the case in the O-O network. According to
Figure 11, the spike of O1 that arrives a few milliseconds before the spike of
O2 has very little effect on the timing of the latter; however, the next spike
of O2 is delayed (even in absence of O1 activity) because the inhibition lasts
long and affects O2 after its first spike. In other words, the inhibition with
τ = 5 ms can be considered as an instant pulse, while one with τ = 20 ms
cannot. In the presence of O1 activity, this would cause a switch of leadership
between O1 and O2. The technique of spike time responses can be adopted
to this case by defining the second-order STRC as in Oprisan et al. (2004).

The analysis of the stellate/FS network was motivated by data of
Cunningham and Whittington (Cunningham, Pervouchine, Kopell, &
Whittington, 2004) in slices of medial entorhinal cortex. If the activation
from kainate is sufficiently low, the slice displays slow (< 1 Hz) oscillations
in the electrical activity of the stellate cells, alternating between a silent
regime and an active one. Within the latter, the spectrum of the activity con-
tains peaks at both beta (centered around 21 Hz) and theta (centered around
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9 Hz) frequencies. Since the main cells involved in the active regime are the
stellates and the FS interneurons, the origin of the beta peak is mysterious.
The work presented here suggests a possible solution: since the stellate cells
are in antiphase, the population frequency is twice as fast, producing a beta
frequency. In larger network simulations, with many stellates and FS cells,
the stellates break into two clusters, each firing at a theta rhythm, with a
population rhythm twice as fast (data not shown); as long as the clusters
are not of the same size (the generic case), there is also a theta peak in the
spectrum.

The STRC/STDM technique goes beyond the information acquired
about these particular models and shows how to do such an analysis when
the model is changed. For example, other models of the stellate cell (Acker
et al., 2003; Alonso & Klink, 1993) contain an M-current instead of, or in
addition to, the h-current. A similar analysis can show how changes in
the biophysics of the intrinsic or synaptic models can change the network
outcome. The STRCs contain the information needed about the biophysics
to make predictions about network behavior. However, the transition from
STRCs to the maps that predict network dynamics depends on assumptions
about the order in which spikes occur in the different cells. Thus, a single
map cannot necessarily embody all the possible dynamical behaviors of the
network; each map is valid in some (possibly very large) set of trajectories
but can fail when the spike order changes. Such a bifurcation cannot be
investigated within that map but requires consideration of the full system.

Appendix

A.1 Dynamic Models of Neurons. Voltage-dependent conductances are
modeled using a Hodgkin-Huxley type of kinetic model. The cells in the
network are indexed with a symbol i ∈ �. The current-balance equation for
all types of cells is

Ci
∂vi

∂t
= Ia pp, i −

∑
Iion, i −

∑

j∈�

Isyn, j→i ,

where vi and Ci are the membrane potential (mV) and membrane capaci-
tance (µF/cm2) of the ith cell, Ia pp, i is the bias (DC) current (µA) applied
to the ith cell, and Iion, i and Isyn, j→i are the respective sums of ionic and
synaptic currents. The sum of ionic currents is

∑
Iion, i = INa , i + IK , i + IL , i + INa p, i + Ih, i ,

for the O- and S-cells and

∑
Iion, i = INa , i + IK , i + IL , i
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for the I-cells, where

INa , i = gNa , i m3
i hi (vi − ENa , i ),

IK , i = gK , i n4
i (vi − EK , i ),

IL , i = gL , i (vi − EL , i ),

INa p, i = gNa p, i pi (vi − ENa , i ),

Ih, i = gh, i (0.65 h f
i + 0.35 hs

i )(vi − Eh, i ).

In the expressions for ionic currents, gX,i are the maximal conductances
(mS/cm2) and EX,i are the reversal potentials (mV), and mi , hi , ni , pi , h f

i ,
and hs

i are the respective channel gating variables (see below). Units of time
are ms. The following maximal conductances and reversal potentials are
used for the O- and S-cells: ENa , i = 55, EK , i = −90, EL , i = −65, Eh, i = −20,
gNa , i = 52, gK , i = 11, gL , i = 0.5, gNa p, i = 0.5, gh, i = 1.5, and Ci = 1.5. For
the I-cells, the following maximal conductances and reversal potentials are
used: ENa , i = 50, EK , i = −100, EL , i = −67, gNa , i = 100, gK , i = 80, gL , i =
0.1, and Ci = 1.5. The gating variables xi = mi , hi , ni , pi , h f

i , and hs
i obey a

first-order differential equation of the following form:

∂xi

∂t
= (xi,∞(vi ) − xi ) / τx, i (vi ),

where

xi,∞(v) = αx, i (v)
αx, i (v) + βx, i (v)

τx, i (v) = 1
αx, i (v) + βx, i (v)

.

Here αx, i (v) and βx, i (v) are the corresponding channel’s opening and closing
rates. For O- and S-cells, the following channel opening and closing rates
are used:

αm, i (v) = −0.1 (v + 23) / (e−0.1 (v+23) − 1)

βm, i (v) = 4 e−(v+48)/18

αh, i (v) = 0.07 e−(v+37) / 20

βh, i (v) = 1 / (e−0.1 (v+7) + 1)

αn, i (v) = −0.01 (v + 27) / (e−0.1 (v+27) − 1)

βn, i (v) = 0.125 e−(v+37)/80
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αp, i (v) = 1 / (0.15 (1 + e−(v+38)/6.5))

βp, i (v) = e−(v+38)/6.5 / (0.15 (1 + e−(v+38)/6.5))

h f
i,∞(v) = 1 / (1 + e (v+79.2)/9.78)

τh f , i (v) = 0.51 / (e (v−1.7)/10 + e−(v+340)/52) + 1

hs
i,∞(v) = 1 / (1 + e (v+2.83)/15.9)58

τhs , i (v) = 5.6 / (e (v−1.7)/14 + e−(v+260)/43) + 1.

The channel opening and closing rates for the I-cells are:

αm, i (v) = 0.32 (54 + v) / (1 − e−(v+54)/4)

βm, i (v) = 0.28 (v + 27) / (e (v+27)/5 − 1)

αh, i (v) = 0.128 e−(50+v)/18

βh, i (v) = 4 / (1 + e−(v+27)/5)

αn, i (v) = 0.032 (v + 52) / (1 − e−(v+52)/5)

βn, i (v) = 0.5 e−(57+v)/40.

A.2 Synapses. The synaptic currents for all types of cells has the follow-
ing form:

Isyn, j→i = g̃ j i s j (vi − Erev, j ),

where g̃ j i , s j , and Erev, j are the maximal conductance of j → i synapse, the
synaptic gating variable of the j th cell, and the synaptic reversal potential
of the j th cell, respectively. The reversal potentials of I-, O-, and S-cells
are −70 mV, −70 mV, and 0 mV, respectively. The value of the maximal
synaptic conductance is normalized to the area under IPSP (or EPSP) such
that g̃ j i = g j i/τ j i , where τ j i is the decay time of j → i synapse, and g j i is
the value of maximal synaptic conductance reported in the text.

A.3 Stochastic Simulations. In the stochastic simulations, the term
gNa p,i · pi in the equation for the persistent sodium current (INa p, i ) is re-
placed by the stochastic term γ Ni/SA as in previous works (White, Klink,
Alonso, & Kay, 1998; Acker et al., 2003). Here Ni is the number of open
persistent sodium channels and varies from 0 to Nmax, γ = 20 pS is the
open channel conductance, and SA = 2.29 · 10−4 cm2 is the cell’s surface
area. The values of γ , Nmax, and SA are such that the maximal conductance
is equal to gNa p,i in the deterministic model. The channels are assumed to
be independent and identical. On each step of the simulation, a random
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Figure 14: Curve fitting (the data from Figure 3 are used). (A) Linear re-
gression, A · � + B, of f (�)/� versus �; the range of � is between dotted
vertical lines. (B) Multiplicative residuals f (�)/(A · �2 + B · �) are fit with
the function tanh((C − �)/D) using nonlinear least-square optimization (bor-
der constraints: 50 ≤ C ≤ 90, 0.01 ≤ D ≤ 100). (C) The resulting fit is f (�) �
(A · �2 + B · �)tanh ((C − �)/D) (solid); compare to the quadratic fit (dashed).

number is chosen from an exponential distribution based on the equations
αp,i (V) and βp,i (V) above to determine the time of the next channel transi-
tion. The equations are then integrated up to that time, and the number of
open channels is updated. This method is generally used for exact stochastic
simulations of chemical reactions (Gillespie, 1977).
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A.4 Curve Fitting. Experimental data were fit using a nonlinear model as
follows. First, we obtain a linear fit, A · � + B, for the function f (�)/� ver-
sus � in a certain range of � (see Figure 14A). For f (�), this gives a quadratic
fit, A · �2 + B · �, which passes through the origin (see Figure 14B, dashed
line). Then the multiplicative residuals f (�)/(A · �2 + B · �) are fit with
the function tanh((C − �)/D), where tanh(x) = (ex − e−x)/(ex + e−x), using
nonlinear least-square optimization (see Figure 14C). The resulting fit is
f (�) � (A · �2 + B · �)tanh ((C − �)/D) (see Figure 14B, solid line).
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