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Diniz Behn CG, Booth V. Simulating microinjection experiments in
a novel model of the rat sleep-wake regulatory network. J Neuro-
physiol 103: 1937–1953, 2010. First published January 27, 2010;
doi:10.1152/jn.00795.2009. This study presents a novel mathematical
modeling framework that is uniquely suited to investigating the
structure and dynamics of the sleep-wake regulatory network in the
brain stem and hypothalamus. It is based on a population firing rate
model formalism that is modified to explicitly include concentration
levels of neurotransmitters released to postsynaptic populations. Us-
ing this framework, interactions among primary brain stem and
hypothalamic neuronal nuclei involved in rat sleep-wake regulation are
modeled. The model network captures realistic rat polyphasic sleep-wake
behavior consisting of wake, rapid eye movement (REM) sleep, and
non-REM (NREM) sleep states. Network dynamics include a cyclic
pattern of NREM sleep, REM sleep, and wake states that is disrupted by
simulated variability of neurotransmitter release and external noise to the
network. Explicit modeling of neurotransmitter concentrations allows for
simulations of microinjections of neurotransmitter agonists and antago-
nists into a key wake-promoting population, the locus coeruleus (LC).
Effects of these simulated microinjections on sleep-wake states are
tracked and compared with experimental observations. Agonist/antago-
nist pairs, which are presumed to have opposing effects on LC activity,
do not generally induce opposing effects on sleep-wake patterning be-
cause of multiple mechanisms for LC activation in the network. Also,
different agents, which are presumed to have parallel effects on LC
activity, do not induce parallel effects on sleep-wake patterning because
of differences in the state dependence or independence of agonist and
antagonist action. These simulation results highlight the utility of formal
mathematical modeling for constraining conceptual models of the sleep-
wake regulatory network.

I N T R O D U C T I O N

Studies of the brain stem and hypothalamic neuronal popu-
lations involved in the regulation of sleep and wake states
suggest that changes in neurotransmitter levels play an impor-
tant role in the initiation and maintenance of sleep-wake
behavior (see Lydic and Baghdoyan 2005, 2008 for review).
For example, wakefulness is characterized by the expression of
high levels of noradrenaline by the locus coeruleus (LC),
serotonin by the dorsal raphe (DR), and acetylcholine by
pontine nuclei including the laterodorsal tegmentum (LDT)
and the pendunculopontine tegmentum (PPT) through the as-
cending reticular activation pathway to thalamocortical re-
gions. In contrast, sleep states are generally characterized by a
reduction in the levels of all these neurotransmitters in higher
brain regions with the exception of acetylcholine which returns
to waking levels during rapid eye movement (REM) sleep.

The regulation of the expression of these neurotransmitters
results from modulation of activity in the associated neuronal
nuclei by network interactions. Although the LC and DR are
accepted components of the sleep-wake network, recent ana-
tomical and physiological studies have identified new brain
stem and hypothalamic populations that may be involved in the
network and have proposed different versions of network
architecture (Saper et al. 2005). Network components involved
in the regulation of REM sleep have been of particular interest.
The classical conceptual model has been one of cholinergic
regulation of REM sleep, proposed by McCarley and Hobson
(1975), wherein reciprocal interactions between monoaminer-
gic REM-off populations and cholinergic REM-on pontine
populations govern transitions between non-REM (NREM)
and REM sleep. More recent studies have implicated a role for
GABA in the control of REM sleep (Brown et al. 2008; Datta
and Maclean 2007; Lu et al. 2004; Luppi et al. 2006; Mallick
et al. 2001; Sapin et al. 2009). However, the exact architecture
of the regulatory network has not been completely determined.

We propose a mathematical modeling framework that is
uniquely suited for investigating the structure and dynamics of the
sleep-wake regulatory network. This framework is based on a
novel population firing rate model formalism in which we modify
the traditional firing rate model formalism to explicitly include
neurotransmitter concentration variables reflecting the release of
transmitter to postsynaptic targets. The dynamics of neurotrans-
mitter concentrations follow saturating expression profiles consis-
tent with experimental observations. Coupling between popula-
tions occurs as a result of transmitter concentration levels in
postsynaptic populations. In this formalism, time scales charac-
teristic of specific neurotransmitter expression in postsynaptic
targets or of postsynaptic receptor activation can be explicitly
distinguished. More importantly, experimental studies have ma-
nipulated the neurotransmitter environments in specific nuclei
through targeted microinjection of transmitter agonists and antag-
onists to probe the regulatory network. Our modeling formalism
allows direct simulation of this type of experimental protocol.

The specific network structure of brain stem and hypothalamic
nuclei that we consider is based on known neural pathways and
neurotransmitter effects. It includes the mutual inhibitory interac-
tion between wake-promoting nuclei in the brain stem and sleep-
promoting nuclei in the hypothalamus that forms the basis of the
conceptual flip-flop model for sleep generation (Saper et al. 2001).
It also contains reciprocal interactions between pontine REM-
promoting nuclei and wake-promoting nuclei, whose activity
ceases during REM sleep, similar to the reciprocal interaction
model for REM regulation (Massaquoi and McCarley 1992;
McCarley and Hobson 1975). The network structure is similar to
that used in other mathematical models of the sleep-wake regu-
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latory network (Diniz Behn et al. 2007; Phillips and Robinson
2007; Tamakawa et al. 2006) and focuses on primary mecha-
nisms. However, this structure is not comprehensive, and some
neurotransmitters and neuropeptides involved in modulating
sleep-wake behavior, such as orexin/hypocretin and dopamine
(Dzirasa et al. 2006; Nakamura et al. 2000; Peyron et al. 1998;
Rye and Jankovic 2002; Thannickal et al. 2000), are not included.
We analyze how this network structure can account for typical rat
sleep-wake patterning and describe how specific components of
the structure support interaction dynamics consistent with exper-
imental observations.

To probe network structure and dynamics, we simulate micro-
injections of neurotransmitter agonists and antagonists into one
neuronal nucleus, namely the LC, and analyze effects on sleep-
wake patterning. We particularly study whether agonist/antagonist
pairs, which are presumed to have opposing effects on LC activ-
ity, generally induce opposing effects on sleep-wake patterning in
the network. Experimental results suggest that opposing effects
are obtained for some sleep-wake states, such as waking or REM
sleep (Mallick et al. 2001), but trends are not as clear for all sleep
states, particularly because many studies report only on percent
time spent in specific states rather than on details of sleep micro-
architecture. A focus of our simulations of these experiments is to
track effects on all states and analyze indirect effects of manipu-
lations of just one population that are propagated through the
network to impact activation of other nuclei and resultant pattern-
ing of all sleep-wake states. We also analyze if different agents,
which are presumed to have parallel effects on activity of a given
nucleus, induce parallel effects on network dynamics and sleep-
wake patterning. For example, GABA agonists and cholinergic
antagonists have both been shown to attenuate LC activity (Ennis
and Shipley 1992; Osmanovic and Shefner 1990); however,
experimental studies have suggested that each has a different
effect on sleep states (Mallick et al. 2001). We analyze our
simulation results to determine specific actions of each agent and
elucidate the differences in effects of parallel agents.

M E T H O D S

We first generally describe the formalism of our novel firing rate
model and how microinjection of neurotransmitter agonists and an-
tagonists can be simulated. We then describe the model of the
sleep-wake regulatory network constructed with this formalism. The
complete equations and parameter values for the sleep-wake network
model are given in the APPENDIX.

Firing rate model formalism

We propose a novel firing rate model formalism for the interaction
of neuronal populations that explicitly includes neurotransmitter con-
centrations released by presynaptic populations. The dynamics of
neurotransmitter concentrations drive the response of postsynaptic
populations (Fig. 1A).

Standard firing rate models provide a formalism for determining the
relationships between activity of presynaptic populations, total syn-
aptic input to a postsynaptic population, and the resulting postsynaptic
firing rate (Deco et al. 2008; Wilson and Cowan 1972; see reviews in
Dayan and Abbott 2001; Deco et al. 2008; Ermentrout 1998). Typi-
cally, the total synaptic input is determined by a weighted sum of the
presynaptic firing rates, and the firing rate of the postsynaptic popu-
lation evolves to a nonlinear function of the total synaptic input with
some characteristic time constant. In our model, we retain this basic
formalism but replace total synaptic input with a weighted sum of

neurotransmitter concentrations released by presynaptic populations,
Ci(t), where the subscript i allows for multiple neurotransmitters. In
this way, firing rate in a postsynaptic population X, FX(t), is modeled
by the standard equation of the following form

F�X �

FX���
i

gi,X Ci� � FX

�X

(1)

where the steady-state firing rate Fx�( � ) is a saturating function, the
gi,X are constant weights, and �X is the time constant associated with
the response of the postsynaptic population. For the steady-state firing
rate function, we use the standard sigmoidal function

FX��c� � Xmax �0.5�1 � tanh��c � �X�/�X���) (2)

characterized by parameters Xmax, �X, and �X (Fig. 1B). This functional
form ensures that sufficient release of inhibitory neurotransmitters si-
lences the population and excessive release of excitatory neurotransmit-
ters causes firing to saturate at a maximal rate, Xmax. Intrinsic population
properties such as excitability of individual neurons and local connectiv-
ity can be used to determine the parameters governing the slope of the
sigmoid (�X) and the activation threshold (�X).

Neurotransmitter concentration, Ci(t), depends on the firing rate of
the presynaptic population, generically referred to as FY(t). In our
formalism, Ci(t) evolves to a nonlinear function of FY(t) as described
by the following equation

C�i �
Ci��FY� � Ci

�i

(3)

where steady-state neurotransmitter release, Ci�( � ), is a saturating
function and �i is the associated time constant. Because different
microdialysis techniques lead to differences in absolute reported
neurotransmitter concentrations, we normalize each neurotransmitter
concentration between 0 and 1. The functional form of Ci�( � ),
Ci�(f) 	 tanh(f/�i), prescribes the relationship between presynaptic
firing rate and neurotransmitter release, and the shape of this function
was chosen to be consistent with experimental data (Aston-Jones and
Bloom 1981; Lydic and Baghdoyan 1993) (Fig. 1C). In particular,
neurotransmitter concentration increases monotonically with presyn-
aptic firing rate and approaches a saturating level (normalized to 1) at
maximum firing rate. The time scale described by �i reflects the time
dynamics associated with neurotransmitter release at the level of the
population rather than at an individual synapse. The temporal resolu-
tion of current microdialysis techniques does not allow direct mea-
surement of �i. However, recent results using voltammetric techniques
have shown that the rate constants for release and clearance of evoked
dopamine are on the order of seconds (Garris and Wightman 1994),
and we chose values for �i to be consistent with this result.

In a network model, all coupling between populations is mediated
through neurotransmitter concentrations: Ci�( � ) describes how firing
activity in the presynaptic population results in production of neuro-
transmitter, and FX�( � ) determines how neurotransmitter levels affect
activity in the postsynaptic population. By explicitly modeling the
dynamics of each neurotransmitter, the formalism allows for distinct
time scales associated with the release of each neurotransmitter or
with specific postsynaptic receptor dynamics. This contrasts with
many firing rate model formalisms in which the dynamics of inputs
from all presynaptic sources are described by a single time constant
(Dayan and Abbott 2001; Deco et al. 2008; Phillips and Robinson
2007, 2008; Wilson and Cowan 1972). A more detailed comparison of
our formalism with other firing rate models is provided in the
DISCUSSION.

Neurotransmitter release is correlated with, but not determined by,
the firing rate of the presynaptic population, and variability of release
grows with concentration level (Aston-Jones and Bloom 1981). This
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represents a key source for physiological noise in our formalism. To
incorporate this variability of neurotransmitter release into the model,
the steady-state neurotransmitter release function Ci�( � ), was multi-
plicatively scaled by a noise factor, �i(t), whose amplitude randomly
varied (with normal distribution and unit mean) according to a
Poisson process. This mechanism introduced a time-varying element
into steady-state neurotransmitter release and resulted in variable
target neurotransmitter concentrations for fixed presynaptic firing
rates (Fig. 1C). Furthermore, the use of a scaling factor resulted in
concentration-dependent variability consistent with experimental data
(Aston-Jones and Bloom 1981). In addition, variability in the firing
thresholds of individual neurons in postsynaptic populations is ac-
counted for in the sigmoidal shape of the steady-state firing rate
function, FX�( � ), as in other firing rate models.

Simulating microinjection experiments

To simulate microinjection of neurotransmitter agonists and antag-
onists in this modeling framework, we introduced a variable for

concentration levels of each agonist and antagonist in the targeted
population. The agonist and antagonist variables were denoted by Pi(t)
and Qi(t), respectively, where i indicates the affected transmitter. The
dynamics of the agonist and antagonist variables are described by a
positive initial value, simulating the bolus injection, followed by a
slow decay representing diffusion and reuptake. The slow decay is
governed by a time constant, �Pi or �Qi, that is chosen to reflect the
time scale of the observed effects of the agonist or antagonist

dPi

dt
� �

Pi

�Pi

and
dQi

dt
� �

Qi

�Qi

(4)

For the microinjection experiments we simulate, these effects last
for 
4 h (Mallick et al. 2001).

We model the net effect of the endogenously released neurotrans-
mitter and the injected neurotransmitter agonist or antagonist by
appropriately scaling or augmenting endogenous neurotransmitter in
the targeted population. High concentrations of injected neurotrans-
mitter or neurotransmitter agonist often affect the release of endoge-
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FIG. 1. The key elements of the proposed firing rate model formalism. A: activity in a presynaptic population, FY(t), generates neurotransmitter release, Ci(t),
which affects activity in the postsynaptic population, FX(t). Therefore the effect of the presynaptic population on the postsynaptic population is explicitly
mediated through the presynaptic population’s associated neurotransmitter. B: steady-state firing rate profile of postsynaptic population FX�� �� is a saturating
sigmoidal function of weighted input of neurotransmitters released by presynaptic populations (representative example shown). C: steady-state neurotransmitter
release profile Ci�� �� (thick line) is a function of firing rate in the presynaptic population, but a multiplicative noisy scaling factor creates a family of steady-state
neurotransmitter release profiles (thin lines) reflecting the physiological variability in neurotransmitter release (representative example shown). D: activity in the
presynaptic population (curve) drives neurotransmitter concentration in a postsynaptic population (shaded region, representative examples shown). Control:
maximum activation of the presynaptic population results in maximum transmitter release in the postsynaptic population. Agonist: after microinjection of
neurotransmitter agonist into the postsynaptic population, changes in neurotransmitter concentration reflect both the slow decay of the microinjected agonist from
an elevated initial level and a concentration-dependent attenuation of endogenous neurotransmitter release. Antagonist: after microinjection of neurotransmitter
antagonist into the postsynaptic population, transmitter concentration reveals scaling of the effects of endogenous released neurotransmitter; in the absence of
endogenous neurotransmitter, the antagonist does not have an effect.
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nous neurotransmitter (Kalsner 1990; Starke et al. 1989). To reflect
this interaction in agonist microinjection simulations, we replace the
variable for endogeneous neurotransmitter concentration as released
by the presynaptic population, Ci(t), in the targeted population X with
the following expression

Ci(X)�t� � mi�t�Ci�t� � Pi�t� (5)

The scaling factor mi(t) reflects the effect of the agonist on trans-
mitter release. It is set to 1 if Pi levels are low (less than a specified
minimum value) but, for higher Pi levels, it increases from 0 to 1 as
Pi decreases from a maximum initial value (Fig. 1D, middle).

To capture the decrease in the effects of endogenous neurotrans-
mitter caused by microinjection of an antagonist, we replace the
variable for endogeneous neurotransmitter concentration, Ci(t), in the
target population X with a value scaled by the level of antagonist

Ci(X)�t� � �1 � Qi�t��Ci�t� (6)

As Qi decays to 0, transmitter concentration in the target popula-
tion, Ci(X), regains the full level of transmitter released by the
presynaptic population, Ci(t) (Fig. 1D, bottom).

Applying the neurotransmitter model formalism to a
sleep-wake regulatory network

Using the firing rate model formalism described above, we con-
structed a model of the rodent sleep-wake regulatory network (Fig. 2).
This formalism is well suited to model neural regulation of sleep-
wake behavior because specific patterns of spike timing in the con-
stituent neuronal populations seem to be less important in supporting
each behavioral state compared with the overall profiles of population
activity and resultant neurotransmitter release. The structure of the
network model was based on experimental characterization of the
relevant anatomy and physiology (see Saper et al. 2005 for review).
The network included wake-promoting, sleep-promoting, and REM
sleep-promoting neuronal populations and their associated neurotrans-
mitters (Table 1).

Firing rates of each population, FX(t) (in Hz, X 	 LC, DR, VLPO,
R, or WR) are governed by equations of the form given in Eq. 1 and
the concentrations of neurotransmitter released by each population,
Ci(t) are described by equations of the form given in Eq. 3 [i 	 N (NE)
for Y 	 LC; i 	 S (5-HT) for Y 	 DR; i 	 G (GABA) for Y 	 VLPO;
i 	 A(R) (ACh) for Y 	 R; and i 	 A(WR) (ACh) for Y 	 WR]. When
possible, the parameter values in the model were based on experi-
mental data (see APPENDIX for details).

The neurotransmitter-mediated coupling between populations in-
cluded in the model network is based on established anatomy and
physiology. Briefly, the monoaminergic wake-promoting populations,
LC and DR, inhibit both the sleep-promoting VLPO and the REM-
active subpopulation of the LDT/PPT, but not the wake/REM active
LDT/PPT subpopulation (Thakkar et al. 1998). On the other hand, the
sleep-promoting VLPO inhibits all wake-promoting and REM-pro-
moting populations. The cholinergic REM- and wake/REM-active
populations excite the LC and DR. These interactions are reflected in
the terms included in the argument, �igi,XCi, of the steady-state firing
rate functions, FX�( � ), for each population.

Within this network structure, specific subcomponents reflect concep-
tual models of the interaction of these populations that are current in the
literature. Specifically, mutual inhibition between the monoaminergic
wake-promoting populations (LC and DR) and the GABAergic sleep-
promoting population (VLPO) provides the basis for the conceptual
sleep-wake flip-flop switch (Saper et al. 2001) that is thought to be the
generative mechanism for production of and transitions between NREM
sleep and wake. Additionally, reciprocal connectivity between monoam-
inergic wake-promoting populations (LC and DR) and cholinergic REM-
promoting populations (LDT/PPT) reflects the reciprocal interaction
hypothesis of NREM-REM cycling (Massaquoi and McCarley 1992;
McCarley and Hobson 1975). The LC, DR, and VLPO are modeled as
self-inhibitory while self-excitatory projections are included in the cho-
linergic REM- and wake-promoting subpopulations of the LDT/PPT.
This self-excitation reflects the glutamatergic positive feedback projec-
tion to the LDT/PPT via the pontine reticular formation (reviewed in
Datta and Maclean 2007). In addition, random excitatory inputs to the
wake-promoting populations (LC and DR) were included to simulate
activity of top-down excitatory projections from thalamocortical circuits
(Arnsten and Goldman-Rakic 1984; Jodo et al. 1998).

Homeostatic sleep drive h

The concept of a homeostatic sleep drive was formalized with the
designation of “Process S” in the two process model of sleep regula-
tion (Borbely 1982; Borbely and Achermann 1999). Process S de-
scribes a drive to sleep that increases during time awake and decreases
during sleep. Although the biological substrate of homeostatic sleep
drive probably involves multiple mechanisms, the neuromodulator
adenosine is one important element (reviewed in Basheer et al. 2004;

5 

t

FIG. 2. Schematic of the model sleep-wake regulatory network (summa-
rized in Table 1) shows interactions between wake-, non–rapid eye movement
(NREM)-, and REM-promoting neuronal populations (rectangles) mediated
through their associated neurotransmitters (circles). The homeostatic sleep
drive h (yellow triangle) represents adenosinergic modulation of baseline
activity in the sleep-promoting ventrolateral preoptic nucleus (VLPO). In
addition, synaptic input from thalamocortical networks to locus coeruleus (LC)
and dorsal raphe (DR) (teal arrows) are modeled with random excitatory
inputs.

TABLE 1. Summary of the wake-, sleep-, and REM-sleep
promoting neuronal populations and associated neurotransmitters
included in the model network

Population Neurotransmitter

Wake-promoting Dorsal raphe (DR) Serotonin (5-HT)
Locus coeruleus (LC) Noradrenaline (NE)
Wake/REM active subpopulations

(WR) of laterodorsal tegmental
nucleus and pedunculopontine
tegmental nucleus (LDT/PPT)

Acetylcholine (ACh)

Sleep-promoting Ventrolateral preoptic area
(VLPO)

GABA

REM-promoting REM active subpopulation (R) of
LDT/PPT

Acetylcholine (ACh)
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Huang et al. 2007). Briefly, extracellular adenosine concentrations in
the basal forebrain and cortex increase with time in wakefulness
(Porkka-Heiskanen et al. 2000), microinjection of adenosine into
these areas promotes sleep (Basheer et al. 1999; Van Dort et al. 2009),
and microinjection of adenosine A1 receptor antagonist increases
wakefulness (Thakkar et al. 2003; Van Dort et al. 2009). The som-
nogenic effect of adenosine may arise from the action of adenosine at
several sites in the sleep-wake regulatory network: adenosine inhibits
activity in wake-promoting populations including LDT/PPT (Rainnie
et al. 1994), basal forebrain (Kalinchuk et al. 2008; Porkka-Heiskanen
et al. 1997; Portas et al. 1997), and orexin neurons (Liu and Gao
2007). Furthermore, adenosine promotes activity in the sleep-promot-
ing VLPO both indirectly (Chamberlin et al. 2003; Morairty et al.
2004) and, possibly, directly (Gallopin et al. 2005).

We modeled the homeostatic sleep drive through the variable h that
increases during wakefulness and decreases during sleep states, re-
flecting extracellular adenosine concentrations. Because dissociated
activity among wake-promoting populations may not be sufficient to
initiate wakefulness (Gervasoni et al. 2000), the model criterion for
wake depends on coordinated activity in the LC and DR. When the
combined activity of both populations is sufficient to cross a threshold
specified by 	w, the network is in wake and the variable h increases
toward 1; otherwise, the network is in sleep and h decreases to 0

h� � H��FLC � FDR� � 	w�
�1 � h�

�hw

� H�	w � �FLC � FDR��
h

�hs

(7)

where H[z] is the Heaviside function defined as H[z] 	 0 if z � 0, and
H[z] 	 1 if z 
 0. The time scales of h growth (�hw) and decay (�hs)
were chosen to generate physiological rat wake and NREM sleep bout
durations. To incorporate this homeostatic sleep drive into the sleep-
wake network model, we focused on the effects of adenosine on the
VLPO. Because high adenosine concentrations were positively correlated
with activity in the VLPO, we included an h dependence in the activation
threshold of the model VLPO population (compare with Eq. 2)

FVLPO��c� � VLPOmax �0.5�1 � tanh��c � �VLPO�h��/�VLPO���

(8)

where �VLPO(h) 	 �kh with the parameter k relating the value of the
homeostat to VLPO activation threshold.

For values of h near 1 (increased homeostatic sleep pressure), the
VLPO activation threshold is at a low level so that the population is
generally more excitable. This allows the VLPO to activate despite
ongoing inhibition from the wake-promoting populations, thereby
initiating the network transition to NREM sleep. For values of h near
0 (decreased homeostatic sleep pressure), higher VLPO activation
thresholds prevent VLPO activation and allow the transition to wake.

In this sleep-wake regulatory network model, we simulated micro-
injection of GABA and ACh agonists and antagonists into the LC.
Agonist and antagonist concentrations in the LC were modeled by Eq.
4 (i 	 G and A) and the endogeneous neurotransmitter concentrations
in the LC were replaced with Eq. 5 (i 	 G and A, X 	 LC) for agonist
microinjection simulations and with Eq. 6 (i 	 G and A, X 	 LC) for
antagonist microinjection simulations. Numerical simulations of the
network model were computed using a modified Euler method with
time step 0.005 s implemented with the software XPPAUT, developed
by G. B. Ermentrout and available at ftp://ftp.math.pitt.edu/pub/
bardware.

R E S U L T S

Model captures realistic rat sleep-wake behavior

In simulations of the model network, states of wake, NREM
sleep, and REM sleep were interpreted based on firing rates of

neuronal populations. Neurotransmitter concentrations were
closely correlated with firing rates of the associated presynaptic
populations; thus each state was associated with high expres-
sion of the appropriate transmitters (Fig. 3). For example, wake
was defined by activation of the wake-promoting populations
(firing rates given by FLC, FDR, and FWR) and high expression
of NE, 5-HT, and ACh (concentration levels given by CN, CS,
and CA(WR), respectively); NREM sleep was defined by acti-
vation of the VLPO (firing rate FVLPO) and inactivation of
wake-promoting populations, resulting in high GABA expres-
sion (concentration level given by CG) and diminished mono-
amine and cholinergic expression; and REM sleep was asso-
ciated with high FVLPO levels and activation of the REM-
promoting population (firing rate FR) with its contribution to
ACh expression (concentration level given by CA(R)).

We obtained good agreement between the simulated sleep-
wake behavior and experimentally reported baseline sleep-
wake behavior for adult male Sprague-Dawley rats during the
light period (Blanco-Centurion et al. 2007) using standard
measures including total percentages of time in wake, NREM
sleep, and REM sleep, mean bout durations, and numbers of
bouts across 12 h (Fig. 4). Additionally, the general patterning
of sleep and wake states matched those experimentally ob-
served in the rat, including bidirectional transitions between
wake and NREM sleep and transitions from NREM sleep to
REM sleep followed by wakefulness (Weitzman et al. 1980).
Both wake and NREM states showed large numbers of bouts
with brief (�1 min) durations that are typical in the rat (Lo
et al. 2004).

To understand how the network generates these stereotypical
rodent sleep-wake patterns, we now discuss the key mecha-
nisms that govern network state transitions. Wake bouts oc-
curred as a result of two different effects. Brief wake bouts
(Fig. 5A, upward arrows) were typically initiated by random
excitatory inputs to the LC and DR populations. Because the
neurotransmitter formalism introduces a slight time lag be-
tween the activation of LC/DR activity and the onset of
full-strength NE/5-HT inhibition, these brief activations result
in moderate levels of LC/DR activity and low levels of NE/
5-HT release that, in turn, cause slight decreases in VLPO
activation and GABA levels (see Fig. 3C, top 3 traces).
Therefore brief activations of LC/DR can occur without a full
transition of the network out of NREM sleep, and thus the
model predicts that concurrent activity in wake- and sleep-
promoting populations is possible for short periods of time.

Longer wake bouts were the result of a network transition to
full LC and DR activation and maximal concentrations of NE
and 5-HT, as well as activation of the cholinergic wake-
promoting subpopulation of LDT/PPT. Full-strength monoam-
inergic inhibition to VLPO silenced VLPO activity and thereby
reduced associated GABA release. These network transitions
between wake and NREM sleep resulted from the homeostatic
modulation of the VLPO activation threshold. As this threshold
decreases during wake with the growth of the homeostatic
sleep drive variable h, inhibition from wake-promoting popu-
lations is no longer sufficient to prevent VLPO activation, and
the onset of activity in the VLPO initiates a transition from
wake to NREM sleep (Fig. 5A). Similarly, transitions from
NREM sleep to wake occur when recovery of the homeostatic
sleep drive increases the VLPO activation threshold to termi-
nate VLPO firing. When wake-promoting populations are re-
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leased from inhibition, the network transitions from NREM
sleep to wake. This transition mechanism is consistent with the
sleep-wake flip-flop conceptual model (Saper et al. 2001). In
our model, this transition usually involves activation of the
cholinergic REM-on population; thus the transition sequence is
NREM sleep to REM sleep to wake.

Two separate mechanisms may initiate a transition from
NREM sleep to REM sleep. One mechanism depends on the
homeostatically driven transition from NREM sleep to wake.
We can understand the details of this transition by considering
network behavior in the absence of noisy components. In the
deterministic network during the NREM state, activity in the
sleep-promoting VLPO decreases as the homeostatic sleep
drive recovers. The attenuation of VLPO inhibition to the
REM-promoting LDT/PPT populations allows them to activate
and initiate REM sleep. The combination of reduced inhibition
from VLPO and increased excitation from LDT/PPT causes
wake-promoting LC/DR to activate, thereby terminating the
REM bout. This stereotypical and homeostatically driven pat-
tern of NREM–REM-wake cycling corresponds to a stable
periodic solution of the deterministic network (Fig. 5B) and is
generally preserved in the noisy system.

The reliable activation of the REM-promoting population at
the NREM sleep to wake transition is an inherent feature of the
network structure. Periodic cycling in activation of the REM-
promoting population, and LC and DR, similar to REM-on/

REM-off oscillations in the reciprocal interaction model for
REM sleep cycling (Massaquoi and McCarley 1992; McCarley
and Hobson 1975), can occur in the network, but is not
obtained for our default parameter values. The existence of this
cycling pattern depends on the activation threshold of the
REM-promoting population: cycling appears for low values of
the threshold but not at higher values (Fig. 5C). While the
default activation threshold does not permit this periodic cy-
cling, the model trajectory is influenced by proximity to the
periodic solution during the network transition from NREM
sleep to wake. Therefore the REM-promoting population acti-
vates transiently despite ongoing inhibition as decreasing
GABAergic inhibition from the VLPO is replaced by increas-
ing monoaminergic inhibition from LC and DR.

The second mechanism for REM sleep initiation is related to
noise in the network. Variability of neurotransmitter release
results in varying levels of inhibition to and self-excitation by
the REM-promoting population. If, during the NREM state,
higher ACh release from the LDT/PPT populations is com-
bined with lower levels of GABAergic inhibition, the model
trajectory can be transiently attracted to the periodic REM-on/
REM-off cycle described above (Fig. 5A, downward arrow).
The wake bout after these spontaneous REM bouts is typically
brief, and, while VLPO activation may be slightly inhibited,
the network rarely transitions out of NREM sleep. During the
wake state, this mechanism for REM sleep initiation is not
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FIG. 3. Network model simulates rat sleep-wake behavior.
A: hypnogram summarizing 2 h of simulated rat sleep-wake
behavior (corresponding to data from the light period).
B: state-dependent firing rates in wake-promoting populations
LC (FLC, light green) and DR (FDR, dark green), NREM-
promoting population VLPO (FVLPO, red), REM- promoting
population (FR, blue), and wake/REM-promoting population
(FWR, light blue) determine the sleep-wake state recorded in the
hypnogram. C: neurotransmitter concentrations Ci [i 	 N (NE),
S (5-HT), G (GABA), A(R) (ACh expressed by REM-promot-
ing population), and A(WR) (ACh expressed by wake/REM-
promoting population)], shaded regions, track firing rates (in
Hz, curves) in each associated presynaptic neuronal population
(colors same as in B, see APPENDIX for parameter values).
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possible because high levels of LC/DR activation prohibit
periodic cycling between the REM-promoting population and
LC/DR. Thus this network structure never permits direct tran-
sitions from wake to REM sleep, consistent with experimental
data (Benington and Heller 1994).

Model sensitivity to parameters

The model includes 
60 parameters that describe intrinsic
properties of neuronal populations (Xmax, �X, �X, and �X for
X 	 LC, DR, R, WR, and VLPO); intrinsic properties of
neurotransmitters/neurotransmitter release [�i and �i for i 	 N,
S, A(R), A(WR), and G]; coupling parameters (gi,X); parameters
governing the homeostatic sleep drive; parameters associated

with noise; and parameters associated with simulated microin-
jections. Full parameter sets are given in the APPENDIX.

To evaluate model sensitivity to parameters, we performed
simulations with each parameter varied by �10% and assessed
the effects on network behavior. In general, network behavior was
robust to these variations of parameters (data not shown). The
percent of total time spent in each state changed by less than �8%
as the result of variation in any of these parameters. Effects on
mean bout durations and bout frequency were slightly more
pronounced and typically reflected a loss of state consolidation
associated with increases in bout frequency and decreases in mean
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and its effect on the VLPO activation threshold. C: when FVLPO activity is
high and the activation threshold parameter for the REM-promoting pop-
ulation is in the appropriate range (�R 	 �0.51, h set constant to 0.4),
periodic cycling between activity in FR and activity in FLC/FDR can occur.
Although the default �R parameter value (�R 	 �0.5) does not correspond
to the cycling regimen, the underlying dynamics of the full network are
affected by their proximity to the periodic solution.
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bout durations. Interestingly, increasing/decreasing a parameter
did not necessarily result in reciprocal effects: often, both varia-
tions promoted fragmentation of behavioral states.

In addition to general parameter sensitivity, we investigated
the importance of relative magnitudes among some sets of
parameters. These relative differences often reflected physio-
logical features of neuronal populations or neurotransmitter
actions. For example, the ordering �A(R) 	 �A(WR) 	 �G �
�N 	 �S reflects the faster action of ionotropic neurotransmit-
ters ACh and GABA compared with the action of metabotropic
NE and 5-HT (Destexhe et al. 1994). To determine the impor-
tance of these relative orderings, we ran simulations in which
differences in intrinsic properties and differences in dynamics
were systematically eliminated from modeled populations and
neurotransmitters, respectively. To equalize population param-
eters, the slopes for the neuronal population steady-state func-
tions were set to reflect fast (�X 	 0.25) or slow (�X 	 0.75)
activation. To equalize parameters for time dynamics, the time
constants for neuronal populations and neurotransmitter con-
centration were set to fast (�X 	 �i 	 10 s) or slow scales
(�X 	 �i 	 25 s).

When representative parameters were used to ascribe equal
properties to all populations and all neurotransmitters, the
balance of time spent in wake and sleep was affected more
substantially compared with changes observed under �10%
variations in parameters (data not shown). For example, when
all populations were given equal slow properties and charac-
teristics (�X 	 �i 	 25 s; �X 	 0.75; �i 	 4), the percent time
in wakefulness more than doubled. Typically, equal properties
for populations and/or neurotransmitters caused an increase in
percent time in wake and decrease in percent time in NREM
sleep. These changes were caused by differences in both bout
frequency and mean bout duration. Both increases and de-
creases in the percent time in REM sleep were observed,
although there was a consistent decrease in REM bout dura-
tion, regardless of whether the parameters specified fast action
or slow action. These results indicate that maximal REM bout
durations are obtained in our network structure when parame-
ters dictating dynamic properties of populations and transmit-
ters differ in their relative magnitudes.

Simulation of GABA agonist/antagonist microinjection
in the LC

Simulated microinjection of GABA agonist and antagonist
into the LC had a robust effect on REM sleep by producing
increases and decreases, respectively, in total REM sleep and
REM bout duration in the 4 h after microinjection (Fig. 6).
These effects were consistent with microinjection experiments
(Mallick et al. 2001). To determine the mechanism responsible
for the changes in REM bout duration, we analyzed microin-
jection simulations in the deterministic model (Fig. 7). In the
control case, REM bouts were terminated by the onset of
inhibition to the REM-promoting population from coordinated
activity in LC and DR. In the presence of microinjected GABA
agonist, LC is tonically inhibited. Therefore firing in the DR
precedes firing in the LC and lasts longer before triggering a
transition to wake. The combined reduction in LC activity and
LC/DR coordination results in a longer mean REM bout
duration (Fig. 7B). Conversely, in the presence of a GABA
antagonist, tonic inhibition to the LC is reduced. This allows

strong anticipatory firing in the LC, which precedes activity in
the DR and increases combined LC/DR inhibition, thereby
accelerating REM bout termination (Fig. 7C). Thus the LC
activation profile modulates changes in REM bout duration.
With the addition of noise in the full system, this mechanism
was preserved.
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FIG. 6. Microinjection of GABA agonist/antagonist into LC alters the
structure of simulated sleep-wake behavior. All results are reported for the 4 h
after simulated microinjection. A: microinjection of the GABA agonist/antag-
onist increase/decrease, respectively, the percent time in REM sleep. With the
GABA agonist, there is also a tendency toward an increase in NREM sleep,
which comes at the expense of time in wakefulness. B: increased/decreased
mean REM bout durations contribute to the effects on percent time in REM
sleep. In addition, the GABA agonist-induced decrease in time spent in
wakefulness is caused by a decrease in mean wake bout duration. C: micro-
injection of GABA agonist also increases the number of REM bouts. [Initial
condition for GABA agonist simulation PG(0) 	 2.0 and for GABA antagonist
simulation QG(0) 	 1.0; see APPENDIX for details. Means and SD of model
results determined from 10 simulation runs; *P � 0.01 in ANOVA with
control data.]
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In addition to the effects on REM sleep, changes in the LC
activation profile under simulated microinjection of GABA
agonist also affected mean wake bout durations (Fig. 6B).
Again, we turn to the deterministic model to understand this
effect (Fig. 7). In the presence of the GABA agonist, tonic
inhibition to LC reduced LC firing rates during wake, thereby
reducing the level of noradrenergic inhibition of VLPO. This
reduction in inhibition allowed VLPO to activate and truncate
wakefulness at lower activation thresholds compared with its
baseline behavior. Because the VLPO activation threshold
varies inversely with the homeostatic sleep drive variable h,
this change in activation threshold is reflected in the decreased
h peak value at the transition from wake to NREM sleep (Fig.
7D, dashed curve). Conversely, in the presence of the GABA
antagonist, wake bouts are extended because LC activity and
associated noradrenergic inhibition to VLPO remain higher
during wakefulness, and the VLPO activation threshold must
decrease to lower than normal levels to allow VLPO activation.
This is reflected in the slightly higher peak value of h at the
wake to NREM sleep transition (Fig. 7D, dotted curve).

These changes in the homeostatic regulation of the VLPO
activation threshold can also affect mean NREM bout dura-
tions: when the VLPO activation threshold necessary to termi-
nate a wake bout is lower or higher compared with control, the
subsequent recovery of the threshold is longer or shorter,
respectively. Thus the shorter wake bouts associated with the
GABA agonist cause shorter subsequent NREM bouts and the
period of the homeostatically regulated cycle of NREM sleep-

REM sleep-wake is decreased (Fig. 7B); this decrease in cycle
length results in an increased frequency of wake, NREM, and
REM bouts under these conditions. Similarly, the presence of
a GABA antagonist increases the period of the cycle and
decreases the frequency of wake, NREM sleep, and REM sleep
bouts (Fig. 7C).

However, these changes in wake and NREM bout duration
and number of bouts are not reflected in the full model in the
presence of noise (Fig. 6). Most notably, in the full model
under GABA agonist microinjection, mean wake bout dura-
tions are decreased, as predicted by the deterministic model,
but mean NREM bout durations tended to increase. This
contrast with behavior in the deterministic system occurs
because other mechanisms for LC activation are affected by the
microinjection. In this case, the GABA agonist tonically in-
hibits LC and attenuates its response to random excitatory
inputs. Thus the combined LC/DR response may not be suffi-
cient to induce a brief wake bout, and the number of short wake
bouts can decrease in these simulations (see Fig. 9B, middle
traces). As a result, NREM bouts continue uninterrupted by
brief wakes, which results in increased mean NREM bout
durations. As the injected GABA agonist levels decay, LC
responses to the random excitatory inputs recover, and brief
wake bouts are able to interrupt NREM sleep. Thus the number
of wake and NREM bouts over the full 4 h does not differ
significantly from control despite transient changes. However,
the shortened cycle length of the deterministic model is re-
flected in the increase in the number of REM bouts. Under
simulated GABA antagonist, overall levels of inhibition to LC
during NREM sleep are lower, and brief wakes occur as in
control conditions. However, the changes in the homeostati-
cally regulated NREM sleep-REM sleep-wake cycle discussed
above are reflected in the slight increases in wake and NREM
bout durations and slight decreases in bout frequency.

In summary, changes in LC activation levels induced by sim-
ulated microinjection of GABA agonist and antagonist directly
affected both wake bout duration, because the LC is one of the
primary wake-promoting populations, and REM bout duration,
because LC activity influences activation of the REM-promoting
population. These changes also affected the mean percent time
spent in states of wake and REM sleep. The change in wake bout
duration can be propagated through the network to affect the
homeostatic drive and NREM bout duration, as observed in the
deterministic model. In the full model in the presence of noise,
simulated microinjection of GABA agonist and antagonist in-
duced opposite effects on percent time in REM sleep and mean
REM durations, but a presumed agonist/antagonist reciprocal
action was not observed for wake and NREM states because of
multiple mechanisms for LC activation in the network.

Simulation of ACh agonist/antagonist microinjection
in the LC

Simulated microinjection of cholinergic agonist and antag-
onist in the LC also resulted in widespread effects on sleep-
wake architecture for the 4 h after microinjection (Fig. 8).
Many of these effects reflected mechanisms linked to LC
activation and paralleled changes elicited by simulated GABA
antagonist and agonist microinjection. For example, simulated
microinjection of ACh agonist in the LC caused a decrease in
mean REM bout duration similar to that observed with simu-
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REM bout duration is mediated by changes in LC activation, shown in the
deterministic network [�(t) 	 0 and �i(t) 	 0 for i 	 N, S, G, A(R) and A(WR),
see APPENDIX for details]. A: under control conditions, activation of FLC

(light green) and FDR (dark green) is synchronized. Inhibition from these
populations terminates activity of FR (blue) resulting in the end of the REM
bout (FVLPO, red). B: in the presence of a GABA agonist in the LC, FLC

activation is delayed compared with FDR. This prolongs activation of FR,
thereby increasing mean REM bout duration. C: in the presence of a GABA
antagonist in the LC, FLC activation anticipates activation of FDR. Therefore
FR activation is terminated more quickly and mean REM bout durations are
decreased. D: in addition to the immediate effect on REM bout duration,
microinjections affect overall cycle length. The oscillation of homeostatic
sleep drive h (orange curves) reflects the GABA agonist (dashed)/antagonist
(dotted)-induced decrease/increase compared with control (solid).
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lated microinjection of GABA antagonist, and these decreases
can be attributed to a similar mechanism: higher LC activity
accelerates LC activation at the REM sleep-wake transition,
which truncates the REM bout and extends the wake bout. The
propagated effects of a longer wake bout on the homeostatic sleep
drive and NREM bout duration led to an increase in NREM bout
duration and a decrease in the number of NREM bouts.

Likewise, the changes to REM and wake bout durations caused
by simulated ACh antagonist in the LC are similar to those of
simulated GABA agonist microinjection. Specifically, mean
REM bout duration is increased because reduced cholinergic
excitation to LC attenuates NE inhibition to the REM-promot-
ing population, thus requiring higher levels of coordinated
LC/DR activity to terminate the REM bout. Mean wake bout
duration is decreased because reduced LC activity levels re-
duce NE inhibition to the VLPO and allow earlier VLPO
activation to truncate wake bouts.

Despite these similarities, ACh agonist/GABA antagonist
and ACh antagonist/GABA agonist pairs may exert different
effects across sleep-wake states because neurotransmitter ago-
nists affect sleep-wake behavior in all states, whereas antago-
nists act only when the appropriate state-dependent neurotrans-
mitter is present. For example, the reduction in REM frequency
caused by the microinjected cholinergic agonist was not ob-
served under microinjected GABA antagonist. In the presence
of ACh agonist, LC receives tonic excitatory input that pre-
vents complete termination of its activity during the NREM
state and sustains its inhibitory input to the REM-promoting
population. This maintained inhibition suppressed both spon-
taneous REM bouts and activation of the REM-promoting
population at the homeostatically regulated transitions out of
NREM sleep. Thus the number of REM bouts was very low for
the first hour of the simulation (Fig. 9A). As the level of
injected ACh agonist decayed, the number of REM bouts
recovered to levels closer to control. In contrast, simulated
GABA antagonist microinjection did not significantly affect
the number of REM bouts.

This difference between tonic activity of an injected agonist
and state-dependent activity of an injected antagonist is also
evident in the simulated ACh antagonist microinjections. Sim-
ulated ACh antagonist microinjections do not affect brief wake
bouts because the random, excitatory inputs to LC are not
presumed to be cholinergically mediated. Therefore in contrast
to simulated GABA agonist microinjections, brief wakes per-
sist under simulated ACh antagonist conditions (Fig. 9B). In
the figure, probability density functions for wake bout dura-
tions show peaks at short durations (�1 min) for the control
and simulated ACh antagonist microinjections, especially in
the second to fourth hours of the simulations (top and bottom).
This peak is notably absent in the probability density functions
for the first to third hours of the simulated GABA agonist
(middle) but reappears in the fourth hour as the effect of the
simulated agonist dissipates and brief wakes resume. As a
result of the maintenance of brief wakes under simulated ACh
antagonist conditions, NREM bout durations in this condition
are not affected, even though, through the mechanisms of the
deterministic model, shorter wake bouts act to reduce NREM
bout durations. The influence of shorter wake bouts in the
deterministic model on wake bout durations in the noisy model
is shown by the shift of the secondary lower peaks to shorter
durations in the simulated GABA agonist and ACh antagonist
simulations (middle and bottom) compared with the control
case (top, vertical line indicates the mean wake bout duration
in the deterministic model).

In summary, many of the effects of changes in LC
activation levels by simulated microinjection of ACh ago-
nist and antagonist mirror those of simulated GABA antag-
onist and agonist, respectively. Exceptions can be attributed
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FIG. 8. Microinjection of ACh agonist/antagonist into LC alters the struc-
ture of simulated sleep-wake behavior. All results are reported for the 4 h after
simulated microinjection. A: microinjection of ACh agonist/antagonist de-
creased/increased the percent time spent in REM sleep. Reciprocal changes
were observed in the percent time spent in wake. B: changes in mean wake and
REM bout durations contributed to the changes in time spent in these states. In
addition, mean NREM bout durations were increased in the presence of the
ACh agonist. C: in the presence of the ACh agonist, the number of NREM and
REM bouts was decreased. [Initial condition for ACh agonist simulation
PA(0) 	 0.8 and for ACh antagonist simulation QA(0) 	 0.55; see APPENDIX
for details. Means and SD of model results determined from 10 simulation
runs; *P � 0.01 in ANOVA with control data.]

1946 C. G. DINIZ BEHN AND V. BOOTH

J Neurophysiol • VOL 103 • APRIL 2010 • www.jn.org

 on July 28, 2010 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


to the difference in the state dependence or independence of
action of an injected agonist and antagonist. Specifically,
sustained LC activity during NREM sleep under simulated
microinjection of ACh agonist caused a significant reduction
in the number of REM bouts that did not occur with the
simulated GABA antagonist. Additionally, simulated ACh
antagonist did not affect the efficacy of the random, exci-
tatory inputs to the LC to induce brief wakes, unlike
simulated GABA agonist.

Model prediction for modulation of REM frequency
but not duration

Despite the expected parallels between ACh agonist/GABA
antagonist and ACh antagonist/GABA agonist pairs, simulation
results for cholinergic agonists/antagonists contrasted with exper-
imental observations. One inconsistency was that experimental
microinjection of cholinergic agonists/antagonists into the LC
significantly affected frequency of REM bouts with less influence
on REM bout duration (Mallick et al. 2001). The discrepancies
between these results and our simulations suggest that REM sleep
control may not be a direct result of LC activity and are further
addressed in the DISCUSSION. However, as a first step in revising
network structure/interactions, we analyzed the network behavior
to identify mechanisms that affected the frequency of REM sleep
without affecting mean REM bout duration.

The primary mechanism that satisfied these criteria was
modulation of the activation threshold �R for the steady-state
firing rate function of the REM-promoting population, FR�( � ).
Lower activation thresholds increased REM frequency and
higher activation thresholds decreased REM frequency without
altering mean REM bout duration (Fig. 10). Similar changes
were observed in the number of wake and NREM bouts caused
by an overall change in cycle length. Although mean REM and
wake bout durations were not affected, the altered frequency of
REM bouts resulted in changes to fragmentation of NREM
sleep and associated changes in mean NREM bout durations.
Increases or decreases in the frequency of NREM bouts did not
compensate for the changes in mean NREM bout durations as
reflected by the altered total amounts of NREM sleep. These
results suggest that initiation of REM sleep results from direct
modulation of activation in REM-promoting populations while
maintenance of REM sleep can be governed by network
dynamics.

D I S C U S S I O N

In this study, we introduced a novel modeling framework for
investigating the structure and dynamics of sleep-wake regu-
lation. The model simulates realistic rat sleep-wake behavior
and the modulation of this behavior with microinjection of
GABAergic and cholinergic agonists/antagonists into one of
the key wake-promoting populations. Furthermore, detailed
analysis of network dynamics provides insights into the mech-
anisms underlying agonist/antagonist modulation of baseline
behavior.

Advantages and limitations of the modeling formalism

In our firing rate formalism, we allow for the time evolution
of both the postsynaptic response to total input and the total
input in response to presynaptic population activity. Most
firing rate models assume that one of these processes is
instantaneous; either setting firing rate equal to the steady-state
firing rate function (Deco et al. 2008; Phillips and Robinson
2007, 2008; Steyn-Ross et al. 2005; Wilson et al. 2005, 2006)
or setting total input as the weighted sum of all presynaptic
firing rates (Wilson and Cowan 1972) (also reviewed in Er-
mentrout 1998). Of those models that allow for time dynamics
of total input, some consolidate the dynamics of all presynaptic
sources under one time constant (Phillips and Robinson 2007,
2008), whereas others, similar to our formalism, allow for
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FIG. 9. ACh agonist/GABA antagonist and ACh antagonist/GABA agonist
pairs show differences in their effects on sleep-wake behavior. Furthermore,
the dynamics of microinjected agonist/antagonist decay alter their effects on
sleep-wake behavior over time. A: simulated microinjection of ACh agonist
into the LC results in an initial decrease in REM frequency that is not observed
with microinjection of a GABA antagonist. This decrease is attenuated as the
ACh agonist decays over time. B: probability density functions describe
changes in the distribution of wake bout durations over 4 h in control
conditions (top) and after simulated microinjection of GABA agonist (middle)
and ACh antagonist (bottom) in the LC. Each trace denotes the probability
density for 1 h of wake bout duration data with the progression from top to
bottom corresponding to hours 1, 2, 3, and 4 after the simulated microinjection.
In each panel, the top 3 traces have been vertically offset for clarity. The
vertical line in the control panel denotes the mean wake bout duration in the
deterministic model when noisy components are absent [�(t) 	 0 and �i(t) 	
0, APPENDIX for details], showing the influence of dynamics in the deter-
ministic model on the noisy model. Under simulated GABA agonist (middle),
the absence of a peak at short durations (�1 min) in probability densities in the
1st to 3rd h reflects a suppression of brief wake bouts that does not occur with
simulated microinjection of ACh antagonist (bottom). (Model data same as in
Figs. 6 and 8.)
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distinct time constants for each presynaptic source (Steyn-Ross
et al. 2005; Wilson et al. 2005, 2006) (also reviewed in Deco
et al. 2008). We find that explicit consideration of the dynamics
of presynaptic sources, or neurotransmitter concentrations in
our formalism, introduces flexibility that is necessary to cap-

ture the complexity of the system. Specifically, the inclusion of
neurotransmitter dynamics can describe the biophysical vari-
ability inherent in population interactions. In addition, in our
model dynamics, network transition mechanisms are preserved
in the presence of noisy input. For example, because mutual
inhibition between wake- and sleep-promoting populations is
mediated through their associated neurotransmitters, transient
activation of wake-promoting populations can occur without
inducing a full network transition to wakefulness.

A distinct advantage of modeling individual neurotransmit-
ter dynamics is the ability to directly incorporate data from
microdialysis and microinjection experiments into the model-
ing formalism. Tamakawa et al. (2006) simulated several
pharmacological microinjection experiments to help to con-
strain their choice of sleep-wake network model structure.
However, their simulations involved static changes to param-
eters associated with activity in the target populations and did
not address the dynamic properties of the microinjection, such
as decay of the injected agents or effects on physiological
transmitter release. Furthermore, because the changes were
global and constant throughout the simulation, they could not
consider the state-dependent action of microinjected neuro-
transmitter antagonists. In our simulations, agonists persist in
the network during all states, so every state and state transition
may be affected by their presence. In contrast, antagonists exert
an effect only when the relevant neurotransmitter is present.
Because the presence of specific neurotransmitters in these
populations is state dependent, this implies that antagonists
directly affect only a subset of states and state transitions. By
explicitly modeling neurotransmitters, we can incorporate mi-
croinjection experiments in a dynamic, physiologic framework
while analyzing the action of agonists and antagonists. Finally,
while we concentrated on simulating microinjection experi-
ments in this study, our formalism allows simulation of differ-
ent techniques for administration of pharmacological agents to
brain regions. As an example, microdialysis administration of
a neurotransmitter agonist can be simulated by slow increases
of the agonist variable Pi(t) and of the scaling factor of
endogenous release mi(t) to saturating levels reflecting the
equilibration of the agent in the perfusion fluid in the dialysis
probe (Watson et al. 2006).

Despite these advantages, this formalism does have sev-
eral limitations. The main limitation is the sparse data
pertaining to the dynamics of neurotransmitter release on a
population scale. Although we have inferred appropriate
time scales from dopamine voltammetry experiments (Gar-
ris and Wightman 1994), current limitations in experimental
techniques make it difficult to establish appropriate dynam-
ics for the neurotransmitters involved in sleep-wake regu-
lation. Furthermore, this formalism is subject to the limita-
tions of all firing-rate models. In particular, it assumes that
population activity can be modeled with a single average
firing rate: populations with heterogeneous intrinsic proper-
ties may need more complex steady-state firing profiles or
may even need to be modeled with multiple firing-rate
models as with the REM- and wake/REM-promoting sub-
populations of LDT/PPT. Current experimental data indi-
cate that our assumptions of averaged firing rates are rea-
sonable, but these assumptions must be constantly re-eval-
uated in the face of new experiments.
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states. Similarly, with the higher threshold, a decrease in the number of REM
bouts contributed to a decrease in the percent time spent in REM sleep.
However, the higher threshold was also associated with a decrease in the
number of NREM bouts, which was not sufficient to compensate for the
increase in mean NREM bout duration. (Means and SD of model results
determined from 10 simulation runs; *P � 0.01 in ANOVA with control data.)
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Comparison with experimental results

Mallick et al. (2001) studied the effects of microinjection of
GABAergic and cholinergic agonists and antagonists into LC
in Wistar rats. They found that microinjection of GABA
increased total REM sleep by increasing mean REM bout
durations, whereas microinjection of the GABA antagonist
picrotoxin had the opposite effect. They also noted that the
GABA and picrotoxin microinjections increased and de-
creased, respectively, time in active waking with compensatory
changes in slow wave sleep; changes in frequency or mean
duration of these states were not reported.

Because of differences between our control dataset (Blanco-
Centurion et al. 2007) and the control data reported by Mallick
and colleagues, possibly because of the use of different rat strains,
we could not quantitatively compare our results. However, we
qualitatively compared the overall trends on sleep-wake pattern-
ing observed in our simulations with the differences they identi-
fied. Although our results regarding changes in REM sleep were
consistent with data reported by Mallick and colleagues, our
simulations showed opposite effects on wake and NREM sleep.
Because wake-promoting LC neurons are under tonic
GABAergic inhibition (Kawahara et al. 1999), it is surpris-
ing that increases in GABAergic inhibition increase wake-
fulness. One possible explanation of this apparent contra-
diction involves the mechanism for sleep homeostasis. In
our model, the variable h associated with sleep homeostasis
increases during wake and decreases during sleep with
constant rates such that the amount of change is dependent
on the time spent in each state. However, if the rate of
increase and decrease depended on factors such as LC
activity, the lower levels of activity caused by GABA
microinjection may translate to an extension of wake bouts.
In future work, a refined, dynamic sleep homeostat could be
used to explore this potential mechanism.

Mallick et al. (2001) also found that microinjection of the
cholinergic agonist carbachol in the LC increased total REM
sleep by increasing the frequency of REM sleep and that
microinjection of the cholinergic antagonist scopolamine de-
creased REM sleep by decreasing the frequency of REM
initiation. There were trends toward increased/decreased REM
bout durations with carbachol and scopolamine, respectively,
but these differences were not significant. They did not report
any changes to other behavioral states.

Our simulations of cholinergic agonist and antagonist mi-
croinjections showed opposite effects on total REM sleep and
primarily attributed these changes to differences in mean bout
duration, although simulated cholinergic agonist did affect
mean number of REM bouts. Our results are consistent with
experiments in cats (Masserano and King 1982; Vanni-Mercier
et al. 1989), suggesting that the role of cholinergic agonists/
antagonists in the regulation of REM sleep may differ between
species. Apparent species differences may also be caused by
the challenge of localizing microinjections in the small rodent
brain (Brown et al. 2006), or they may reflect a limitation in the
current model structure. Alternatively, the net effect of a
cholinergic agonist on LC population activity may not be
purely excitatory given the presence of local GABAergic cells
within the LC (Iijima and Ohtomo 1988) and different musca-
rinic cholinergic receptor subtypes on LC cells (Baghdoyan
1997). In vitro studies have identified an excitatory effect of

activation of M2 muscarinic receptors in the LC (Egan and
North 1985), but inhibitory actions of other receptor subtypes
have been indicated in nearby pontine structures (Egan and
North 1986; Gerber et al. 1991). The discrepancies between
model and experimental results suggest that variations in net-
work structures for REM regulation should be considered, and
they highlight the utility of formal mathematical modeling for
constraining conceptual models.

Probing the mechanisms for REM sleep generation

Recent experimental evidence has challenged the cholin-
ergic hypothesis for REM sleep regulation in rodents, and
several competing conceptual models of REM sleep regulation
have been proposed. Because GABA is the neurotransmitter
responsible for the slowing and eventual cessation of activity in
the DR and LC that gates the production of REM sleep
(Gervasoni et al. 1998; Nitz and Siegel 1997), these models
focus on the importance of recently identified REM-active
GABAergic populations (Brown et al. 2008; Lu et al. 2006;
Luppi et al. 2006; Sapin et al. 2009) and attribute to the
cholinergic system varying levels of involvement in REM
sleep initiation and maintenance.

Several groups have suggested modifications of the recipro-
cal interaction model in which LC/DR and LDT/PPT act on
intermediate GABAergic populations that ultimately control
different aspects of REM sleep. In the cellular-molecular-
network (CMN) model of REM sleep proposed by Datta and
MacLean (2007), ACh from LDT/PPT promoted activity in
populations involved in specific aspects of REM sleep, termed
REM sleep-sign generators. Simultaneously, local GABAergic
populations inhibited LC and DR to facilitate disinhibition of
the REM sleep-sign generators. Hence, the roles of these
generators in governing specific REM sleep signs were recon-
ciled with significant roles for LC/DR and LDT/PPT. Mallick
et al. (2001) also invoked the presence of local GABAergic
populations in LC and DR. They suggested that the counter-
intuitive effects of microinjected cholinergic agonists/antago-
nists in the LC on REM sleep were caused by local GABAergic
mediation of standard cholinergic effects (Mallick et al. 2001).
This hypothesis highlights the importance of considering
mechanistic differences between the effects of endogenous and
exogenous neurotransmitter.

Other groups have rejected the cholinergic hypothesis alto-
gether. Lu et al. (2006) proposed that control of REM sleep is
achieved through a REM-on/REM-off flip-flop switch result-
ing from reciprocal GABAergic inhibition between REM-on
neurons in the sublaterodorsal nucleus (SLD) and precoeruleus
(PC) and REM-off neurons in the ventrolateral part of the
periaqueductal gray matter (vlPAG) and lateral pontine teg-
mentum (LPT). They noted that LC/DR and LDT/PPT may
help to modulate REM sleep, but they did not consider these
populations to play essential roles in the circuitry. Luppi and
colleagues have proposed that the vlPAG is the most important
structure for REM control and that vlPAG contains both
REM-on and REM-off neurons (Luppi et al. 2006; Sapin et al.
2009). Local interactions within the vlPAG, as well as inter-
actions with other GABAergic and monoaminergic structures,
govern transitions into REM sleep.

McCarley and colleagues suggested a conceptual model that
incorporates both cholinergic and GABAergic mechanisms in
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the control of REM sleep (Brown et al. 2008). In their proposed
model, there is mutual GABAergic inhibition between REM-on
neurons in the subcoeruleus and pontine nucleus oralis and REM-
off neurons in the LPT, and ACh excites the REM-on neurons and
inhibits the REM-off neurons. This provides essential cholinergic
modulation of the GABAergic flip-flop structure. Furthermore,
because the REM-on GABAergic neurons in subcoeruleus inhibit
the LC and DR, indirect reciprocal interaction between monoam-
inergic and cholinergic populations continues to play a role in this
conceptual model of REM sleep regulation.

Although these conceptual models specify the roles of dif-
ferent populations during REM sleep and the projections that
cause or reinforce these state-dependent behaviors, they rarely
account for mechanisms of transition in and out of REM sleep.
In addition, conceptual models often fail to address mecha-
nisms for the regular alternation between NREM and REM
sleep that is a feature of normal sleep in several species
including humans (Carskadon and Dement 2000). It has been
difficult to establish similar periodicity in the polyphasic sleep-
wake behavior of rodents. However, if the mechanisms for
generating REM sleep are similar across species, the structure
of a REM sleep generating network should suggest a basis for
NREM-REM periodicity. Dynamic mathematical modeling of
the REM-on/REM-off flip-flop switch suggested that both
inhibition from the VLPO cluster to the extended VLPO and a
drop in extended VLPO activity before sleep onset were
necessary to achieve NREM-REM alternation (Rempe et al.
2009), but physiological support for these predictions has not
yet been established. However, NREM-REM alternation was
an important feature of the McCarley-Hobson reciprocal inter-
action model (Massaquoi and McCarley 1992; McCarley and
Hobson 1975). Although the control parameter regimen (de-
scribing rat sleep-wake behavior) for our model did not pro-
duce regularly occurring NREM-REM alternation, our network
structure admits a similar periodic mechanism.

Control of REM sleep must be understood in the larger
context of the regulation of sleep-wake behavior. However, it
can be difficult to infer the state-dependent dynamics that result
from a given conceptual model. Therefore formal dynamic
modeling approaches complement ongoing experimental stud-
ies to evaluate proposed network structures and shape our
understanding of REM sleep regulation.

A P P E N D I X

Simulation results in Figs. 3–10 were obtained with equations and
parameter values given here except where noted below and in the figure
captions. When possible, parameter values were based on experimental
data. When such data were unavailable, we chose parameters that were
consistent with available experimental characterizations of neuronal pop-
ulations, neurotransmitter actions, and the state-dependent behavior we
expected from the network. Additional details are provided below.

For each neuronal population, the postsynaptic firing rate, FX(t) (in
Hz, X 	 LC, DR, VLPO, R, or WR), is governed by an equation of the
following form

F�X �

FX���
i

gi,X Ci� � FX

�X

(9)

where the steady-state firing rate FX�( � ), is a saturating function, its
argument is summed over the neurotransmitters [i 	 norepinephrine

(N), serotonin (S), GABA (G), or acetylcholine (A)] released to the
postsynaptic population X, the gi,X are constant weights, and �X is the
time constant associated with the response dynamics of the postsyn-
aptic population. The individual equations for each population are
given by the following

F�LC �
FLC��gA,LC CA � gN,LC CN � gG,LC CG � ��t�� � FLC

�LC

(10)

F�DR �
FDR��gA,DR CA � gS,DR CS � gG,DR CG � ��t�� � FDR

�DR

(11)

F�VLPO �
FVLPO���gN,VLPO CN � gS,VLPO CS � gG,VLPO CG� � FVLPO

�VLPO

(12)

F�R �
FR��gA,R CA � gN,R CN � gS,R CS � gG,R CG� � FR

�R

(13)

F�WR �
FWR��gA,WR CA � gG,WR CG� � FWR

�WR

(14)

The constant weights gi,X are given by

gA,LC, 3.5; gG,DR, 1.5; gA,WR, 1;
gN,LC, 1.5; gA,R, 2.5; gG,WR, 1.7;
gG,LC, 1.5; gN,R, 3.5; gN,VLPO, 2;
gA,DR, 3.5; gS,R, 3.5; gS,VLPO, 2;
gS,DR, 1.5; gG,R, 1.25; gG,VLPO, 0.5

and were chosen to produce appropriate steady-state behavior in each
postsynaptic population during wake, NREM sleep, and REM sleep.
For example, because VLPO has a sleep-active firing profile, the
parameters gN,VLPO and gS,VLPO were chosen sufficiently large to
silence VLPO activity when FLC and FDR firing rates were high (as in
waking).

The time constants (s) for the firing rate equations are given by

�LC, 25; �R, 1; �VLPO, 10;
�DR, 25; �WR, 10;

The ordering �R � �WR 	 �VLPO � �LC 	 �DR reflects the
difference in activation rates between populations with autoexcitatory
synapses and populations with autoinhibitory synapses. As described
in RESULTS, this difference is necessary to obtain sufficiently long
REM bout durations.

Inputs to the LC and DR populations include the term �(t) that
represents excitatory pulses of random amplitude (mean amplitude of
8 and SD of 0.1) that occur according to a Poisson process with an
average rate of 0.003 Hz. The pulses instantaneously activate and
decay exponentially with a time constant of 10 s.

For the neuronal populations LC, DR, R, and WR, the steady-state
firing rate function has the form FX�(c) 	 Xmax(0.5{1 � tanh[(c �
�X)/�X]}) with parameters as follows

LCmax, 6.5 Hz; �LC, 0.75; �LC, 2;
DRmax, 6.5 Hz; �DR, 0.75; �DR, 2;
Rmax, 5 Hz; �R, 0.25; �R, �0.5;
WRmax, 5 Hz; �WR, 0.25; �WR, �0.2;
VLPOmax, 5 Hz; �VLPO, 0.25; �VLPO�h�, � 7h;

Parameters describing maximal physiological firing rates of neuronal
populations, Xmax for X 	 LC, DR, R, WR, and VLPO were based on
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experimental data (Aston-Jones and Bloom 1981; Datta and Siwek 2002;
Hobson et al. 1975; Lydic et al. 1983; Steriade et al. 1990; Szymusiak et
al. 1998; Trulson and Jacobs 1979; Wu et al. 1999, 2004). The �X

parameters control the slope of the sigmoid describing steady-state firing
rates for each population; smaller parameters correspond to steeper
slopes. Our choice of �R 	 �WR 	 �VLPO � �LC 	 �DR reflects the
autoinhibition in the LC and DR populations that dictates a slower
activation rate (Hobson et al. 1975). The �X parameters control the
activation thresholds of each postsynaptic population. Therefore we
chose the �X in conjunction with the coupling parameters, gi,X,, to yield
appropriate steady-state firing rates in the postsynaptic population in
wake, NREM sleep, and REM sleep. The steady-state firing rate function
for VLPO takes a similar form, but the threshold is modulated by the
homeostatic sleep drive

FVLPO��c� � VLPOmax �0.5�1 � tanh��c � �VLPO�h��/�VLPO���

(15)

For the neurotransmitters released by the LC, DR, VLPO, REM-
active, and wake/REM-active populations, the normalized neurotrans-
mitter concentrations Ci(t) are determined by equations of the follow-
ing form

C�i �
Ci��FX� � Ci

�i

(16)

where i 	 N for X 	 LC; i 	 S for X 	 DR; i 	 G for X 	 VLPO;
i 	 A(R) for X 	 R; and i 	 A(WR) for X 	 WR. Total ACh
concentration, CA, released to postsynaptic populations is the sum of
CA(R) and CA(WR).

The steady-state neurotransmitter release function, Ci�( � ), is a
saturating function of the form Ci�(f) 	 tanh(f/�i), and �i (s) is the
time constant associated with neurotransmitter release at the popula-
tion level. As noted previously, although current microdialysis tech-
niques do not allow direct measurement of the rate constants of
neurotransmitter release, �i for i 	 N, S, A(R), A(WR), and G, we
chose the time scale for these rate constants to be consistent with
voltammetric data for the release and clearance of evoked dopamine
(Garris and Wightman 1994). The slopes of the steady-state transmit-
ter release functions (Hz) and time constant parameters (s) are

�N, 5; �S, 5; �A(R) � �A(WR), 3; �G, 4;
�N, 25; �S, 25; �A(R) � �A(WR), 10; �G, 10;

The relative magnitudes of �A(R) 	 �A(WR) 	 �G � �N 	 �S reflect the
faster action of ionotropic neurotransmitters ACh and GABA com-
pared with the action of metabotropic NE and 5-HT (Destexhe et al.
1994). For each neurotransmitter, the steady-state function Ci�( � ) is
multiplicatively scaled by a random parameter �i(t) (of normal dis-
tribution, unit mean and SD of 0.1) varying according to a Poisson
process with an average rate of 10 Hz.

As described in METHODS, the homeostatic sleep drive, h, is gov-
erned by the following equation

h� � H��FLC � FDR� � 	w�
�1 � h�

�hw

� H�	w � �FLC � FDR��
h

�hs

(17)

where 	w 	 3 Hz and H[z] is the Heaviside function defined as H[z] 	 0 if
z � 0 and H[z] 	 1 if z 
 0. The time constants for the increase of
h during wake and its decrease during sleep states are �hw 	 600 s,
and �hs 	 320 s, respectively.

For the simulations of microinjection of transmitter agonists and
antagonists in the LC shown in Figs. 6–9, the governing equation for
FLC is

F�LC �
FLC��gA,LC CA(LC) � gN,LC CN � gG,LC CG(LC) � ��t�� � FLC

�LC

(18)

where the terms CA and CG in Eq. 10 are replaced by CA(LC) and
CG(LC), respectively, representing the effect of ACh and GABA in the
LC. For the agonist microinjection simulations, CA(LC) and CG(LC) are
given by the following expression

Ci(LC) � mi�t�Ci � Pi (19)

where i 	 G and A. The term Pi represents the concentration of
agonist and its decay is described by

P�i � �
Pi

�Pi

(20)

with time constants set to �Pi 	 10,000 s. The factor mi(t) scales the
level of endogenous neurotransmitter Ci in the LC according to the
following rule

● mi(t) 	 1 if Pi levels are low (less than or equal to imin)

● mi(t) 	 1 � (Pi � imin)/(imax � imin) if Pi level are higher
(greater than imin).

Minimum and maximum values for GABA and ACh agonist
concentrations are Gmin 	 0.3, Gmax 	 2.5, Amin 	 0.3, and Amax 	
2, respectively. For the antagonist microinjection simulations, total
ACh and GABA concentration levels in the LC were scaled by the
antagonist concentration, Qi (i 	 A and G). Thus in these simulations,
CA(LC) and CG(LC) are given by the following expression

Ci(LC) � �1 � Qi�Ci (21)

where the decay of antagonist concentration is governed by

Q�i � �
Qi

�Qi

(22)

with time constants set to �Qi 	 10,000 s. Initial values for Pi and Qi

were zero in all simulations except in Figs. 6, 7, and 9, where
microinjection of GABA agonist results were obtained with PG(0) 	
2.0 and GABA antagonist results with QG(0) 	 1.0, and in Figs. 8 and
9, where ACh agonist microinjection was simulated by PA(0) 	 0.8
and ACh antagonist by QA(0) 	 0.55. Values of these initial condi-
tions were chosen such that agonist and antagonist effects were
maintained over simulations of 4 h and produced distinguishable
changes in sleep-wake microarchitecture. Larger or smaller values of
initial conditions resulted in the same qualitative changes in sleep-
wake patterning but with differences in the magnitude of the effects.
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