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I. Abstract 

Behavior of a network of neurons is closely tied to the properties of the individual 

neurons.  We study this relationship in models of layer II stellate cells (SCs) of the medial 

entorhinal cortex.  SCs are thought to contribute to the mammalian theta rhythm (4-12 Hz), and 

are notable for the slow ionic conductances that constrain them to fire at rates within this 

frequency range.  We apply “spike time response” (STR) methods, in which the effects of 

synaptic perturbations on the timing of subsequent spikes are used to predict how these neurons 

may synchronize at theta frequencies.  Predictions from STR methods are verified using network 

simulations.  Slow conductances often make small inputs “effectively large”; we suggest that this 

effect is due to reduced attractiveness or stability of the spiking limit cycle.  When inputs are 

(effectively) large, changes in firing times depend nonlinearly on synaptic strength.  One 

consequence of nonlinearity is to make a periodically firing model skip one or more beats, often 

leading to the elimination of the anti-synchronous state in bistable models.  Biologically realistic 

membrane noise makes such “cycle skipping” more prevalent, and thus can eradicate bistability.  

Membrane noise also supports “sparse synchrony,” a phenomenon in which subthreshold 

behavior is uncorrelated, but there are brief periods of synchronous spiking. 
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II. Introduction 

Behaviorally correlated synchronous activity is common in the brain and likely to be 

functionally important (reviews include O'Keefe, 1993; Farmer, 1998; Gray, 1999; Singer, 1999; 

Chrobak et al., 2000).  Contrary to what many might consider intuitive, such activity is often best 

mediated by mutual inhibition rather than mutual excitation (e.g., Lytton and Sejnowski, 1991; 

Wang and Rinzel, 1993; Golomb et al., 1994; White et al., 1998b).  This tendency for inhibitory 

networks to synchronize has been explained mechanistically for models with relatively simple 

firing properties (Van Vreeswijk et al., 1994; Hansel et al., 1995; Ermentrout, 1996).  Synchrony 

through mutual excitation can be obtained by changing parameters in simple spiking models 

(Van Vreeswijk et al., 1994; Hansel et al., 1995; Ermentrout, 1996), but in modeling studies, 

excitation-based synchronization is often associated with more complex membrane mechanisms, 

including afterhyperpolarization currents and slow K+ currents (Crook et al., 1998; Ermentrout et 

al., 2001). 

In this study we are concerned with synchronization mechanisms in the specific context 

of layer II stellate cells (SCs) of the medial entorhinal cortex (MEC).  SCs are responsible for the 

bulk of the “perforant path” input to the hippocampus.  They give rise to extensive axon 

collaterals within layer II, suggesting that they are coupled in vivo with a significant amount of 

mutual excitation (Gloor, 1997).  Recent physiological studies (Dhillon and Jones, 2000) have 

failed to find such functional connections in brain slices, either because such monosynaptic 

connections are rarer than one would suppose from anatomical results, or because the axon 

collaterals leave the plane of the brain slice..  Under intracellular current clamp, SCs are 

characterized by slow (4-12 Hz) subthreshold oscillations and spike rates (Alonso and Llinás, 

1989; Alonso and Klink, 1993).  Slow K+ currents and/or the slow, hyperpolarization-activated 
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cation current Ih are thought to pace theta-frequency activity in SCs (Klink and Alonso, 1993; 

White et al., 1995; White et al., 1998a; Dickson et al., 2000), which is hypothesized to allow 

mutually coupled SCs to serve as local generators of the 4-12 Hz theta rhythm (Alonso and 

Llinás, 1989; Alonso and Klink, 1993; White et al., 1995; White et al., 1998a; Hasselmo et al., 

2000).  In this paper, we show in some detail how the properties of the particular slow currents in 

the stellate cells affect the synchronization behavior of very simple networks with mutual 

coupling. 

Many studies have explored neuronal synchrony using “spike time response” (STR) 

techniques, which examine network behavior based on how excitatory or inhibitory inputs 

advance or delay impending spikes (e.g., Kopell, 1988; Ermentrout and Kopell, 1991; Hansel et 

al., 1995; Ermentrout, 1996; Canavier et al., 1997; Crook et al., 1998; Ermentrout et al., 2001; 

Winfree, 2001).  When the inputs are small, spike advances and delays depend linearly on the 

size of the perturbation, implying that effects can be calculated analytically from the equations 

describing the intrinsic currents and the synapses.  This “weak coupling” assumption allows 

mathematically elegant, general, and powerful analysis (e.g. Hansel et al., 1995; Ermentrout and 

Kopell, 1998; Ermentrout et al., 2001; Neltner and Hansel, 2001), but may give rise to incorrect 

predictions if the coupling is not adequately small.  Even for non-small coupling, techniques 

based on perturbation-induced changes in spike timing can still be used, with the effects 

calculated numerically (Jones et al., 2000).  In this case, one can still make powerful statements 

about network behavior based on studies of individual cells.In the present study, we use two STR 

techniques – one that depends on the weak coupling assumption and one that does not – to study 

predicted synchronization properties in previously developed models of theta-frequency 

rhythmicity in SCs (White et al., 1995; White et al., 1998a).  We validate results from STR 

methods by comparing them with results from two-cell simulations, and use simple 10-cell 
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simulations to draw more general conclusions.  We find that prominent slow potassium currents 

support synchronization through mutual excitation in modeled SCs, as would be predicted from 

past studies (Crook et al., 1998; Ermentrout et al., 2001).  The slow, hyperpolarization-activated 

cation current Ih, not studied previously in this context, has similar effects.  In models that 

include slow conductances, we demonstrate that even very small inputs can be “effectively large” 

(i.e., induced advances or delays that vary nonlinearly with input strength).  For large inputs 

and/or large slow conductances, excitatory inputs can delay subsequent spikes for more than one 

cycle.  In simulations, this phenomenon of cycle skipping tends to promote rapid 

synchronization.  Noise in membrane potential, a prevalent feature in MEC cells (White et al., 

1998a; White et al., 2000), can amplify the effects of small inputs, increasing the prevalence of 

cycle skipping and sometimes fundamentally altering the qualitative phase-locked states in which 

the network can exist.  In other parameter regimes, noisy simulated SCs show mostly 

uncorrelated subthreshold activity, but occasional spontaneous spikes give rise to correlated 

subthreshold activity, followed by short bouts of synchronized spiking.  Portions of this work 

have been presented in abstract form (Acker et al., 2001). 
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III. Methods 

A. Cellular and Network Model  

The network formally studied here consists of two mutually coupled model cells, 

although we also demonstrate that results from these small networks apply to larger networks.  

The cellular model is based on measurements from Layer II stellate cells of the MEC (White et 

al., 1995; White et al., 1998a; Dickson et al., 2000; Fransen et al., 2003; equations in Appendix 

IA).  The single compartment model has a pair of conductances in addition to the standard action 

potential producing Hodgkin-Huxley sodium and potassium conductances.  The additional pair, 

which allows the cellular model to exhibit sub-threshold oscillations, includes a persistent sodium 

current INap and either a slow, non-inactivating potassium current, IKs (Eder et al., 1991), or a 

hyperpolarization-activated, mixed cation current called the h-current or Ih (Dickson et al., 2000).  

In this study we perform all simulations twice, once with Ih and again with IKs.  Even though it is 

possible that a mixture of these currents exists in stellate cells in vivo, the effects of this 

possibility are not studied here.  The cells are always biased to oscillate naturally with a period of 

120ms, corresponding to the period of the theta rhythm in vivo and natural firing frequencies 

measured in vitro under current clamp (Alonso and Llinás, 1989; Alonso and Klink, 1993).  The 

model cells are connected using model AMPA glutamatergic synapses (Destexhe et al., 1998; 

equations in Appendix IB), which are fast and excitatory.  Note that by symmetry, since the 

neuron models are identical, in the two-cell network simulation one can expect both synchrony 

and anti-synchrony to be solutions of the network. However, these solutions may be stable or 

unstable and more solutions may also exist. 
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B. Studying Spike Timing in a Pair of Coupled Cells 

Our methods focus on how fast excitatory interaction affects the difference in spike times 

between two coupled neurons from one cycle to the next.  To do this we use two methods, which 

we call the direct spike time response (STR) method and the linear STR method.  Details of both 

are given below.  As will be clear shortly, by comparing the predictions of these two methods, 

one can expose the nonlinear effects of strongly coupled neurons.  Application of both the linear 

and direct STR methods is divided into two steps.  We first construct a spike time response curve 

(STRC), which describes how the timing of the next spike in a periodically firing neuron is 

affected by a single input.  The STRC is very similar to the phase response curve (Hansel et al., 

1995; Ermentrout et al., 2001; Kopell and Ermentrout, 2001; Winfree, 2001), but is measured in 

terms of time instead of phase.  The reason for using time instead of phase is that, when the 

coupling is strong, inputs can have a large effect on the period of the coupled cells, making 

“phase” ill defined.  We then use the STRC to predict the change in spike timing between two 

mutually coupled neurons from one cycle to the next.  This is done by generating the “spike time 

difference map” (STDM).  Given the predictions of network behavior from the STDM, two-cell 

simulations are always performed to verify their accuracy. 

Our STR methods differ from similarly named spike response models (Kistler et al., 

1997; Gerstner, 2001). See the Discussion for more detail on this issue. 

1. Direct Spike Time Response (STR) Method 

The first step in this method is the direct measurement of the STRC (spike time response 

curve) on a single model neuron as follows.  The bias current Iapp is chosen such that the neuron 

spikes periodically with a desired natural period.  A single spike time response is obtained by 

perturbing the neuron at a certain time in its cycle and measuring the change in its next spike 
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time.  The key to this the direct method is that this perturbation is a model AMPA synaptic input 

(Appendix IB) and is identical to the input used during a network simulation.  Keep in mind that 

this input need not be weak.  An STRC is obtained by varying the perturbation times over the 

entire cycle, and plotting spike time advance vs. perturbation time (see example STRC, Fig. 1A). 

Once the STRC is computed numerically from a model of a cell and a model of the 

synaptic input, one can analytically construct a “spike time difference map” (STDM) for the pair 

of coupled neurons.  This map takes the difference in spike times, ∆, between the cells in one 

cycle, and computes the difference, ∆ , in the next cycle.  The construction of this map from the 

STRC makes two testable assumptions about the network dynamics.  The first is the cell that 

starts in the lead stays in the lead through later cycles.  The second assumption is that the timing 

of each spike is affected by only the most recent presynaptic spike (i.e., the cell’s memory does 

not extend to previous inputs).  While in our simulations we never see leader switching, the 

memory condition requires careful attention.  For most of our computations it holds well, but not 

for all; we will discuss this issue and its implications later in the paper (Fig. 10). 

The computation of the STDM from the STRC is as follows and is illustrated in panel B 

of Fig. 1.  For simplicity we label the STRC as P, which is a function of the difference in time 

between the input and the most recent spike of the postsynaptic cell.  Let t1 and t2 be the spike 

times of cell 1 and 2 during some cycle.  We choose the labels of cells 1 and 2 such that cell 1 is 

leading cell 2.  Denote by 1t  and 2t  the spike times in the next cycle.  Then, 

 ( )1211 ttPTtt −−+=  

That is, the time of firing of cell 1 is the previous time, plus its unperturbed period T, 

minus the amount of time the next spike is advanced.  Similarly, 

 ( ). 2122 ttPTtt −−+=  
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Using 12 tt −=∆  and 12 tt −=∆ , we get that 

 
( )( ) ( )

( )∆+∆=
∆+∆−∆−−∆=∆

F
PPTP

 (1) 

where 

 ( ) ( ) ( )( )∆−∆−−∆=∆ PTPPF  (2) 

Equation 1 gives the STDM.  F(∆) (see example, Fig. 1C) is the amount by which the 

time difference between the cells changes from cycle to cycle. 

From Eq. 1, one can determine equilibrium solutions ∆0, which describe the time 

difference between the cells at steady state.  We see that ∆0 is a solution if F(∆0) = 0.  

Requirements for stability of the steady state solution ∆0 are easily computed in terms F(∆) using 

theory of one-dimensional maps, which gives us 

  0)(2 <∆
∆

<−
∆o

F
d
d . 

Stable solutions are those for which F(∆) crosses zero with a slope between –2 and 0 

(open circles, Fig. 1C).  The “optimal” slope near a zero-crossing is –1, for which the system will 

converge to equilibrium in one cycle.  In general, the closer the slope is to the value –1, the faster 

the system will converge.  Zero crossings with slope outside the interval (-2,0) indicate the 

unstable solutions (plus symbols, Fig. 1C) and define boundaries of basins of attraction for the 

stable states (if there is more than one). 

It should be mentioned that in the case of unidirectional coupling, F(∆) is equivalent to 

the STRC.  Therefore, when one cell is driving another at the same firing rate, the zeros and 

slopes through zero of the STRC provide the predictions of network equilibrium behavior. 
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2. Linear STR Method 

The linear STR method relies on an additional crucial assumption.  Delays (or advances) 

are assumed to be linearly related to size of synaptic input.  This assumption is typically accurate 

only if the actual size of the input is “small” (exactly how small depends on the model cell), so 

the notion of weak coupling is therefore tied to linearity.  We use the linear method to determine 

the true weak coupling behavior and compare that to the behavior predicted by the direct method.  

Because the methods agree exactly in the limit of weak coupling, any observed difference 

between results is an effect of strong coupling. 

Unlike the directly calculated STRC, the linearized STRC is computed in two steps.  In 

the first step, a collection of response curves is obtained using extremely brief (1.0µs) pulses of 

current that can be thought of as approximations to the scaled Dirac δ function.  The curves, each 

called a STRCδ, are obtained using pulses of different amplitude.  Pulse amplitude is used to 

control the amount of charge (area under pulse) delivered by the input.  For small (area) inputs, 

the STRCδ simply scales with (is linearly related to) charge delivered.  An infSTRC 

(“infinitesimal” STRC) can be computed for the neuron in this weak perturbation regime (Hansel 

et al., 1995).  The following limit is evaluated numerically where Chrg equals the area under the 

current pulse and ∆ is time of input relative to the previous spike time: 

 ( ) ( )
.

,
lim

Chrg
ChrgSTRC

infSTRC
Chrg

∆
=∆ δ

→0
 (3) 

This method provides very similar results to the analytical phase response method mentioned in 

the Introduction.  In particular, the infSTRC (Eq. 3) differs by only by a scaling factor (usually 

between 1 and 2) from the adjoint computed by Bard Ermentrout’s program XPPAUT. 
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In the second step, infSTRC is then used to analytically obtain a linearized STRC that 

predicts the neuron’s response to synaptic inputs.  This is done by convolving the infSTRC with 

the PSC (postsynaptic current) that would be elicited by a presynaptic action potential (Hansel et 

al., 1995).  The central idea is that a weak perturbation distributed in time, such as a synaptic 

potential, can be thought of as a sequential series of essentially instantaneous perturbations 

weighted properly.  The effect on the oscillator’s spike time due to the synaptic potential equals 

the weighted sum of the effects due to each of the instantaneous perturbations.  Notice that 

scaling the coupling strength, which scales the PSCs, simply scales the linearized STRC.  

Therefore, a response to a strong synaptic input is predicted to be the scaled response to a weaker 

input. 

Once the linearized STRC is computed via the convolution integral, F(∆) is obtained 

using a simplified version of Eq. 2.  This simplification is made to maintain linearity such that 

scaling the linearized STRC also scales F(∆).  By expanding the second term in (2) using a 

Taylor series for small amplitude P(∆), we find 

 ( ) ( ) ( ) ( )∆Ε+∆−−∆=∆ TPPF  (4) 

where 

 ( ) ( ) ( )∆−′⋅∆≈∆Ε TPP . (5) 

E(∆) is the error in this approximation, which we ignore. 

C. Comparison of Predicted and Simulated Network Behavior 

As described above F(∆) gives the predicted dynamics of the two cell network based 

solely on the STRC from the individual neuron.  To confirm the predictions of F(∆), we compare 

them with the behavior of the simulated two-cell network.  Details of the two-cell network 

simulations are given in the next section.  There are two ways one could make this comparison.  
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First, one could iterate the STDM (Eq. 1), predict the spike times of the two cells, plot raster plots 

of these times, and compare to the spike times found in the two-cell simulation.  Rather than this 

method, we choose the following, which avoids displaying raster plots.  From a two-cell 

simulation, we simply measure the STD (spike time difference, ∆, Fig. 1B) on each cycle.  Then, 

the change in STD, ∆−∆ , can be plotted vs. ∆ for each cycle.  Simulations with different initial 

STDs are used to form a complete curve that can be plotted along with F(∆) (open circles, Figs. 

2-5).  Specifying initial STDs for the cells of the network is done using a detailed recording of 

the state variable waveforms over one full period starting from the beginning of a spike.  One cell 

is always started at time zero at the beginning of a spike.  The periodic waveforms for all states 

are then evaluated at the desired initial STDs to determine the initial conditions of the remaining 

cells.  The same method is used for stochastic simulations except that the state variable 

corresponding to persistent sodium activation is rounded off so that it represents an integer 

number of open sodium channels (Appendix IC). 

D. Numerical Methods and Simulation Software 

Simulation software was written in MATLAB (The MathWorks, Inc.) and C using 

MATLAB’s application program interface (API).  Numerical integration was performed in C 

using a standard adaptive step size Runge-Kutta algorithm (Press et al., 1992), adapted for the 

MATLAB API, with a relative tolerance of 10-6.  The model equations are specified in a separate 

.c file making it relatively easy to change to a new model and quickly apply the STR methods or 

run network simulations.  Model parameters can be controlled in MATLAB so one can apply the 

STR methods as a parameter is varied such as we do in this study.  For both STRC computation 

and network simulations, it was necessary to include a threshold crossing detection algorithm 

because the model AMPA synapse (Appendix IB) uses a threshold on the presynaptic voltage.  
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Again, a standard routine was used based on the secant method of root finding (Press et al., 1992) 

and threshold crossing times were accurately detected to within 10-4ms.  In several cases, 10-cell 

simulations with all-to-all coupling (no autapses) were performed along with the two-cell 

simulations.  For these larger simulations, an efficient algorithm (Lytton, 1996) was used that 

takes full advantage of the simplified synaptic model in order to achieve short simulation times.  

The maximal synaptic conductance was scaled by N-1, where N is the number of cells in the 

network.  Software implementing the linear and direct STR method as well as software for 

simulation of the two-cell network is available at http://bme.bu.edu/ndl/acker.html with 

documentation.  The programs require MATLAB.  Bard Ermentrout’s differential equation utility 

program XPPAUT (www.pitt.edu/~phase) was used to test the accuracy of our simulations, and 

to find values of Iapp required to maintain 120ms period for uncoupled cells. 

E. Measuring Limit Cycle Attractiveness 

An idea we use later is that of a limit cycle’s attractiveness, or how stable it is.  Here we 

describe the measure of limit cycle attractiveness we use, which we label “A”.  To calculate A, we 

first use AUTO under XPPAUT to output Floquet multipliers for limit cycles using the command 

“File/All Info”.  Behavior of Floquet multipliers and their relation to limit cycle stability and 

bifurcations is covered in many texts (for example Guckenheimer and Holmes, 1983; section 

11.7, Alligood et al., 1997).  For a stable limit cycle, all multipliers lie within the unit circle (they 

may be complex) except one trivial multiplier that is exactly equal to one.  The worst-case 

multiplier is that which is closest to one in absolute value (not counting the trivial one) and we 

label that Λ.  A is obtained by converting the multiplier Λ to a Floquet exponent, ( ) TΛ−= lnσ , 

and taking the real part, ( )σrealA = . 
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IV. Results 

A. Effects of Coupling Strength 

In this section, we show how linear methods of estimating spike time differences begin to 

fail as coupling strength is increased.  With strong coupling, we show that there is another 

mechanism for synchronization, which we call “cycle skipping”.  In cycle skipping, starting the 

two cells near anti-phase leads to suppression of a spike in one of them, such that a sub-threshold 

oscillation is displayed instead.  When the suppressed cell spikes again during the following 

cycle, its spike time is much closer to that of the non-suppressed cell.  The change in network 

dynamics is substantial and, in some cases, eliminates a stable anti-synchronous state.  Cycle 

skipping can be detected by direct methods, but not linear methods, of calculating the STRC and 

F(∆). 

1. Dynamics in the Model with Ih 

We start by illustrating this with the model using Ih.  Figure 2A demonstrates the effects 

of coupling strength on STRCs and F(∆).  The cells are biased so that they spike naturally with a 

period of 120ms.  In the first row, the maximal synaptic conductance is 0.0006mS/cm2.  As 

indicated by the STRCs, the maximal advance induced by this input is approximately 1.7ms.  The 

directly measured STRC (solid line) and linearized STRC (dashed line) are very similar, 

confirming that coupling is weak, according to our operational definition.  As expected from the 

STRCs, the two versions of F(∆) in Fig. 2A (right side) are very similar.  They predict stable 

synchrony and unstable anti-synchrony.  These predictions are confirmed by results from two-cell 

simulations (open circles, which represent trajectories of intercellular timing differences for a 

number of simulations begun with different initial conditions). 
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After increasing the maximal synaptic conductance by a factor of 10 (gsyn = 0.006; Fig. 

2A, 2nd row), we begin to observe the effects of strong coupling, as reflected in the fact that the 

solid and dashed lines no longer match.  The negative peak of the direct STRC (solid line) is 

sharper and slightly larger than its linearized counterpart (dashed line).  This implies that inputs 

arriving near mid-cycle can delay the cell slightly more than predicted by scaling its response to 

weaker inputs.  Also, the positive peak falls with a smaller slope.  Nonlinearity limits the amount 

by which the cell can be advanced by inputs arriving just before it was about to spike.  The linear 

method does not sense this natural limit and sometimes predicts anti-causal responses (in 

response to an input, the cell is advanced such that it spikes before the input).  

These two changes in STRC shape with gsyn = 0.006 warp F(∆) and therefore change the 

predicted network dynamics, as seen in the right column of Fig. 2A.  These changes can be 

broken up into two categories: zero crossing locations (and associated slope) that predict 

locations of stable equilibria, and the shape and amplitude of the curve that predict the evolution, 

i.e. dynamics, of spike time differences.  The direct and linear versions of F(∆) agree closely on 

locations of zero crossings, implying that there are no predicted changes in equilibrium behavior 

due to strong coupling in this case.  There are, however, large differences in predicted dynamics.  

The slope of the direct F(∆) near anti-synchrony is much greater than the linearized version.  This 

result implies that if the network is started near anti-synchrony (unstable), it will move away 

much more rapidly than the linear method predicts.  Intercellular time-difference trajectories from 

2-cell simulations (open circles) agree closely with predictions from the direct method.  The 

prediction of stable synchrony for gsyn=0.006 was verified in 2-cell and 10-cell simulations (data 

not shown), which showed stable intercellular timing differences of less than 10 µs. 



 16

When the maximal synaptic conductance increases to 0.013mS/cm2 (Fig. 2A, row 3), the 

negative peak of the STRC “snaps”, leaving a gap near 60ms.  This gap is caused by a 

phenomenon we call “cycle skipping” that is immediately apparent when measuring the spike 

time response to a mid-cycle input (Fig. 2B).  In response to the excitatory perturbation near mid-

cycle (arrow, 55ms), the cell “skips a cycle”: rather than spiking, it performs a sub-threshold 

oscillation (very small amplitude in the Ih model), greatly delaying the next spike. 

The gap in F(∆) is due to the gap in the STRC.  As a result, F(∆) makes the following 

predictions.  If the network is started “in the gap”, for example if ∆ is initially near 55ms, cycle 

skipping is expected, with no prediction of the subsequent dynamics.  Otherwise, the network is 

expected to synchronize without cycle skipping with dynamics given by F(∆).  The network is 

not expected to move back into the gap because F(∆) is positive to the right and negative to the 

left of the gap.  If ∆ is initially greater than 58ms, it will grow until the cells synchronize.  

Likewise, if ∆ is initially less than 54ms, it will shrink on subsequent cycles until the cells 

synchronize. 

Two-cell simulations confirm the above predictions and, in addition, allow us to observe 

the dynamics following cycle skipping (Fig. 2C).  When the network is given an initial ∆ of 

55ms, cycle skipping takes place as expected and a cell “skips a beat”.  Typically, when the cell 

resumes firing it is much closer to being in phase with the other cell (Fig. 2C).  When away from 

anti-synchrony, cycle skipping does not take place and the cells synchronize.  Synchrony is 

therefore the only stable equilibrium state as predicted by the STDM and no persistent behavior 

including cycle skipping is observed. 
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2. Dynamics in the Model with IKs 

Similar results are obtained when the model includes IKs instead of Ih.  In this case, the 

appearance of cycle skipping not only changes network dynamics, it also eliminates one of the 

stable equilibrium states. 

In Fig. 3A, with gsyn=0.001, F(∆) has an extra pair of maxima and minima compared with 

the Ih case and both synchrony and anti-synchrony are predicted to be stable.  When the coupling 

strength is increased by a factor of 10 (gsyn=0.01), we see something very similar to the Ih case.  

The negative peak of the direct STRC is enlarged, which causes some warping of the direct F(∆) 

(solid line).  In particular, the slope of F(∆) as it crosses at anti-synchrony is closer to –1, the 

optimal value for rapid convergence (see Methods).  This predicts that if the network starts within 

the basin of attraction for anti-synchrony, it will anti-synchronize significantly faster than 

predicted by the linear method. 

The direct F(∆) does not cross zero at exactly 60ms, as does the linearized version.  

Instead, the zero occurs at approximately 63ms.  This means that when the cells are locked in 

anti-synchrony, their period is approximately 126ms, not 120ms, their uncoupled period.  This 

result agrees well with the direct STRC, which shows that the neurons delay each other by 

approximately 6ms on every cycle when in anti-synchrony. 

When gsyn is sufficiently large to cause cycle skipping (gsyn=0.015), we see effects very 

similar to the Ih case.  Cycle skipping appears when measuring the spike time response to a mid-

cycle input (Fig. 3B) and is the cause of the gap shown in the STRC and F(∆).  Two-cell network 

simulations (Fig. 3C) reveal cycle-skipping dynamics similar to that with Ih.  Cycle-skipping 

tends to push the network away from anti-synchrony and allows the network to quickly 

synchronize.  The stable anti-synchronous solution that is seen if the coupling is sufficiently 
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weak is therefore lost due to cycle-skipping.  Previously, albeit under somewhat different 

circumstances, anti-synchrony has been shown to disappear in the presence of strong coupling  

(Chow and Kopell, 2000; Kopell et al., 2000). 

As in the Ih case, additional simulations were performed to confirm predicted equilibria 

behavior (raw data not shown; intercellular time-difference trajectories shown as open circles in 

the right column of Fig. 3A).  In two-cell simulations anti-synchronization was typically very 

rapid for initial conditions within the basin of attraction of anti-synchrony.  Also, the cells 

synchronized to within 10µs after 25s from an initial STD of 5ms. There is one interesting effect 

in Fig. 3A not observed previously with Ih.  Intercellular time-difference trajectories from two-

cell simulations (open circles) do not match the shape of F(∆) from the direct method.  This 

discrepancy is due the fact that this cellular model has extended memory: in violation of the 

assumptions of both direct and linear STR methods, spike timing is determined not only by the 

most recent input, but also by inputs that arrived in previous cycles.  This issue is examined 

further in the Discussion and Fig. 10. 

Ten-cell simulations are especially interesting in this case given that the two-cell network 

is bistable.  In general these simulations (data not shown) formed two clusters of cells.  Cells 

within each cluster were closely synchronized and the two clusters of cells fired out of phase with 

one another.  Depending on initial conditions it was possible to create clusters that contained 

unequal numbers of cells, in which case the two clusters would not fire in exact anti-synchrony.  

Also, if similar initial conditions were used for all cells, the network would closely synchronize. 
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B. Changes in Intrinsic Parameters Turn "Weak" Coupling to "Effectively Strong" 

Coupling and Change Synchronization Properties 

Functionally, “weak” coupling means that there is almost no difference between the linear 

and direct methods.  In this section, we show that this notion of weak coupling depends on 

intrinsic as well as coupling conductances: if the level of Ih or IKs is changed, it can change the 

value of the coupling conductance gsyn at which "strong" coupling effects are produced, obtaining 

them even at very low levels of gsyn.  Even when there is little difference between the direct and 

linear method, intrinsic conductances can change the ability to synchronize.  This is mirrored in 

the shape of the STRCs.  When the STRC is strictly positive (akin to the "type I" PRC of Hansel 

et al., 1995), it is not possible to delay the cell with an excitatory input.  Cellular models with 

these properties cannot perfectly synchronize by physiologically realistic mutual excitation (Van 

Vreeswijk et al., 1994; Hansel et al., 1995; Ermentrout, 1996).  By contrast, if the STRC has an 

initial portion that is negative (akin to the “type II” PRC of Hansel et al., 1995), cells can be 

either delayed or advanced by excitation, depending on the timing of the input (Figs. 1-3 display 

type II STRCs).  We will show that changing the level of gKs or gh can change the STRCs from 

type I to type II, which changes the synchronization properties of the network. 

1. Effects of Changing gKs 

We start by illustrating this with the model using IKs.  Figure 4 demonstrates the effects of 

increasing gKs, the maximal conductance of IKs, on STRCs and F(∆).  As gKs is varied, so too is 

Iapp, the bias current, in order to maintain a natural period of 120ms.  Gsyn, the coupling strength, 

is maintained at 0.01mS/cm2. 
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a) Increasing gKs changes neurons from type I to type II and creates bistability 

Restricting our attention to the predictions from the linearized STR method (dashed 

lines), we observe the changes due to increasing gKs (Fig. 4).  With gKs = 0, so that no slow 

current exists in the model, the STRC is strictly positive (type I).  From F(∆), we see that 

synchrony is predicted to be unstable, with a stable time lag of 19ms.  When gKs = 1.0, there is a 

tiny negative portion early in the STRC.  This change in STRC from type I to type II pushes the 

stable equilibrium point of F(∆) to ∆ = 0 ms, indicating synchronous phase-locking.  As gKs is 

increased from 1.0 to 2.0 mS/cm2, the negative peak of the STRC grows in amplitude and shifts 

to the right (later times in the cycle).  F(∆) continues to predict that the cells can synchronize 

using excitation.  For gKs > 2.0, the linear STR method predicts bistability: F(∆) crosses zero with 

negative slope at 60ms (anti-synchrony) and 0ms (synchrony).  

b) High gKs causes cycle skipping and effectively strong coupling 

For gKs ≤ 2 mS/cm2, predictions from linear and direct methods are quite similar.  

However, when gKs=2.5 (identical to row 2, Fig. 3) strong coupling effects are very evident.  We 

may say that for this value of gKs, the value of gsyn used in this figure (0.01) is “effectively 

strong”.  When gKs is further increased to 2.7, it seems that the coupling strength is effectively 

even stronger; the STRC continues to change shape and cycle skipping is observed.  These 

effects are very similar to those in the last row of Fig. 3A where the synaptic conductance was 

increased by a factor of 1.5.  This apparent increase in coupling strength for large gKs is due, we 

suspect, to reduced attractiveness or stability of the spiking limit cycle.  It is possible to measure 

the attractiveness of a limit cycle (see part E, Methods) and we apply this measure for increasing 

gKs in Fig. 9.  A discussion of these results is found in part A, Discussion. 
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2. Effects of Changing gh 

Similar results are obtained when the model includes Ih (Fig. 5).  Synchronization 

properties change as gh is varied.  Gsyn, the maximal synaptic conductance is maintained at 

0.006mS/cm2. 

a) Increasing gh changes neurons from type I to type II 

Restricting attention to the dashed lines (from the linear method), the following “weak 

coupling” behavior is observed in Fig. 5.  With gh = 0.0, the STRC is type I and has a very large 

amplitude.  F(∆) predicts that a time difference of 22ms exists between the cells at steady state 

and that synchrony is unstable.  F(∆) has a small amplitude compared to the STRC because the 

STRC is nearly symmetric about 60ms.  Consequently, on every cycle the cells advance each 

other by approximately the same amount, and hence the difference between them changes very 

little from cycle to cycle.  With gh = 0.3, the STRC changes from type I to type II, and F(∆) 

predicts stable synchrony.  In the last three rows, the negative peak of the STRC grows and 

moves to the right while F(∆) maintains its prediction of stable synchrony and unstable anti-

synchrony. 

The weakly coupled network does not exhibit bistability as it does with IKs in the model.  

This is because the negative peak of the STRC does not shift sufficiently to the right, as it did 

with large gKs (see Discussion for further explanation and proof in Appendix II).  It is important 

to note that the precise location of this negative peak is sensitive to details of Ih such as timing 

and location of its halfway activation point (data not shown).  The halfway activation voltage of 

Ih in particular is known to be subject to modulation (Pape, 1996) and this behavior may easily 

change. 
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b) Strong coupling effects appear for different ranges of gh and high gh causes cycle 

skipping 

In contrast to the case of IKs, strong coupling effects are seen for large and small values of 

Ih.  In row 1 of Fig. 5, the direct STRC has large amplitude and differs significantly from the 

linearized one.  The large amplitude of the STRC causes the shift of the unstable equilibrium 

point near anti-synchrony in the directly estimated F(∆) from 60 to 45ms.  This leftward shift 

indicates that the period of the cells decreases when near anti-synchrony to 90ms (instead of 

120ms).  This result agrees well with the direct STRC, which indicates that cells advance each 

other by approximately 30ms on any cycle in which they are out of phase.  For larger values of gh 

(rows 2-4), strong coupling effects are still evident.  In these cases, strong coupling effects have 

more dramatic consequences for spike time difference dynamics, discernable from the shape of 

F(∆), than for predicted equilibrium time differences, which depend only on behavior of F(∆) 

near its zero-crossings. 

When gh=1.5, parameters are identical to row 2 of Fig. 2, and strong coupling effects are 

noticeable. When gh is increased to 2.0 (row 5, Fig. 5), dramatic strong coupling effects including 

cycle skipping appear as they do when the synaptic conductance is significantly increased (row 3, 

Fig. 2).  It appears that this increase in gh causes an increase in the effective strength of coupling 

in a similar manner as observed previously with large gKs.  The appearance of cycle skipping in 

this case has a similar effect on network dynamics: the neurons are pushed away from anti-

synchrony and then synchronize quickly.  For all values of gh, direct estimates of F(∆) (solid 

lines) and results from simulations (open circles) are in close agreement. 
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C. How Slow Conductances Can Cause Delays in Response to Excitatory Inputs 

(Type II STRCs) and Bistability 

The first rows in Figs. 4 and 5 show that the model stellate cell with no slow current 

displays a type I STRC, i.e., in response to excitatory input the cell can only be advanced.  The 

rest of Figs. 4 and 5 show that this is not true when there is a slow current that is sufficiently 

large.  Similar results have been reported before (Crook et al., 1998; Ermentrout et al., 2001).  In 

Fig. 6 we explore how the properties of IKs or Ih, can lead to a type II STRC in which delays are 

possible that allow the neurons to synchronize via mutual excitation. 

In Fig. 6A, mKs, the activation variable underlying IKs, is shown in response to an early 

and a late excitatory input.  Any excitatory input tends to activate IKs, which in turn tends to 

hyperpolarize the cell.  Early inputs allow the slow current to activate before the fast sodium 

channels are recruited and cause the neuron to spike.  In this case, the hyperpolarization is 

sufficient to delay the cell (Fig. 6A, light gray).  In contrast, when inputs arrive late in the cycle, 

the slow current does not have time to activate before the fast sodium current takes over and the 

cell spikes before reaching its natural period (Fig. 6A, dark gray).  Figure 6B demonstrates the 

same experiment with mh, the activation of Ih.  In general, mh behaves the same as mKs except 

that mh inactivates in response to excitatory inputs.  However, since Ih is an inward current, this 

also tends to hyperpolarize the neuron.  Qualitatively, the results are the same: early inputs delay 

the next spike, whereas late inputs advance it. 

D. Intrinsic Noise Can Promote Synchronous Spiking 

The previous results describe the behavior of a network of deterministically modeled 

MEC stellate cells.  In reality, however, these cells are intrinsically noisy (White et al., 1998a; 

White et al., 2000).  Intrinsic noise has significant effects on experimentally measured STRCs 
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(preliminary data, not shown).  In this section we implement a stochastic model of the MEC 

stellate cell (White et al., 1998a; White et al., 2000) and compare network behavior to that 

obtained previously.  Often, the behavior is simply a noisy version of that seen previously and 

obeys the predictions made by the deterministic STR results.  However, for the model MEC 

neuron (including IKs) there are two exceptions in which fundamentally different behavior is seen.  

(1) Cycle skipping-based synchrony (as in Figs. 2C and 3C) occurs for smaller inputs in 

intrinsically noisy models than in noise-free models.  (2) Under conditions of low current drive to 

noisy model cells or cells in vitro (Alonso and Klink, 1993), cellular behavior is dominated by 

sub-threshold oscillations and action potentials are generated only sparsely.  In this case sub-

threshold oscillations control spike timing in a powerful way that promotes “sparse synchronous 

firing”. 

1. Small Inputs Induce Cycle Skipping-Based Synchrony in Noisy Models 

Figure 7 demonstrates the consequence of increased input sensitivity due to intrinsic 

noise.  As in the second row of Fig. 3A, the network is bistable: along with synchrony, anti-

synchrony is also stable with a wide basin of attraction.  This equilibrium behavior is reproduced 

in Fig. 7A (dashed line).  This deterministic behavior is clearly different than the equilibrium 

behavior observed from the stochastic simulations (solid line, Fig. 7A).  The stochastic network 

displays noisy equilibrium behavior around synchrony only, not around anti-synchrony.  Thus the 

addition of noise has allowed the network to avoid the anti-synchronous state.  Figure 7B shows 

how this is possible.  When the deterministic network (top panel, Fig. 7B) is started at anti-

synchrony, it remains that way for the duration of the simulation and is therefore locked in anti-

synchrony.  In contrast, when the stochastic network (bottom panel, Fig. 7B) is started from anti-
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synchrony, cycle skipping eventually appears and pushes the network close enough to synchrony 

to allow the network to synchronize.  Once synchronized, it remains so. 

2. Sparse Synchronous Firing 

Intrinsic noise can also cause "sparse synchronous firing" (Fig. 8).  In this case the two 

cells predominantly display noisy subthreshold oscillations.  Initially, these oscillations are out of 

phase.  The early “rogue” spike (t=1400ms) in the gray trace fails to elicit a spike in the black, 

but it does appear to reset the phase of subthreshold oscillations in the black trace, meaning that 

subsequent noisy oscillations are roughly in phase.  Even though the oscillations are quite noisy 

and not communicated by the synapses, they sometimes remain in phase for a significant period 

of time.  When the second spike is fired (black trace, t=2100ms) the postsynaptic cell is 

significantly depolarized due to the sub-threshold oscillation.  A nearly in-phase spike is elicited 

in the gray trace, initiating a cluster of nearly synchronous activity.  The cluster is maintained for 

two additional cycles by a mixture of these cells’ intrinsic tendency to generate spike clusters 

(Alonso and Klink, 1993; White and Haas, 2001) and the properly phased input each cell receives 

from its neighbor.  Eventually, the spikes fail and noise begins to desynchronize the sub-

threshold oscillations.  Even if the next random spike fails to elicit a spike, it tends to 

resynchronize the ensuing oscillations.  In this way, sub-threshold oscillations can control spike 

timing such that clusters of nearly synchronous spike pairs can appear from the noisy background 

oscillations. 
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V. Discussion 

The behavior of a network of cells is determined by the properties of the participant cells.  

We find coupling strength, intrinsic voltage-dependent conductances, and the presence of noise 

all to be important factors in determining the network’s behavior.  The direct method of 

estimating spike time response curves (STRCs) and spike time difference maps (STDMs) helps 

to summarize the cellular properties that are important for network function.  Any parameter that 

significantly changes the shape of the STDM or F(∆) also significantly changes the network’s 

behavior.  Predictions from direct STDMs are extremely accurate for most cases, in which only 

the most recent synaptic perturbation has measurable effects on spike timing.  Even for cases in 

which this assumption of “memorylessness” is not met (e.g., Fig. 3; see also below and Fig. 10), 

results are qualitatively predictive.  Results from STR methods and two-cell simulations predict 

the behavior of larger networks with all-to-all coupling accurately.  Synchronization in two-cell 

networks leads to identical behavior in ten-cell networks.  Bistability in two-cell networks leads 

to two “clusters” (firing synchronously within a cluster and roughly anti-synchronously between 

clusters) in larger networks.  The proportion of cells within a given cluster depends on initial 

conditions. 

Our spike time response (STR) methods are very similar to previously developed phase 

response methods (Hansel et al., 1995; Ermentrout et al., 2001; Kopell and Ermentrout, 2001; 

Winfree, 2001).  However, our direct method avoids the assumption of weak coupling or linearity 

often made when generating phase response curves (PRCs).  This difference allows us to study 

systems with strong coupling and detect nonlinear effects such as cycle skipping.  This gain does 

not come without a cost:  without linear effects of input magnitude on spike timing, one loses all 

the advantages of linear systems.  For the experimentalist, these advantages may be important 
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because they make it possible to predict the STRC for any input given the measurement of a 

single response curve.  Without linearity, it is not possible to predict the exact change in the 

response curve when the form or size of the input is changed. 

Although the direct STR method does require numerical computation of STRCs, it 

provides considerable insight that is difficult to obtain by only running simulations of the 

network.  For a given set of model parameters, the STR method gives one a map of global 

network behavior including existence of bistability, domains of attraction, and rates of attraction.  

Perhaps most importantly, the STR method allows one to easily study the effects of particular 

membrane conductances on global network behavior. 

As mentioned in Methods, STR methods are similar in name to the spike response models 

(SRMs; Kistler et al., 1997; Gerstner, 2001).  In SRMs, one builds kernel-based representations 

of behavior between spikes, and finds a best-fit threshold value.  In practice, only the linear 

kernel is typically estimated (estimation of higher-order kernels is much more demanding), and 

the threshold is set to an approximate constant value.  Once determined, the SRM can be used to 

predict the cellular response to an arbitrary, continuous-time input.  In our STR methods, one 

builds functional descriptions of how a periodically-spiking neuron responds to perturbations that 

occur only once per cycle.  For this reason, the STR method outlined here is appropriate only for 

studying neuronal populations that are entrained at a given firing frequency.  By operating under 

these constrained conditions, the STR method accounts for nonlinear behavior much more easily 

than do SRM methods.  STR analysis could be extended to account for more complex stimulus 

patterns (e.g., two perturbations per cycle), but at the cost of needing much more data to perform 

the analysis: the number of data points needed would be expected to be proportional to the square 

of the number of perturbations per cycle. 
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A. Effects of coupling strength, intrinsic conductances, and noise 

Linear methods of spike time response analysis are predicated on the assumption that 

perturbation-induced spike time advances and delays are a linear function of the magnitude of the 

perturbation.  Not surprisingly, this assumption breaks down for large enough synaptic 

conductance perturbations.  Here, we see significant breakdown of the assumption of linearity 

with inputs less than 0.01 mS/cm2 (with gKs=2.5mS/cm2).  During active exploration and 

information acquisition, neuronal activity driving stellate cells is likely to be highly coherent 

(Chrobak et al., 2000), implying that the synaptic “perturbations” received by MEC cells in vivo 

are large enough to induce considerable nonlinear effects in spike timing, and may be large 

enough to induce cycle skipping, as seen in Figs. 2C and 3C. 

We see two principal effects of increasing magnitudes of the slow conductances gKs or gh.  

First, increasing either slow conductance from zero to moderate values changes the STRC from 

“type I” (always advanced by depolarizing stimuli) to “type II” (delayed for some depolarizing 

inputs).  Correspondingly, F(∆) (the STDM) changes to support synchrony via mutual excitation.  

Second, further increases in gKs or gh induce “effectively large coupling,” in which even a small 

synaptic perturbation induces nonlinear effects in spike timing, including cycle skipping.  The 

first of these effects is reminiscent of results seen by Ermentrout and colleagues (Crook et al., 

1998; Ermentrout et al., 2001).  Like (Ermentrout et al., 2001), we see subtly different effects for 

different slow currents.  However, these studies are different in the details; our implementation of 

IKs is similar to the M-current IM used by (Ermentrout et al., 2001), but our Ih is both 

quantitatively and qualitatively dissimilar to the spike afterhyperpolarization they studied.  More 

importantly, our work focuses on the effects of large and effectively large inputs, which cannot 

be studied using their analytical method. 
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In Figs. 4 and 5, we saw evidence that certain changes in model parameters can cause 

changes in apparent coupling strength.  We suspect that effectively strong coupling is due to a 

reduction in the “attractiveness”, or stability, of the spiking limit cycle.  Limit cycle attractiveness 

is relevant to STR analysis because inputs applied to a nonlinear model with a weakly attractive 

limit cycle can trigger large divergences from the periodic waveform.  Using a measure of 

attractiveness we call “A” based on the system’s worst case Floquet multiplier (see Methods, part 

E for details), we can investigate this idea.  Results are given in Fig. 9, where A is plotted as a 

function of increasing slow conductance gKs. 

  In Figure 9, we see that increasing gKs eventually leads to a sharp fall off in the limit 

cycle’s attractiveness towards a value of zero.  This helps to explain our observations from Fig. 4; 

the increase in effective coupling strength for large gKs may be due to a reduction in limit cycle 

attractiveness.  The only discrepancy is that from Fig. 4, effectively strong coupling effects are 

present when gKs=2.7, but we see that the measure of limit cycle attractiveness in Fig. 9 doesn’t 

drop off until immediately after this value.  One possible cause of this slight discrepancy is the 

fact that the measure A only accounts for the system’s properties at or very near the limit cycle.  

Remember that we consider coupling that is not weak and inputs can perturb the system 

significantly away from the limit cycle where the rate of attraction back to the limit cycle may be 

less than that right at the limit cycle.  For inputs even larger than those considered here, one may 

expect further reduced accuracy of measure A.  In this case it may be necessary to use a different 

measure of limit cycle attractiveness that takes into account properties of the system in some 

appropriately large region about the limit cycle. 

Whether F(∆) predicts stable or unstable anti-synchrony depends on the location of the 

negative peak of the type II STRC: anti-synchrony changes from being unstable to stable when 
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the negative peak shifts to the right past Ta/2, where Ta is the period of the coupled cells when at 

anti-synchrony.  (Ta may be different than T, the uncoupled period).  In Appendix II we prove 

that the change in stability happens when the negative peak is exactly at Ta/2.  If we look back to 

the top row of Fig. 3 (IKs) we see that anti-synchrony is stable and Ta/2 equals 60ms.  Using the 

rule we predict stable anti-synchrony given that the negative peak of the STRC is to the right of 

60ms.  In the top row of Fig. 2 (Ih), however, the negative peak is to the left of 60ms and anti-

synchrony is unstable. 

Simulations of coupled noisy neurons can often be understood, at least qualitatively, from 

noiseless STDMs.  Noise in our simulations can amplify the effects of synaptic perturbations.  In 

particular, cycle skipping in response to inputs is more prevalent in noisy simulations than in the 

noiseless case.  This phenomenon effectively destabilizes the anti-synchronous state in our 

simulations (Fig. 7), converting a bistable deterministic system to a system that hovers around the 

synchronous state.  This effect is seen with noise levels below those observed physiologically 

(White et al., 1998a).  A separate effect was observed in simulations where cycle skipping 

dominated the cell’s natural behavior (Fig. 8).  Spikes that appear from this “background” of 

activity tend to occur in nearly-synchronous clusters. 

B. Predictions from both linear and direct STR methods suffer when model has 

extended memory 

When the coupling between the cells is truly weak, both the linear and direct STR 

methods are usually able to accurately predict network behavior.  However, this is not always the 

case, as exemplified by Fig. 3.  We believe that this discrepancy is caused by cellular “memory” 

(i.e., sensitivity to more than just the most recent synaptic perturbation).  Figure 10 shows 

measurements of infSTRCs in response to a single, weak perturbation for two cycles.  For the 
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model including IKs (parameters as in Fig. 3), single perturbations have measurable effects in the 

second cycle (top panel, dashed line); effects in later cycles (not shown) are negligible.  For the 

comparable model including Ih (Fig. 10, bottom panel), the effects of inputs in the second cycle 

are minimal.  This result likely explains why linear and direct STR methods are more accurate for 

models with Ih than for models with IKs. 

Inaccuracies due to extended memory could in principle be greatly reduced by developing 

maps that depend on perturbations during the most recent two cycles.  Such maps would require 

measurement of all combinations of delays in perturbations over two firing cycles.  Although this 

is feasible in a model cell, it would be difficult to achieve in the duration of an experimental 

recording. 

C. Future efforts 

The ability to study strong coupling effects using STR methods represents an important 

step in developing these methods for more general application in modeling and experimental 

studies.  Future modeling studies should focus on application of STR methods to more realistic 

conditions, including larger, sparsely coupled networks (Golomb et al., 2001), networks 

including noise and heterogeneity (Golomb and Rinzel, 1993; White et al., 1998b; Tiesinga and 

Jose, 2000), and networks that do not fire in a stationary periodic mode.  In addition, further work 

is needed to understand why, after cycle skipping, trajectories return with greater synchrony.  

Future experimental work should use dynamic clamp technology (Robinson and Kawai, 1993; 

Sharp et al., 1993; Dorval et al., 2001) to introduce mock synaptic conductances experimentally, 

and thus directly measure STRCs rather than estimating them using current pulse inputs (Reyes 

and Fetz, 1993).  Routine, successful measurement of STRCs experimentally will require stable 

whole-cell or perforated patch recordings that do not significantly change cellular characteristics 
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and are stationary for at least 30 min.  Estimation of STDMs from experimental data may require 

statistical methods to handle jitter in spike timing as well.   
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Figure Legends 

Figure 1. Illustration of STR (spike time response) method.  A. STRC (spike time response 

curve).  Spike time advance (ms) vs. time of input with respect to previous action potential.  

Natural period (T) equals 120ms.  B. Illustration of STDM (spike time difference map) 

derivation.  Given spike times of cell 1 and 2, t1 and t2, the next spike times, 1t  and 2t , can be 

predicted using the STRC.  C. F(∆) describes the change in STD (spike time difference), ∆−∆ , 

as a function of ∆, the present STD.  Zero crossings with negative slope not less than –2 (open 

circles) are predicted stable equilibrium STDs.  In this illustration, both synchrony and anti-

synchrony, STD=0 and 60ms respectively, are predicted to be stable.  Unstable equilibria at 42 

and 78ms (plus symbols) demarcate basins of attraction for the two stable states.   

 

Figure 2. The effects of strong coupling; model includes Ih.  A. gsyn, the maximal synaptic 

conductance or coupling strength (mS/cm2) is varied among three values as shown on the left.  

Vertical scale is greatly contracted in the first row to make weak interactions clearly visible.  

STRCs (spike time advance vs. input time, both in units of ms) and F(∆) ( ∆−∆  vs. ∆, both in 

units of ms) are shown using both the linear (dashed lines) and direct method (solid lines).  Any 

difference between these methods indicates an effect of strong coupling.  Open circles plotted 

along with F(∆) are sampled data from two-cell simulations used to verify F(∆) from linear and 

direct STR methods.  Discontinuities in the STRC and F(∆) indicate cycle skipping.  Parameters 

are given in Appendix IA for Ih.  B. Cycle skipping appears while measuring the spike time 

response to a mid-cycle input.  Spikes clipped to show sub-threshold behavior.  Two simulations 

are shown started from identical initial conditions; in one the cell is left unperturbed (thin gray 

waveform), while in the other (thick black), an EPSC is applied at the time indicated by the arrow 
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(55ms).  The subsequent spike time in the perturbed waveform is much later than the unperturbed 

spike and occurs after a sub-threshold oscillation is performed (very small amplitude in this case).  

Parameters as in row 3 of Fig. 2A.  C. Two cell network simulation with the cells initially 55ms 

out of phase.  Cycle skipping is seen and the cells are pushed near synchrony in one cycle. 

 

Figure 3. The effects of strong coupling; model includes IKs.  Same format as Fig. 2.  A. STRCs 

(spike time advance vs. input time) and F(∆) ( ∆−∆  vs. ∆) are shown using both the linearized 

(dashed lines) and direct method (solid lines).  Open circles plotted along with F(∆) are sampled 

data from two-cell simulations.  All parameters are in Appendix IA for IKs.  B. Cycle skipping 

appears during direct STRC measurement.  C. Two cell network simulation with the cells initially 

out of phase.  Cycle skipping is seen and the cells are pushed near synchrony in one cycle. 

 

Figure 4. Effects of varying gKs on network behavior.  Five values of gKs (mS/cm2), the maximal 

conductance of IKs, are shown to the left of the figure.  STRCs (spike time advance vs. input 

time) and F(∆) ( ∆−∆  vs. ∆) are shown using both the linearized (dashed lines) and direct 

method (solid lines).  Open circles are data from two-cell simulations.  gsyn=0.01mS/cm2.  Iapp is 

adjusted to maintain a natural period of 120ms; values for increasing gKs are: -1.197, 0.191, 

1.791, 2.841, and 3.37µA/cm2. 

 

Figure 5. Effects of varying gh on network behavior.  Ih is included in the model rather than IKs 

and the value of gh (mS/cm2), the maximal conductance of Ih, is varied.  STRCs (spike time 

advance vs. input time) and F(∆) ( ∆−∆  vs. ∆) are shown using both the linearized (dashed lines) 
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and direct method (solid lines).  gsyn=0.006mS/cm2.  Values of Iapp (to maintain a natural period 

of 120ms) for increasing gh are: 1.288, 0.618, -1.071, -2.23, and –3.296µA/cm2. 

 

Figure 6. A slow current can cause delays in response to excitatory inputs (“type II” STRC).  A, 

top: Response of mKs (activation of slow potassium current) to an early (light gray), and late 

(solid black) excitatory input.  Arrows indicate input times, arrow color matches corresponding 

trace.  Black dashed trace shows unperturbed mKs trajectory.  Bottom shows resulting spike 

timing.  Parameters are as in row 4 of Fig. 4.  B: Response of mh (activation of h-current equals 

0.65mhf+0.35mhs), arrows and line types have same meaning as in panel A.  Parameters are as in 

row 4 of Fig. 5. 

 

Figure 7. Influence of intrinsic noise on network equilibrium behavior.  A: Equilibrium STD 

(spike time difference) vs. initial STD.  For each initial STD, a long two-cell simulation is run 

and a series of approximately 18 STDs are collected using a measurement window of 4-6s.  The 

mean and standard deviation of the series of STDs are plotted for each initial STD.  Error bars in 

the deterministic case are not visible while those in the stochastic case represent the steady state 

effect on STD due to intrinsic noise.  Noise eliminates the bistability seen in the deterministic 

case.  B: Deterministic and stochastic simulations both started from anti-synchrony.  The 

deterministic simulation remains locked in anti-synchrony while the stochastic network escapes 

via cycle skipping and synchronizes.  Parameters are in Appendix IA for IKs with gsyn=0.01. 
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Figure 8. Synchrony among sparse action potentials in simulations including intrinsic noise.  

Sub-threshold oscillations control spike timing and encourage in-phase spiking.  Parameters are 

in Appendix IA for IKs except Iapp=2.39µA/cm2, gsyn=0.01. 

 

Figure 9. Large values of gKs lead to reduced limit cycle attractiveness.  Top panel shows 

measure “A” of limit cycle attractiveness (see Discussion and Methods for details) as a function 

of increasing slow potassium conductance gKs.  Iapp is simultaneously varied to maintain a spiking 

period of 120ms as indicated in the bottom panel.  Specific values of gKs that correspond to rows 

of Fig. 4 are indicated by open circles. 

 

Figure 10. Demonstration of secondary infSTRC.  The infSTRC (see Eq. 3) shows the neuron’s 

response to weak injected pulses of current.  Advances in primary infSTRCs (solid lines) are 

measured in the same cycle that the pulse is injected.  Secondary infSTRCs (dashed lines) show 

any residual perturbations in spike timing during the following cycle.  In the case of Ih (bottom 

panel), the secondary infSTRC is essentially zero as the neuron returns to its natural period in the 

cycle after the perturbation.  In the case of IKs (top panel), the effect of the pulse persists into the 

second cycle. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 

 

  0  30  60  90 120

 0

20

40

60

80

Initial STD [ms]

E
qu

ili
br

iu
m

 S
T

D

−50
  0
 50

Deterministic Simulation

1100 1200 1300 1400 1500 1600

−50
  0
 50

time [ms]

V
m

 [m
V

] Stochastic Simulation

deterministic
stochastic

A 

B 

 

Figure 8. 

1000 1500 2000 2500 3000
−90

−60

−30

  0

 30

 60

time [ms]

V
m

 [m
V

]

 



 44

Figure 9. 
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Note to editor and reviewer, text corresponding to figures 9 and 10 is in Discussion. 
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VII. Appendix I 

A. Model MEC layer II stellate cell equations. 

The current-balance equation for the modeled neuron is: 

 

)(
)( ( )( )

( )synsynsynLL

hhshfhKKsKsk

NaNapNapNaNaNaapp

VVmmgVVmg
VVmmmgVVmmgng

VVmmghmgI
dt

dVmC

−−−

−−+−−+

−−+−=

)(              

35.065.0)(               

)(

4

3

 (I-1) 

where C is membrane capacitance (µF/cm2), Vm is membrane potential (mV), Iapp is the applied 

bias (DC) current (µA/cm2), g is conductance (mS/cm2), and units of time are ms.  All dynamic 

variables obey the a first order differential equation expressed either as in Eq. I-2a, using 

expressions for the voltage dependent steady state values or (x∞) and time constants (τ), or as in 

Eq. I-2b, in terms of voltage dependent rate constants of α and β. 

 
(Vm)

x(Vm)x

xτ
−= ∞

dt
dx  (I-2a) 

 ( ) xx
dt
dx

xx βα −−= 1  (I-2b) 

Definitions for the αx(Vm) and βx(Vm) functions for each of the dynamic variables are as 

follows. 
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IKs and Ih are never on simultaneously; i.e. one of gh or gKs is set to zero.  Equations for Ih 

(I-8a to 9b) are taken from previous studies (Dickson et al., 2000; Fransen et al., 2003) with some 

simplifying modifications.  Simulations were run to confirm that these modifications do not 

affect results presented in this paper.  Parameter values corresponding to Figs. 2 and 3 are as 

follows.  For Ih (Fig. 2): VL=-65, gNap=0.5, gh=1.5, gsyn=0.006, gL=0.5, Iapp=-2.25.  For IKs (Fig. 

3): VL=-54, gNap=0.21, gsyn=0.01, gL=0.1, Iapp=1.791, gKs=2.0 (default), Vha-Ks = -35.  Parameter 
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values that are common to all figures are as follows.  VNa=55, VK=-90, Vh=-20, gNa =52, gk=11, 

C=1.5. 

B. AMPA Synapse Equations and Parameters 

A simple, efficient synapse model was implemented (Destexhe et al., 1994) with 

parameters chosen to mimic the fast kinetics of AMPA receptors (Destexhe et al., 1998). The 

synaptic gating variable msyn, obeys the following equation, which depends on neurotransmitter 

concentration, NT. 

 ( ) synsynsynsyn
syn mmNT

dt
dm

βα −−⋅= 1  (I-10) 

NT depends very simply on the potential of the presynaptic cell as follows.  When the 

presynaptic cell’s potential is above a threshold of –20mV, NT=0.001, otherwise it is zero.  In 

Eq. I-10, αsyn=1100 and βsyn=0.19.  For these parameter values, msyn rises in response to a 

presynaptic action potential to a value near 1 with a time constant of 0.78ms and then falls with 

time constant 5.3ms. 

C. Stochastic Treatment of Persistent Sodium Channel Population 

 In the stochastic simulations, the deterministic description of the persistent sodium (INap) 

given above is replaced by a stochastic description used in our past work (White et al., 1998a; 

White et al., 2000) and described briefly here.  In the stochastic model, gNap·mNap is replaced by 

the ratio N·γ / SA.  N is the number of open persistent sodium channels and varies from 0 to 2400 

(population size).  γ = 20pS is the open channel conductance and SA = 2.29x10-4cm2 is the cell’s 

surface area.  This is given by the ratio γ·N / gNap in order to preserve the maximal conductance of 

this conductance equal to gNap.  The channels are assumed to be independent and identical.  

Random numbers are chosen from an exponential distribution based on the equations αNap(Vm) 



 48

and βNap(Vm) above to determine the time of the next channel transition.  The equations are then 

integrated up to that time using backward Euler integration and the number of open channels is 

updated.  This method is generally used for exact stochastic simulations of chemical reactions 

(Gillespie, 1977).  A maximum step size of 10µs is enforced; the average time step is 

approximately 0.5µs. 

VIII. Appendix II 

Here we show that anti-synchrony is neutrally stable when the negative peak of the type II 

STRC is located at Ta/2, where Ta is the period when the cells are at anti-synchrony.  Recall from 

Methods that the stability of ∆=Ta/2 is given by the derivative of F(∆) evaluated at Ta/2.  We 

therefore differentiate Eq. 2 in Methods and evaluate at Ta/2 in order to determine the stability of 

anti-synchrony given that the negative peak of the STRC is at Ta/2: 
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When the negative peak of the STRC is located exactly at Ta/2: 
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Eq. II-1 can be rewritten: 
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When the cells are perfectly out of phase and have period Ta, on each cycle, the input arriving 

mid-cycle causes an advance of aTT − .  Therefore, Ta is related to T as follows: 
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Subtracting Ta/2 from both sides of Eq. II-3 and plugging into Eq. II-2, we see that 

 0
22

=






′=






′ aa TPTF  (II-4) 

 Equation II-4 implies that anti-synchrony is neutrally stable when the negative peak of the 

STRC is exactly at Ta/2.  A change in stability is therefore expected when the negative peak shifts 

past Ta/2. 
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