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Introduction

The neural circuits of the hippocampus are extremely complex, with many classes
of interneurons whose contributions to network dynamics and function are still
unknown. Nevertheless, reduced models can provide insight into aspects of the
dynamics and associated function. In this chapter, we discuss models at a variety
of levels of complexity, all simple enough to probe the reasons for the behavior of
the model. The chapter focuses on the main rhythms displayed by the hippocampus,
the gamma (30–90 Hz) and theta (4–12 Hz) rhythms. We concentrate on modeling
in vitro experiments, but with an eye toward possible in vivo implications.

Models of gamma and theta rhythms range from very detailed, biophysically
realistic descriptions to abstract caricatures. At the most detailed levels, the cells
are described by Hodgkin–Huxley-type equations, with many different cell types
and large numbers of ionic currents and compartments (Traub et al., 2004). We
use simpler biophysical models; all cells have a single compartment only, and the
interneurons are restricted to two types: fast-spiking (FS) basket cells and oriens
lacunosum-moleculare (O-LM) cells. Unlike Traub et al. (2004), we aim not so
much at reproducing dynamics in great detail, but at clarifying the essential mecha-
nisms underlying the production of the rhythms and their interactions (Kopell, 2005).
In particular, we wish to highlight the dynamical as well as physiological mecha-
nisms associated with rhythms, and to begin to classify them by mechanisms, not
just frequencies.

One theme in this chapter is the interaction of gamma and theta rhythms. To
understand this interaction, it is necessary to describe the mechanisms of the gamma
and theta rhythms separately before putting them together. A second theme is the
use of mathematical tools to get a deeper understanding of the dynamics of rhythmic
networks. We apply these ideas mainly to the question of how networks can produce
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a theta rhythm from cells that do not naturally synchronize. A final theme is the use
of model networks to understand how dynamics contributes to function.

To maintain coherence, we use the same models for our interneurons and pyra-
midal cells in all sections of the chapter. Similarly, we use the same models for
synapses in each section. These models are closely related, but not identical, to
other models previously published (Acker et al., 2003; Pervouchine et al., 2006;
Gloveli et al., 2005b; Börgers et al., 2005; Börgers and Kopell, 2003, 2005, 2008).
Different versions of the same rhythms are produced by the same general model, but
with different parameter sets. All the equations and parameters employed through-
out this chapter are given in the appendices. Several different codes were used to
generate the simulation results in this chapter; all codes, with manuals for their use,
are included on the disk.

Gamma Rhythms, in Various Guises

The circumstances under which the gamma rhythm is observed both in vivo and
in vitro are described in chapter “Neuronal Activity Patterns During Hippocampal
Network Oscillation In Vitro” (see also Whittington et al., 2000). As we will discuss
below, we believe that the gamma rhythm is important for the creation, modulation,
and protection of cell assemblies. How that happens depends on the mechanisms
associated with the formation of this rhythm, and so we focus below on these mech-
anisms.

The name “gamma rhythm” has been used to denote rhythms in a very large range
of frequencies, from 20 Hz to over 100 Hz. We use here a more limited definition: we
define the gamma rhythm to be neural dynamics in which the population of basket
cells (and/or other FS interneurons) fires rhythmically on a time scale dependent
on the decay time of inhibitory postsynaptic potentials (Whittington et al., 2000).
In practice, that restricts the gamma range to approximately 30–90 Hz. The high-
frequency rhythms seen in neocortex (Canolty et al., 2006) and hippocampus and
striatum (Tort et al., 2008) are not considered gamma in this mechanistically based
nomenclature.

The gamma rhythm is found in many structures of the brain, including the
cerebral cortex and the entorhinal cortex (EC). Though there are some differences
between gamma rhythms in different parts of the brain (Cunningham et al., 2004),
the models we discuss do not make use of specific properties of hippocampal neu-
rons. The gamma rhythm is treated in the models discussed below as an interaction
of pyramidal cells and FS cells (or sometimes just as an interaction among FS cells).
We treat both the FS cells and the pyramidal cells as single compartments with min-
imal currents: the spiking Na+ and K+ currents, leak, and the synaptic GABAA and
AMPA currents. The gamma rhythms discussed here are believed to be formed near
the somata of the pyramidal cells (Buhl et al., 1995), justifying a one-compartment
model of those cells.

An essential feature of the gamma models discussed here is that the decay time of
the GABAA current is the longest time scale in the system; in particular, it is longer
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than the membrane time “constant” of either of the cell types involved. The latter
hypothesis seems counter-factual at first: the membrane time constant is often taken
to be about 10 ms or more (see Whittington et al., 1996), while the unitary IPSC
decay time constant has been measured in some contexts to be less than 2 ms (Bartos
et al., 2001, 2002). The central point is that the above measurements were not taken
in the context of ongoing gamma oscillations, in which the decay time has been
measured to be about 8–12 ms. It is not known if the unitary IPSCs are longer in the
context of an oscillating network. It may also be that other interneurons play a role in
the gamma oscillations, and that they have longer IPSCs. Finally, when the network
is producing a gamma rhythm, the basket cell interneurons are highly correlated,
but may not be exactly synchronous, and hence produce population IPSCs that take
longer to decay. Since there are far fewer cells in the model networks than in real
brain networks, each model synapse represents a large number of real synapses.
For these reasons, we have chosen to use parameters derived directly from the
gamma oscillations rather than the technically more accurate measurements (Bartos
et al., 2001, 2002) from situations that are less relevant to the data we model.

The issue of the membrane time is more subtle. This “constant” actually changes
dynamically, along with the currents expressed at any moment: the larger the sum
of the intrinsic and synaptic currents, the smaller the instantaneous membrane time.
With an inhibitory decay time in the above range, and the maximal inhibitory con-
ductance an order of magnitude larger than the resting conductance (Whittington
et al., 1996), the effective membrane time is small for at least half the gamma cycle.
With instantaneous membrane times short enough for a long enough period, volt-
ages “equilibrate” to the instantaneous inhibitory current, rendering the neurons’
history irrelevant for their future behavior. This was spelled out in Börgers and
Kopell (2005) for a reduced model, and we find the same behavior in our physi-
ological models. The lack of history dependence turns out to be central for some of
the functional implications of the gamma rhythms (e.g. see section “PING and Cell
Assemblies). The exact choice of the membrane time is not critical, provided it is not
too long relative to the inhibitory decay time. In the work by Bartos et al. on models
of gamma oscillations in networks of GABAergic interneurons, the inhibitory time
constant is very short, but the maximal inhibitory conductance is chosen to be two
orders of magnitude larger than the resting conductance; this is quite different from
our parameter regime and may lead to different conclusions.

Real pyramidal cells have a multitude of other currents (Traub et al., 2005).
However, we hypothesize that the other currents are not important for some kinds
of gamma rhythms (see PING below); for other kinds, they modulate the properties,
but are not critical for the existence of the rhythms. Some of the other currents, such
as the hyperpolarization-activated h-current, are inactive at the high voltage ranges
associated with gamma. During spiking, others may be swamped by the size of the
spiking currents. The high frequency of the gamma rhythm may not allow currents
with slow kinetics to change much during the interspike interval. Thus, though the
kinetics of pyramidal cells can be very complex, especially in the dendritic integra-
tion, the aspects that are important to the gamma rhythm can be captured in models
as simple as integrate-and-fire.
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The rhythms that occur in the gamma frequency range are not all the same mech-
anistically, either in vivo or in vitro. In vitro, rhythms in the 30–50 Hz range can be
produced in the hippocampus in at least three qualitatively different ways: Interneu-
ronal network gamma (ING), pyramidal-interneuronal network gamma (PING), and
persistent gamma (see chapter “Neuronal Activity Patterns During Hippocampal
Network Oscillation In Vitro” for details). These are distinguished less by their dif-
ferent frequencies than by the sets of neurons that are involved. In ING, the effects of
the AMPA synapses are blocked, so that only inhibitory cells are involved, and these
fire at or near the population frequency. In PING, both excitatory and inhibitory cells
are involved, with both classes of cells firing at or near the population frequency. In
vitro PING is a short-lived phenomenon induced by tetanic stimulation. Persistent
gamma, produced pharmacologically, lasts for hours; in this version of the gamma
rhythm, FS cells fire at close to population frequency, while the pyramidal cells fire
at much lower rates (see chapter “Neuronal Activity Patterns During Hippocampal
Network Oscillation In Vitro”). In all three of these forms of gamma, the population
frequency depends on the decay time of GABAA-receptor mediated synapses. Since
the ING rhythm plays no role in our discussion of the interaction of gamma and theta
rhythms, we will not say much more about it; see Kopell and Ermentrout (2004)
for references. The code for simulating gamma rhythms that we include with this
chapter is capable of producing all three kinds of gamma. We give the parameter
values associated with PING and persistent gamma in Appendix 2.

PING

The PING rhythm has been modeled in a variety of ways, from the very detailed
(Traub et al., 1997) to the very simple (Ermentrout and Kopell, 1998). In discussing
model pyramidal and FS cells, we will use the abbreviations E- and I-cells (for exci-
tatory and inhibitory). A cycle of the PING rhythm begins with a surge in spiking
of the E-cells, which triggers a surge in spiking of the I-cells. The resulting pulse
of inhibitory input to the E-cells brings them closer to synchrony. When inhibi-
tion wears off, the E-cells resume spiking, and the cycle repeats. The period of the
rhythm depends primarily on the decay time constant of the GABAA synapses, less
on the strengths of those synapses and the excitability of the E-cells (Börgers and
Kopell, 2005, Eq. (3.15)). A key step in the analysis of the PING mechanism is to
explain why and when a common inhibitory input pulse has a synchronizing effect
on a population of neurons. The effect of the inhibition is to create, transiently, a sta-
ble fixed point. All trajectories move toward this fixed point, thereby getting close to
each other. The synchronization can be interpreted as the effect of an attracting river
(Diener, 1985a,b) in a phase space that includes the decaying strength of inhibition
as a dependent variable (Börgers and Kopell, 2005).

Assuming E-cells of type I (Ermentrout, 1996), the PING mechanism works if
the following conditions hold (Börgers and Kopell, 2003):

(1) The E-cells receive external input that would drive them, in the absence of any
synaptic input, at or above gamma frequency.
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(2) The E→I synapses are so strong and have so short a rise time that a surge in
spiking of the E-cells quickly triggers a surge in spiking of the I-cells.

(3) The I-cells spike only in response to the E-cells.
(4) The I→E synapses are strong enough that a population spike of the I-cells

approximately synchronizes the E-cells.

The analysis of the PING mechanism becomes more complicated if there is noise
and/or heterogeneity in the network. It has been shown (Golomb and Hansel, 2000;
Börgers and Kopell, 2003) that the formation of a coherent gamma rhythm depends
on the number of connections to a given E- or I-cell from the opposite popula-
tion, independent of the size of the network; thus, the connections can be arbitrarily
sparse. The analysis of Börgers and Kopell (2003) shows that the I-cells are typically
synchronized more tightly than the E-cells. Further analysis also shows that, while
ING is vulnerable to heterogeneity (Wang and Buzsáki, 1996; White et al., 1998a),
PING is more robust. (ING becomes robust if gap junctions are added to the net-
work; see Kopell and Ermentrout, 2004 and Traub et al., 2001). However, PING
can be destroyed by too much noise, especially when the excitability of the E- and
I-cells is low, and so the frequency of the network is also low. For frequencies above
of about 90 Hz, the rhythm is often quite sensitive to heterogeneity. Hence the PING
mechanism operates best in the 30–90 Hz regime (Börgers and Kopell, 2005).

The analysis of PING rhythms enables one to understand how modulation of
the network, which changes network parameters, can lead to loss of rhythmicity. In
particular, the PING mechanism breaks down when the drive to the I-cells becomes
too large relative to the drive to the E-cells. In a simple 2-cell network, the I-cell fires
without being prompted by the E-cell, leading to “phase walk-through.” In larger
networks of E- and I-cells, the rhythmicity is typically lost in a different manner:
the I-cells become incoherent, which reduces, or even suppresses, the firing of the
E-cells (Börgers and Kopell, 2005). For examples of parameter values for which this
happens, see the paragraph on Fig. 1a in Appendix 2.

PING and Cell Assemblies

It has often been suggested that gamma rhythms are associated with the formation
of “cell assemblies” (Singer and Gray, 1995). A cell assembly is a group of cells that
are temporarily synchronous. Although synchrony can promote synaptic plasticity
(Hebb, 1949), we will not assume that the cells are connected to one another. The
suggestion is that temporary synchrony tags the neurons belonging to the assembly
as working together and potentiates their down-stream effects.

When this hypothesis was first proposed, the gamma rhythm was thought to be
relevant to binding partly because this frequency band had notably stronger power
in situations in which such binding was seen to be important, such as early sensory
processing (Gray, 1999). However, it was not clear what it was about this frequency
band that should associate it with the creation of cell assemblies. A deeper under-
standing of the PING rhythm enables us to see why gamma and cell assemblies
might indeed be related. The most relevant work is Olufsen et al. (2003). That paper
considered an E/I network producing PING as described above, with the E-cells
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Fig. 1 Spike rastergrams of model E/I networks. Cells 1–20 (below the dashed line) are the I-cells,
and cells 21–100 (above the dashed line) are the E-cells. (a) PING with heterogeneous input to the
E-cells; strongly driven E-cells participate on every cycle, while weakly driven ones are suppressed
altogether. (b) Weak PING driven by stochastic input to the E-cells. (c) Strong PING rhythm on a
weak PING background. (d) Asynchronous activity of the I-cells at the same frequency as in panel
C suppresses the E-cells. (e) E/I network entrained by sharp input pulses at gamma frequency; a
strong but less coherent distractor was present as well, but its influence is not visible. (f) Without
I→E synapses, the less coherent distractor prevents entrainment. All parameter values are given in
Appendix 2

given a range of applied current, producing a range of natural frequencies for the
individual cells. During PING, the E-cells with the highest drive fire with phases
very close to one another, while the other E-cells are suppressed for the duration
of the input. Thus, the cells that fire form a cell assembly; see also Fig. 1a of this
chapter.

The dynamical reason for this behavior is found in the timing of the E- and (here,
homogeneous) I-cells: when enough of the E-cells fire to cause the I-cells to fire,
the resulting inhibition suppresses the rest of the E-cells. The fraction of cells firing
depends on the kinetics and strength of the synapses and also on how the input is
distributed across the E-cells. This fraction can be modulated by non-oscillatory
inhibition, perhaps for instance from CCK-expressing cells (Tukker et al., 2007).
The key point is that the same E-cells that fire on one gamma cycle fire again on
the next, as long as the input to the cells remains the same. For this to happen, it
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is critical that the decay time of inhibition is the longest time scale in the system.
When this is true, by the time inhibition has worn off in a given gamma cycle, there
is no cellular memory of which cells have spiked; thus, the same cells spike on each
cycle, forming the cell assembly. If other currents with longer time scales (e.g., the
M-current) are added, the cell assembly no longer forms. Instead, all the E-cells
participate, at different times and at different frequencies (Olufsen et al., 2003).

Persistent Gamma

There is another kind of gamma in which the E-cells fire much less frequently
than the population. This rhythm, known as “persistent gamma” or “weak gamma,”
is formed in hippocampal slices by the addition of kainate and/or carbachol; for
details, see chapter “Neuronal Activity Patterns During Hippocampal Network
Oscillation In Vitro”. It is intrinsically more complex than ING and PING, since the
firing of the E-cells seems stochastic. Indeed, the most detailed models of persistent
gamma (Traub et al., 2000) require the existence of axo-axonal gap junctions among
the pyramidal cells (Hamzei-Sichani et al., 2007). The axo-axonal connections give
rise to very high-frequency (> 100 Hz) oscillations (VFOs) (Traub et al., 2000;
Lewis and Rinzel, 2000, 2001; Munro, 2008), which are modulated by gamma fre-
quency rhythms induced by the chemical synapses.

It might seem that the behavior of the resulting model cannot be captured by
a less complicated model without the axonal plexus. However, it was shown by
Börgers et al. (2005) that the noisy and low-frequency participation of the E-cells
can be captured in a network of one-compartment E- and I-cells, without any axo-
axonal interactions. This was done by replacing the noisy input to the E-cells gen-
erated within the axonal plexus by externally imposed noisy drive. We consider the
gamma rhythm produced by this reduced network to have the same mechanism for
the creation of the dynamics of the E/I interaction, but leaving out the details of how
the network creates the necessary noise; see Fig. 1b for a rastergram of persistent
gamma. We refer to this kind of rhythm as a “weak PING rhythm.” For clarity, we
sometimes also call the standard, deterministically driven PING “strong PING.”

Local excitatory drive can generate a local PING rhythm on a background of
persistent gamma (Börgers et al., 2005). The resulting acceleration of the inhibitory
population leads to a reduction in activity of the non-assembly cells; see Fig. 1c. In
order to form the cell assembly, it can in fact be critical that there be a background
gamma: if this gamma is removed, for instance, by adding too much noise, weaken-
ing the I→E synapses too much, or giving extra drive to the I-cells, the same input
to a subset of E-cells may not produce a cell assembly (Fig. 1d).

Gamma Rhythm and Protection Against “Distractors”

Synchrony does not require oscillations; a single common inhibitory input pulse, for
instance, can produce it (Börgers and Kopell, 2003). However, the gamma rhythm
is well-adapted biophysically to support the construction and use of cell assemblies
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for several reasons. One such reason was discussed in Börgers and Kopell (2008)
in the context of attention; although the assemblies were thought of as neocortical,
similar issues pertain to the hippocampus, where cell assemblies have been recorded
and analyzed (Harris et al., 2003). In Börgers and Kopell (2008), we considered a
simple target network of one E- and one I-cell. The cells were coupled synaptically
as in PING, but the target network did not fire in the absence of external input. The
network received two rhythmic input trains at gamma frequency, a tightly coherent
(“spiky”) one and a less coherent (more “sinusoidal”) one, both affecting the E- and
the I-cell. The less coherent input train was faster or slower than the more coherent
one, so that its effects on the target network could be distinguished, but both input
frequencies were always in the gamma range.

Simulations showed, not surprisingly, that a single input entrained the target
network. The more surprising result is that, in the presence of both input trains,
the target network responded to the more coherent one, ignoring the less coherent
one almost entirely, even when both input trains had the same temporal averages.
The presence of the more coherent input made the less coherent input essentially
invisible; see Börgers and Kopell (2008), and also Fig. 1e.

Further simulations and analysis showed that this effect depends on local inhibi-
tion within the target network; see Fig. 1f, in which the local inhibitory coupling has
been removed, and the effect has disappeared. Inhibition greatly raises the leakiness
of the target neurons; the more coherent input pulses can break through in spite of
this leakiness, whereas the less coherent ones cannot (Börgers and Kopell, 2008).
Once the coherent pulses entrain the target network, there is also a timing effect sta-
bilizing the entrainment: the coherent pulses arrive at times when inhibition is weak,
whereas the less coherent ones usually arrive at times when inhibition is stronger.
The mechanism can work only at or above gamma frequency. At frequencies below
the gamma range, there are substantial windows of low inhibition during which even
the less coherent input can substantially affect the target network.

The Many Forms of Gamma, In Vitro and In Vivo

The relationship between in vitro and in vivo gamma rhythms is still not understood,
though they are thought to be similar (Senior et al., 2008). Our current hypoth-
esis is that the PING rhythm is associated with the formation of cell assemblies
during active processing, and that the persistent rhythm is analogous to a back-
ground gamma rhythm associated with vigilance. Differences in frequencies may
not point to differences between in vitro and in vivo mechanisms, since there is
more background input in the in vivo structures. However, within in vitro varieties
(as in CA3 or in CA1) the different frequencies may turn out to be salient. There
are also differences in the gamma rhythms seen in vivo in a variety of structures.
Recent work from the Graybiel lab (Tort et al., 2008) shows that different bands
of gamma (30–60 Hz and 60–90 Hz) in the hippocampus are modulated differently
by the theta rhythm, suggesting that they are mechanistically different. Work in the
olfactory system (Kay, 2003) also suggests multiple gammas, a lower frequency one
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associated with background attention, and a higher frequency one associated with
active processing.

The distinctions between PING and persistent gamma do not adequately account
for additional subtle differences seen even in vitro. For example, there are structure-
dependent differences in gamma frequency, with CA3 in vitro persistent gamma
slower than that of CA1 (Middleton et al., 2008). In the EC, there are two dis-
tinct gammas formed in vitro, associated with different kinds of interneurons; the
slower one (in the 30 Hz range) is formed from an interaction of pyramidal cell
with a class of interneurons named “goblet cells” (Middleton et al., 2008). It also
remains to understand how other currents, not necessary for the existence of gamma
rhythms, can nonetheless modulate them if they are present in high enough amounts.
An example is the M-currents in the E-cells, which can affect the rate of firing of
gamma or even make it disappear (Börgers et al., 2005; Olufsen et al., 2003). These
subtleties may have important in vivo implications (Middleton et al., 2008).

Theta Rhythms

Unlike the gamma rhythm, which is governed (at least in its simplest forms) primar-
ily by the decay time of inhibition, the theta rhythm seems to depend on the kinetics
of intrinsic currents that determine the theta frequency or give rise to resonance at
that frequency. Cells with intrinsic currents that may play a role in setting the theta
frequency include the stellate cells of the EC and the O-LM cells in the hippocam-
pus. For more information on the physiology and pharmacology of these and related
cells, please see chapters “Neuronal Activity Patterns During Hippocampal Network
Oscillation In Vitro” and “Single Neuron Models: Interneurons”.

Models of the Theta Rhythm in a Single Cell

The first physiological models of the theta rhythm were developed to describe the
behavior of stellate cells of the EC (White et al., 1998b; Dickson et al., 2000; Acker
et al., 2003). In these models, the time scale of the theta oscillation in an individual
stellate cell comes from the interaction of a persistent Na+ current with either a slow
K+ current (such as an M-current) or an h-current.

One outcome of modeling of the EC theta oscillations has been the suggestion
that a geometric structure in the trajectories known as a “canard structure” is respon-
sible for the theta period in subthreshold oscillations (Rotstein et al., 2006). The
canard structure is related to the so-called canard phenomenon in which low ampli-
tude oscillations blow up into large ones as some parameter is changed (Rotstein
et al., 2006), which can occur when there are multiple time scales. In the canard
structure, some trajectories follow repelling (unstable) manifolds for a significant
amount of time, and that geometry determines the period of the oscillations for
trajectories that stay close to oscillations for one or more cycles. In such a case, even
when the oscillation has small amplitude, linearization around a fixed point does not
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yield the period. This structure appears to affect resonance to theta-frequency input
(Rotstein et al., unpublished observations).

A more detailed, multi-compartment model of an O-LM cell was created by
Saraga et al., using the interaction of an h-current with an A-current, but no persis-
tent Na+ current (Saraga et al., 2003). The same group has more recently (Lawrence
et al., 2006) incorporated the M-current into the model (chapter “Single Neuron
Models: Interneurons”), and is currently modeling the R-LM cell (Chapman and
Lacaille, 1999), making prominent use of the A-current. The different combinations
of inward and outward currents have been shown to lead to some subtle differences
in cellular dynamics (Acker et al., 2003). However, it is still not well understood
how different combinations of currents lead to a propensity to produce subthresh-
old theta oscillations (Rotstein et al., 2006; Dickson et al., 2000) or respond in a
resonant manner to inputs that have a theta-rich frequency distribution (Haas and
White, 2002).

For the figures in this section, we will focus on a single-compartment version of
the Saraga et al. model, which includes an h-current with a single time scale, and
an A-current. The equations and all relevant parameters are in Appendix 1. We will
refer to these model cells as O-cells. To put this model in context, we also describe
related models below.

Synchronization Properties of Stellate Cells and O-LM Cells

The fact that single cells produce a given frequency does not imply that coupling
those cells by their natural neurotransmitters will lead to a coherent rhythm. Pre-
vious modeling work on stellate cells and dynamic clamp experiments on stellate
and O-LM cells illustrate this. Model stellate cells, coupled by AMPA synapses,
do synchronize (Acker et al., 2003; Netoff et al., 2005a). This is counter to the
results found earlier that simpler models of cells (integrate and fire or voltage-gated
conductance with only spiking currents and leak) tend to synchronize with mutual
inhibition, and not synchronize with excitation (van Vreeswijk et al., 1994; Gerstner
et al., 1996). However, the addition of slower currents can change the synchroniza-
tion properties. This is particularly true of the h-current and the M-current, both
of which oppose applied currents (h-currents are inward currents that turn on with
hyperpolarization, and M-currents are outward currents that turn on with depolariza-
tion) (Crook et al., 1998; Acker et al., 2003; Ermentrout et al., 2001). In addition to
models cited above, this idea was tested by Netoff et al. (2005a), using the dynamic
clamp method (Dorval et al., 2001; Sharp et al., 1993) on hybrid networks consist-
ing of one stellate cell or O-LM cell, and one in silico (stellate) model of such a
cell. The dynamic clamp could produce either excitation or inhibition in the hybrid
network, and the results were compatible with the earlier modeling results: both
stellate cell pairs and O-LM cell pairs can synchronize with excitation, but not with
inhibition. Since the O-LM cells are inhibitory, this implies that a network of O-LM
cells alone cannot produce a coherent theta rhythm. The results also suggested that,
in spite of some differences in intrinsic currents between O-LM and stellate cells,
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their synchronization properties are similar. Simulation of pairs of (reduced Saraga
model) O-cells show that they also do not synchronize with inhibition (Pervouchine,
unpublished).

There are various mathematical tools that are used to relate biophysical properties
of cells to whether or not a pair of such cells can synchronize with a particular kind
of synapse. More generally, the methods help decide and explain how a pair of cells
phase-locks via the synaptic connection, and with what phase relationship (Kopell
and Ermentrout, 2002). One such technique, emphasized in some of the examples
mentioned above, involves “spike-time response curves” (STRCs) or, equivalently,
“phase response curves” (PRCs) (Acker et al., 2003; Oprisan et al., 2004; Gutkin
et al., 2005). In that methodology, one measures, from an experiment or in a numer-
ical simulation (Galán et al., 2005; Netoff et al., 2005b), how much an input to a
periodic cell changes the time of the next spike as a function of the time of the input
(Fig. 2a). This change can be measured in time units (in STRCs) or in phase units
(in PRCs), where phase usually represents the time normalized to the unperturbed,
free-running period of the cell.

From the STRC, one can compute a “spike-time difference map” (STDM). The
latter takes the time Δ in a given cycle between the spikes of the two cells and gives
the time Δ = Δ + F(Δ) between those spikes in the next cycle (Fig. 2b). Fixed
points of that map (or, equivalently, zeroes of F) correspond to phase locking, and
the slope of the map at the fixed point determines if the locking is stable to pertur-
bations: stable phase locking occurs if and only if the slope of F is between −2 and
zero. A fixed point with zero spike-time difference corresponds to synchrony; there
is often another fixed point that (in a case of identical cells with symmetric coupling)
corresponds to antiphase. If a fixed point is stable, its domain of stability (i.e., the
set of initial phase lags which will lead to that fixed point) is the interval on either
side of the fixed point up to the next fixed point; the sign of F(Δ) indicates whether
the time lag between spikes will increase (F(Δ) > 0) or decrease (F(Δ) < 0) on
the next cycle. An analog of STDM, which operates with phase instead of time, is
called “phase transition map” (PTM). Note that the properties of locking regimes
can be easily seen from STDM or PTM graphs, while the direct dynamic simula-
tions convey information of a different sort, one that is more detailed but not as
straightforward for the stability analysis.

The STRC and STDM connect physiological properties of the cells and synapses
to the dynamical properties of the network of these cells, thus allowing one to under-
stand how changes in some currents or time scales affect the network. For weak cou-
pling, this theory is equivalent to the standard weak coupling theory (see Kopell and
Ermentrout, 2002). But the theory can work for significantly larger coupling as well,
and produces different answers. However, there are significant restrictions on the use
of such methods: the major one is that the effect of the input of each cell on the other
is assumed to happen within the current cycle, so that there is no further memory
from one cycle to another. This can be relaxed to two cycles (Oprisan et al., 2004)
and can deal with multiple inputs to the target (Netoff et al., 2005a). Another is that,
in the most straightforward applications, the method applies to only two cells; this
contrasts with weak coupling methods, in which an arbitrary number of cells can
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Fig. 2 (a) Construction of STRCs: Δ is the time of the perturbation; T is the unperturbed interspike
interval; f (Δ) is the difference between the perturbed interspike interval and T . (b) Construction of
STDMs: Δ and F(Δ) are time differences between spikes in two consecutive cycles. (c) STRCs for:
an O-LM cell receiving input from another O-LM cell (solid); an O-LM cell receiving input from
an I-cell (dashed); an I-cell receiving input from an O-LM cell (dot-dashed); an E-cell receiving
input from an O-LM cell (dotted). Time units are normalized to the unperturbed period of 150 ms.
(d) STDMs for: the network of mutually coupled O-LM cells (solid); the network of mutually
coupled O-LM and I-cells (dashed). (e) STRCs for an O-LM cell receiving combined inhibitory
and excitatory input from PING. The amount of inhibition is fixed, while excitation is used at
three different levels: weak (solid), moderate (dot-dashed), and strong (dotted). (f) STDMs for
the network of mutually coupled O-LM cell and E-I cell module (PING). Line strokes correspond
to different levels of excitation, as in part e. All parameters for these simulations are given in
Appendix 3
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be combined in a network. The weak coupling hypothesis essentially assumes that
all inputs to a cell are additive in their effects, an assumption that breaks down for
non-linear coupling that is not infinitesimal. The method also assumes that the order
of the cell spikes remains the same over different cycles.

Some of these constraints (notably, ones on time scales) are violated in our use
of these methods. The 1-D reduction inherently involves a certain degree of inac-
curacy since it neglects the dynamics of slow variables. While these effects are not
noticeable for many simple Hodgkin–Huxley type of models, they can and do affect
the Saraga O-LM cell model, which contains slow currents such as h-current or
A-current. Nevertheless, the methods worked well for understanding synchroniza-
tion of pairs of O-cells or stellate cells in the presence of inhibition or excitation,
for reasons that may depend on further structure in the equations: we modeled how
the resulting STRCs would change depending on the initial conditions of the slow
variables and found that the dependence did not change the qualitative behavior,
only the amplitude of STRCs. Although this could be broken by sufficiently large
changes in the initial conditions of slow variables, we chose the initial values of
gating variables close to those on the limit cycle, and the perturbations used to con-
struct STRCs keep those slow variables within the range in which the quantitative
behavior was not affected.

We now show how these ideas apply to a pair of mutually coupled O-cells. If
we denote spike times of these cells by t1 and t2, where t1 < t2, then on the
next cycle the respective spike times will be t1 = t1 + TO + fO O (t2 − t1) and
t2 = t2 + TO + fO O (t1 − t2), where TO is the period of a free-running O-cell,
and fO O (Δ) is the O-to-O STRC (Fig. 2c, solid line). The time difference between
the two O-cells in the next cycle will be Δ = t2 − t1 = Δ + FO O (Δ), where
Δ = t2 − t1 and FO O (Δ) = fO O (TO + fO O (Δ) − Δ) − fO O (Δ). This function
has two intercepts, one corresponding to synchronous, and another corresponding to
antiphase oscillations (Fig. 2d, solid line). Standard theory of 1-D maps predicts that
the synchrony (Δ0) is unstable, while the antiphase locking regime (Δ1) is stable,
with domain of stability the entire period (this was confirmed in simulations). Thus,
the O-cells do not synchronize with inhibition to produce the theta rhythm. Similar
analyses made with other models of O-LM cells (Pervouchine et al., 2006) show
qualitatively similar behavior.

Theta Rhythms in Hippocampal Networks

I-O Networks

In spite of the fact that the (model) O-LM cells do not synchronize with standard
GABAA inhibition, it is possible to have a theta rhythm in a network that is wholly
inhibitory: Gillies et al. (2002) produced an atropine-sensitive theta rhythm in a CA1
slice in which glutamatergic synapses were blocked. In that experimental model,
presumably there were multiple interneurons involved, in addition to the O-LM
cells. Rotstein et al. (2005) produced a model of coherent theta in a network of
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O-LM and basket (I) cells. Both types of cells were modeled as single compartment;
and since the previous dynamic clamp work had suggested that the O-LM cells
and EC stellate cells are biophysically similar in their synchronization properties,
the 1-compartment models of the stellate cells were used. The frequency of the
model cells was determined by the choice of the applied current (but see Goldin
et al., 2007). The simplest such network model consisted of two Acker et al. models
of the O-LM cell and one I-cell, with the former cells uncoupled, and the I-cell
mutually coupled to each of the other two cells.

An essential hypothesis for this model is that I-cells, representing fast-firing
interneurons (presumably parvalbumin-positive basket cells) do indeed receive inhi-
bition from theta-producing cells such as the O-LM cells and vice versa. This has not
been demonstrated anatomically or with paired cell recordings. However, in vitro, it
has been seen that the O-LM cells display IPSPs with kinetics comparable to those
of the FS cell, and basket cells display long IPSPs associated with the O-LM cells
(Rotstein et al., 2005). There is also evidence that somatostatin-immunoreactive O-
LM cells innervate distal apical dendrites of parvalbumin-positive basked and/or
axo-axonic interneurons (Katona et al., 1999, Fig. 7).

Analysis of how this synchronization works does not fit the standard uses of
STRC and STDM, since the network has three cells. Nevertheless, it is possible to
extend the analysis to this case. This was done in Pervouchine et al., (2006) for the
Acker et al. model of the O-LM cell. The analysis done below illustrates the same
results for the reduced Saraga et al. model (O-cells). Equations for O- and I-cells
are in Appendix 1. The I-cells are as in previous sections.

A first step shows that, if the I-cells have weak enough drive to fire intrinsi-
cally in the theta-frequency range, each O-cell can phase-lock to the I-cell, at a
phase such that the spike of the I-cell occurs relatively late in the O-cell cycle.
This happens because the decay time of the inhibition induced by the O-LM cell
is several times larger (20 ms) than that of the inhibition induced by basket cells
(9 ms). Indeed, STRCs measuring the effects of the O- and the I-cell spikes on each
other (Fig. 2c, dashed and dot-dashed lines) result in a STDM1 that predicts stable
non-synchronous oscillations (Δ2 in Fig. 2d, dashed line).

The next step shows that, in the three cell network, the O-cells synchronize
with each other because each synchronizes to the I-cell at the same phase. More
specifically, if Δ is the time difference between spikes of the two O-cell and
the I-cell spikes τ ms after the last of the two O-cells has spiked, then the time
difference between the O-cells on the next cycle is Δ = Δ + FO O (Δ), where
FO O (Δ) = f I O (τ ) − f I O (τ + Δ) and f I O (Δ) is the STRC function that models an
input to the O-cell from an I-cell (Fig. 2c, dashed line). The synchronous solution is
stable if −2 < F ′

O O (0) < 0, i.e., if 0 < f ′
I O (τ ) < 2 (note that the derivative is with

1 The derivation of STDM for the O-I network is very similar to that for the O-O network and yields
FO I (Δ) = fO I (T + f I O (Δ)−Δ)− fO I (Δ), where f I O (Δ) and fO I (Δ) are I-to-O and O-to-I STRCs
shown in Fig. 2c (dashed and dot-dashed lines, respectively), and T is the unperturbed period of
O- and I-cells.
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respect to Δ). The latter condition holds for a relatively large range of values of τ ,
as shown by the dashed line in Fig. 2c.

We have shown that the entire O-I-O network can be regarded as a perturbation
of an O-I network, in which the O-cells synchronize, provided that the I-cell does
not spike shortly after one of the O-cells. In experimental observations and in the
analysis done for the Acker et al. model (Pervouchine et al., 2006), this does not
happen unless the decay time of the O-cells is set to be much longer than that of the
I-cells. For the Saraga et al. model, the decay time of the O-cell inhibition does not
have to be as long (Fig. 2c). The crucial distinction between the two models is that
the Saraga et al. model has an A-current, which counterbalances the h-current and
reduces the advance produced early in the cycle by the h-current in the Acker et al.
model.

E-I-O Networks

There are several possible parameter regimes, producing theta frequency with dif-
ferent mechanisms. The central distinction is whether the O-cell fires as a result of
excitation from the E-cell, or is held back by the inhibition from the I-cell (note
that O-cells can also fire by post-inhibitory rebound, but this is more typical for
the Acker et al. model rather than for the reduced Saraga model). Similar to what
was described for O-I-O networks, a two-cell reduction is also possible for E-I-O
networks, provided that the E-cell and the I-cell produce an oscillation of roughly
the same frequency as does the O-cell. The dynamics are similar to PING, but at
a lower frequency. (Without a model O-LM cell, this can lead to instability in the
presence of noise; see Börgers and Kopell, 2005). The analysis of network dynamics
then addresses the question of synchrony between the O-cell and either the E- or
I-cells (the latter two cells spike almost synchronously and thus are referred to as an
EI-module).

The combined effect of E- and I-cell spikes onto the O-cell can be regarded
as a pulse that has both excitatory and inhibitory components. For simplicity, we
change the excitatory conductance while keeping the amount of inhibition fixed;
this results in a family of STRCs (depending on the excitatory conductance) from
the EI-module to the O-cell, where the time of the perturbation is the time of the
E-cell spike. (See Fig. 2e, where the different lines represent different strengths of
the excitatory conductance). In turn, the O-cell spike impacts both E- and I-cells;
here we use the assumption that the inhibitory feedback from the O-cell to the I-cell
is negligible compared to the excitation, i.e., the E-to-I conductance is sufficient to
make the I-cell fire independently of other inputs. The construction of the STDM is
very similar to that in the O-O and O-I networks; the difference is only in the STRCs
used.2 The two functions needed to construct the STDM in this case are the O-to-E
STRC (Fig. 2c, dotted line) and the EI-to-O STRC (Fig. 2e).

2 In this case, the STRC is FO E (Δ) = fO E (T + fEI,O (Δ) − Δ) − fO E (Δ), where fO E (Δ) is the
dotted line in Fig. 2c, and fEI,O (Δ) is one of the functions shown in Fig. 2e.
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The E-I-O network can oscillate in distinct modes (Fig. 2f). In the excitation-
dominated regime (dotted line), the O-cell fires as a result of E-cell firing, in which
case the zero phase lag between O- and E-cells (Δ0) is the only fixed point, i.e., E,
I, and O are roughly synchronous. In the inhibition-dominated regime (solid line),
the O-cell phase-locks to the I-cell at a non-zero phase (Δ1), as was observed in
the O-I-O network, while the synchronous phase locking (Δ0) has a tiny domain of
stability. There is also a variety of intermediate regimes (dot-dashed line). In these
regimes, additional (unstable) fixed points change the stability domains of Δ0 and
Δ1, thus providing a continuous transition between the two dominant regimes.

The distinction between “inhibition-dominated” and “excitation-dominated” ver-
sions of theta sheds light on the relationship to a theta rhythm model of Orban
et al. (2006). Our inhibition-dominated model is based on Gillies et al.’s in vitro
work, in which the AMPA receptors are blocked. This differs in some critical ways
from the model of Orban et al., which also has pyramidal cells and two classes of
inhibitory cells, basket cells, and O-LM cells. Unlike the models of this section,
the Orban et al. model relies on the h-current in the pyramidal cells to promote
rebound excitation; the firing of the pyramidal cells is critical for the creation of
the model theta oscillation. Our “excitation-dominated” mechanism is also different
from the Orban et al. model. In ours, the pyramidal cell is now crucial to the phases
of the different kinds of cells, with the I- and O-cells roughly synchronous, but the
theta frequency still comes from the properties of O-cells, not the h-current of the
pyramidal cells. We also note that, in large-scale excitation-dominated models with
the gamma rhythm nested in the theta rhythm (see section “Nested Gamma and
Theta Rhythms”), the I-cells fire more often in parts of the theta cycle in which the
O-cells are quiet, and hence in vivo measurements would indicate that I- and O-LM
cells fire (statistically) at different times.

Nested Gamma and Theta Rhythms

As mentioned above and also reviewed elsewhere (chapter “Neuronal Activity Pat-
terns During Hippocampal Network Oscillation In Vitro”), several in vitro pharma-
cological models have shown that the microcircuits of the hippocampus are able to
generate theta and gamma rhythms locally (i.e., independently of an external pace-
maker). It is also known that the co-existence of theta and gamma seen in vivo can
be reproduced by certain protocols in vitro (Fisahn et al., 1998; Gillies et al., 2002;
Gloveli et al., 2005b; Dugladze et al., 2007); i.e., there exists an intra-hippocampal
mechanism for the coupling of gamma and theta rhythms. As in the sections above,
many of the computational models built to date, including those reviewed here, were
based on important in vitro results.

Inhibitory Networks

Both experiments and simulations show that a nested gamma and theta rhythm
can occur in purely inhibitory networks (Gillies et al., 2002; Rotstein et al., 2005;
Serenevy, 2007). The same network that produces a theta rhythm with a coherent set
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of O-cells can also produce a nested gamma rhythm inside the theta, provided that
the I-cells have enough drive and that there are I-I synapses. This was shown for
the Acker et al. model of O-LM cells in Rotstein et al. (2005). Figure 3a shows
an example for the reduced Saraga et al. model (O-cells). In this situation, the
mutual coupling of the model O-LM and I-cells is critical; a common input from
the I-cells to the model O-LM cells, without O-I feedback, is not enough to syn-
chronize the latter. Although each model O-LM cell adjusts its phase to the I-cell
input, if the latter is much faster, the model O-LM cells skip I-cell cycles; the
lack of synchronization is due to the fact that the different model O-LM cells skip
different cycles. With mutual feedback between the I-cell and O-LM model cells
(both models), the O-cells synchronize, with the I-cells forming a nested gamma
(Fig. 3a).

If the synapses are strong, the standard STRC methods do not work well to
explain this situation, even in a network of only one I- and one O-cell. The essen-
tial difficulty is that the inhibition from each successive spike of the I-cell in
the O-cell network encounters a different set of O-cell conductances, since the
currents in those cells are fairly long lasting. For both O-LM cell models, there
are also large parameter regimes in which the number of I-spikes per O-cycle is
erratic (P. Malerba, unpublished data). Simulations suggest that the erratic behav-
ior may be related to trajectories passing nearby canards in the O-LM model
equations.

A nested theta/gamma rhythm in a purely inhibitory network was also investi-
gated numerically in White et al. (2000). In that set of simulations, there were again
two kinds of interneurons, one with long IPSPs, and one with short ones. In contrast
to the Rotstein et al. paper, the O-LM cell model had only spiking currents, no Ih ,
and there was a lot of heterogeneity in the drive to the cells. The network displayed
gamma nested in theta, but not in a robust manner. The theta power went up with
forcing at a theta frequency, and this was more effective, unintuitively, when the
forcing was phase-dispersed. It is not fully understood how this resynchronization
works. An analysis of a closely related system was given by Serenevy (2007) for
a single population of weakly driven interneurons. The synchronization was most
effective when the weak periodic drive was close in frequency to the effective fre-
quency of the network of interneurons. The analysis showed that the phase dis-
persion of the input changes that effective frequency by changing the number of
interneurons that participate in the rhythm, recruiting more or suppressing more
(see also Bathellier et al., 2008).

Since the gamma/theta behavior can be obtained with no intrinsic currents
besides those needed for spiking, this raises the question of what role the special
currents (IA, Ih , maybe INa,P ) play in these rhythms. For theta in a single cell,
these currents are believed to be important for subthreshold oscillations (Dickson
et al., 2000), and also for resonance (Hu et al., 2002; Haas and White, 2002). But
it is less clear what roles these currents play in oscillatory regimes in which the
O-LM cells spike. However, we note that the gamma/theta nesting in the White
et al. (2000) model is not very robust without adding periodic input, and we conjec-
ture that the time scales associated with the h-current and A-current are important
in making these interactions more robust, probably by shaping the input resistance.
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In fact, the result presented in Fig. 3a could not be achieved if the h- and A-currents
were removed from the O-cell (after appropriate compensation of the drive current;
data not shown), pointing to an important role of these currents for the coherence of
the theta rhythm at the population level.

Fig. 3 Nested gamma and theta rhythms in simple hippocampal network models. (a) Pure
inhibitory networks composed of I- and O-cells are able to generate coherent theta and gamma
rhythms when the different cell types are mutually connected. Shown are the spike rastergrams
for a network composed of 5 O- and 5 I-cells. The bottom panel shows a representative raster-
gram in the absence of O-I connections. In this case, although each individual O-cell spikes at
theta frequency, the population of O-cells do not exhibit a coherent rhythm. Adding these connec-
tions, however, creates a coherent theta rhythm at the population level (top panel). (b) Theta and
gamma rhythms in excitatory/inhibitory networks. Adding an E-cell to the network changes the
type of gamma generation from ING to PING, i.e., the I-cells spike after the E-cell excitation. As
shown for pure inhibitory networks, notice that a coherent theta rhythm is still dependent on the
existence of O-I connections. (c) E-I-O network models of three hippocampal slice orientations.
From transversal to longitudinal slices, O-cell connections (to all outputs) get stronger while I-
cell connections get weaker, mimicking the orthogonal ramification property between these two
interneurons (Gloveli et al., 2005b). The result is that the model LFP exhibits mostly gamma,
mixed gamma/theta, or mostly theta oscillations in transversal, coronal, and longitudinal slices,
respectively, as observed experimentally (Gloveli et al., 2005b). All parameter values are given in
Appendix 4
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Excitatory/Inhibitory Networks

In vivo, the networks producing the nested gamma/theta contain pyramidal cells
as well as interneurons. Networks of pyramidal cells (E-cells), basket cells (I-cells),
and O-LM cells (O-cells) were first studied in the context of in vitro work by Gloveli
et al. on gamma and theta in CA3 (Gloveli et al., 2005b). In CA3, slices that are cut
transversely and placed in an ACSF that contains kainate produce robust gamma
rhythms (see chapter “Neuronal Activity Patterns During Hippocampal Network
Oscillation In Vitro” for more details). If the slices are longitudinal, the same ACSF
produces dynamics whose spectral content is mainly in the theta range; for a coro-
nal slice, whose slice angle is in between, the spectral content has peaks in both
the gamma and theta frequencies. The question addressed by the modeling is how
different angles of the slice produce outputs with different frequency content.

The major difference between the three situations is in what part of the circuitry
is preserved in the slices. The O-LM cells have long axons that project more in
the longitudinal direction than in the transversal one (Gloveli et al., 2005b; Tort
et al., 2007). Which connections are preserved in the transversal slice is not well
understood: earlier studies suggested a lamellar organization of the hippocampus, in
which the pyramidal cells would exert a greater influence in the transversal direction
(Andersen et al., 1969, 2000), but this view has been challenged by other studies
(Amaral and Witter, 1989; Wittner et al., 2007). More recently, however, it was
shown that the gamma-producing basket cells do project more in the transverse
direction (Gloveli et al., 2005b, see also Gloveli et al., 2005a). Thus, the longitudinal
slice preserves more of the O-LM circuitry, and the transversal slice preserves more
of the pyramidal-basket cell recurrent circuitry. We considered constructing a 3-D
(or at least a 2-D) model in which that anatomy was explicitly modeled. Instead, we
produced a more reduced description in which there was no explicit anatomy, but
the preservation of more of the circuitry is modeled as a larger effect of those classes
of cells. The O-LM cells are modeled by a 1-compartment reduction of the Saraga
et al. model (O-cell), and the E- and I-cells are also modeled as in the previous
sections; the one E-cell in the network is made to represent all the cells that are
involved in a given cell population, while multiple I- and O-cells are used to explore
issues of synchronization. We also employ a non-spiking E-cell as a caricature of a
local field potential (LFP). This cell receives exactly the same synaptic inputs as the
active E-cell in the network, but it is made silent by the absence of drive currents.
The model LFP thus reflects subthreshold voltage changes in the E-cell population.

We first observe that such networks composed of E-I-O cells are able to produce
nested gamma and theta oscillations (Fig. 3b). As in the case of pure inhibitory
networks, O-I connections are required for a higher coherence of the theta rhythm
by the O-cell population (Fig. 3b), and, likewise, removing I-O connections greatly
reduces theta coherence (not shown). Next we study the effects of changing the
strength of synaptic connections inside this network (Fig. 3c). The longitudinal slice
is represented in this model by large O-I and O-E and lower I-O, I-I, and I-E conduc-
tances. The transverse slice has lower O-I and O-E and larger I-O, I-I, and I-E con-
ductances, and the coronal slice has parameters in between. The results from these
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simulations show behavior closely matching the experimental results: in the model
transverse slice, the O-cells produce theta rhythms, not necessarily synchronized
(given the low O-I synaptic conductance), and the E- and I-cells produce a PING
rhythm. Given the strong I-E connections and the lack of coherence among O-cells,
the model LFP exhibits mostly a gamma rhythm, as seen in the experiments. In the
model longitudinal slice, the O-cells produce strong inhibition at theta frequency to
both E- and I-cells. This is reflected in the model LFP, which shows mostly theta
oscillations. The gamma rhythm is strongly reduced in the longitudinal slice model
because of the large gap between the I-spikes (promoted by the long inhibition from
the O-cells), together with a low I-E connection strength. In the coronal slice, where
both interneurons present important influences over the E-cell population, the model
LFP exhibits a clear nesting of the gamma and theta rhythm. Notice further that the
gamma envelope (i.e., the amplitude of the gamma oscillation) is governed by the
theta dynamics, which also matches experimental observations.

These observations have been reproduced in a more complex model in which
there are many O- and I-cells, and the E-cell has five compartments, with the O-cell
projecting to the distal dendrites, as in the actual anatomy (Tort et al., 2007). They
also hold in models in which there are a large number of E-cells, and each E-cell
fires at a low rate, while the population frequency is higher (e.g., persistent gamma
for the transverse slice) (Tort et al., 2007).

We note that the present model differs from our previous modeling study of these
phenomena (see Gloveli et al., 2005b). In our previous study, we also changed the
strength of excitatory connections between the distinct slice angles. The main differ-
ence between the simulation results can be seen when comparing the longitudinal
slice models: in Gloveli et al. (2005b) the low excitatory connections and strong
inhibition by the O-cells impose a theta frequency for spikes in both the E- and
I-cells, contrary to the present model. Whether there is such a difference in the fre-
quency of spikes of basket and pyramidal cells between longitudinal and transversal
slices remains to be studied experimentally; the two models make different predic-
tions in this regard.

The simulation results give insight into recent in vivo work by the Monyer group
in which the GABAA receptors were knocked out in cells that are parvalbumin-
positive (PV+), which include the fast-spiking basket cells (I-cells). Thus, in terms
of the current model, the O-I and I-I connections are gone, but the O-cells and all
the connections to them are preserved. The experiments showed that the gamma
oscillation is preserved, but the theta oscillation is much reduced, as is the theta
modulation of the gamma amplitude and frequency (Wulff et al., 2009). Indeed the
latter is reduced beyond what is expected by the reduction of the theta amplitude
(Wulff et al., 2009).

These results can be reproduced in the above networks (see the modeling study
done in Wulff et al., 2009). In the larger E/I/O model with one E-cell, both the O-I
and I-O connections are important for the production of a coherent theta oscillation.
When the O-I connection is removed, the O-cells lose their coherence, as in the O/I
model described above for the completely inhibitory theta rhythm. The theta power
is reduced by the lack of coherence, and the theta modulation of gamma is reduced
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further because the O-cells are no longer able to convey their theta rhythmicity to
the I-cells, the cell type most critical for the gamma oscillation.

We note that the synapses from pyramidal cells to O-LM cells have been shown
to be plastic, especially during the times that the O-LM cells are hyperpolarized
(Oren et al., 2009). Thus, the parameter regimes may be subject to plastic changes.

Gamma/Theta and Cell Assemblies

Since gamma rhythms are associated with cell assemblies, and the O-LM cells
extend across much of the longitudinal direction of the hippocampus, a natural ques-
tion is whether the O-LM cells can help to coordinate the cells assemblies that the
gamma rhythm helps to create. This question was addressed in Tort et al. (2007).
The model used was a collection of modules with many E-, I-, and O-cells, each
module a representation of a transversal slice. Each module has many O-, I-, and
E-cells. The E-cells were multi-compartmental. This is important, since the O-LM
cells project to the distal apical dendrites and the I-cells project more proximally,
an anatomical arrangement that could potentially affect any coordination via the
O-LM cells. The O-cells were connected to E-cells within a module and also, with a
weaker synaptic strength, to E-cells of other modules. The full network had different
anatomies, from nearest neighbor to multiple neighbors to all–all connections of
modules, with or without conduction delays between modules. To test for the ability
of the O-LM cells alone to create this coordination, we omitted any long excitatory
connections. Indeed, we think of the connections from the O-cells to E-cells as hard
wired, while the mutually excitatory connections can be formed plastically when the
cells are part of a cell assembly; thus, the connectivity may change with experience.

The simulations showed that the O-LM cells alone can coordinate cell assem-
blies, and that the same theta rhythm can coordinate different cell assemblies with
different frequencies in the gamma range (Tort et al., 2007; see also Fig. 4). Also,
cell assemblies can be formed with only some of the E-cells in a participating mod-
ule, depending on their level of excitation. As both O- and I-cells were phasically
excited by the E-cells, gamma and theta frequencies move together as the drive to
the pyramidal cells is changed, with a gamma/theta-frequency ratio roughly constant
(Tort et al., 2007). The constancy of this ratio was shown in our models to be related
to the dynamics of the excitation-dominated regime (see section “E-I-O Networks”).

The coordination of cell assemblies promoted by the O-cells was robust to
changes in the conduction delays between modules compatible with the anatomy,
and a little conduction delay actually provided tighter synchrony than none. The
main drive to the E-cells in this model was considered to be derived from EC exci-
tation and was therefore applied to the distal apical dendritic compartment. Interest-
ingly, having the O-E synapse exactly at the same distal location as the E-cell drive
led to higher robustness of the findings than an anatomical configuration having
a perisomatic location of the O-E synapses. Also, the distal location of the drive
to the E-cells makes the formation of inter-module gamma assemblies (promoted
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Fig. 4 O-LM cells can promote the formation of multiple gamma cell assemblies. (a) Multiple
modules network scheme. Each module is composed of E-, I-, and O-cells (connected as in Fig. 3b
top). Connections among modules are made only through O-E synapses, which is made to represent
the larger axonal ramifications in the longitudinal direction of the hippocampus presented by the
O-LM cells (Gloveli et al., 2005b; Tort et al., 2007). (b) Spike rastergram of a network composed
of four modules (each module in the network is composed of 1 E-, 2 O-, and 2 I-cells), showing that
O-LM cells are able to promote gamma synchrony among modules. (c) Same network as above,
but with subsets of two modules excited with different E-cell drive levels. Note the formation of
two gamma assemblies of distinct frequencies. (d) Spike rastergram of a network composed of two
modules, with 40 E-, 5 O-, and 5 I-cells each. The network parameters are set so that each module
exhibits weak PING (i.e., each E-cell spikes randomly and sparsely, below the gamma frequency,
but the E-cell population still exhibits gamma; see also Fig. 1b). The O-LM cells are also able
to promote gamma synchrony among modules under this regime. All parameter values for these
simulations are given in Appendix 4

by the O-cells) more robust to distinct levels of excitation among E-cells. This
robustness is related to the A-current, which is higher at the pyramidal cell den-
drites and flattens the spiking frequency vs. applied drive (F–I) curve. The flatter F–I
curve allows more coordination for the same amount of drive heterogeneity when
compared to the somatic location of the drive currents. The modeling suggests that
this circuit is well organized to coordinate and form gamma cell assemblies from
EC inputs.

Although the use of a multi-compartmental model in the previous study pro-
vided insights about the functional architecture of this microcircuit and its multiple
participating currents, in Fig. 4 we show that the formation of gamma assemblies
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promoted by O-cells is robust enough to hold with simpler models of pyramidal
cells; for instance, all the results in this figure were obtained by using the same E-,
I-, and O-cell models as in the other sections of this chapter.

Conclusions and Future Directions

The model networks described here are very simple approximations of the actual
biological systems. Nevertheless, we believe that their analysis constitutes an impor-
tant attempt to gain further knowledge about the possible biophysical mechanisms
underlying hippocampal oscillations as well as about their potential functions. The
aim is to capture what is essential to produce the rhythms and their interactions.

There are many future directions for the work presented above. The current work
considers the formation of gamma and theta rhythms, their interactions, and their
roles in the formation and coordination of cell assemblies. Challenging questions
that can build upon the current work include how the multiple inputs from the EC,
the septal nucleus, and other structures can be integrated within CA3 and CA1
to produce associations of memories occuring simultaneously and in sequences
(Dragoi and Buzsáki, 2006; Senior et al., 2008; Pastalkova et al., 2008; Itskov
et al., 2008). It is likely that other kinds of interneurons known to fire at different
phases in the theta rhythm (Klausberger et al., 2003) will be important for such
extensions. We believe that an understanding of how the physiology and anatomy of
the cells and circuits give rise to the rhythms of the hippocampus provides central
clues to how the hippocampus makes use of these dynamics in learning and recall.

Appendix 1: Neuronal and Synaptic Models

Pyramidal cells: We use the pyramidal cell model of Olufsen et al. (2003):

C
dV

dt
= gNam∞(V )3h(VNa − V ) + gKn4(VK − V ) + gL (VL − V ) + I (1)

dh

dt
= h∞(V ) − h

τh(V )
(2)

dn

dt
= n∞(V ) − n

τn(V )
(3)

with

x∞(V ) = αx (V )

αx (V ) + βx (V )
for x = m, h, or n (4)

τx (V ) = 1

αx (V ) + βx (V )
for x = h or n (5)

αm(V ) = 0.32(V + 54)

1 − exp(−(V + 54)/4)
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βm(V ) = 0.28(V + 27)

exp((V + 27)/5) − 1

αh(V ) = 0.128 exp(−(V + 50)/18)

βh(V ) = 4

1 + exp(−(V + 27)/5)

αn(V ) = 0.032(V + 52)

1 − exp(−(V + 52)/5)

βn(V ) = 0.5 exp(−(V + 57)/40)

In Eqs. (1), (2), and (3), the letters C , V , t and τ , g, and I denote capacitance
density, voltage, time, conductance density, and current density, respectively. The
units that we use for these quantities are μF/cm2, mV, ms, mS/cm2, and μA/cm2.
For brevity, units will usually be omitted from here on. The parameter values of the
model are C = 1, gNa = 100, gK = 80, gL = 0.1, VNa = 50, VK = −100, and
VL = −67.

This model is a variation on one proposed by Ermentrout and Kopell (1998); the
difference is that in Ermentrout and Kopell (1998), the gating variable h was taken
to be a function of n. The model of Ermentrout and Kopell (1998), in turn, is a
reduction of a model due to Traub and Miles (1991).

Fast-spiking interneurons: For fast-spiking interneurons, we use the Wang and
Buzsáki (1996) model. Equations (1), (2), (3), and (4) are as in the pyramidal cell
model. Equation (5) is replaced by

τx (V ) = 0.2

αx (V ) + βx (V )
for x = h or n (5)

The rate functions αx and βx , x = m, h, and n, are defined as follows:

αm(V ) = 0.1(V + 35)

1 − exp(−(V + 35)/10)

βm(V ) = 4 exp(−(V + 60)/18)

αh(V ) = 0.07 exp(−(V + 58)/20)

βh(V ) = 1

exp(−0.1(V + 28)) + 1

αn(V ) = 0.01(V + 34)

1 − exp(−0.1(V + 34))

βn(V ) = 0.125 exp(−(V + 44)/80)
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The parameter values, using the same units as for the pyramidal cells, are C = 1,
gNa = 35, gK = 9, gL = 0.1, VNa = 55, VK = −90, and VL = −65.

O-LM interneurons: For the oriens lacunosum-moleculare interneurons, we use
the model described in Tort et al. (2007), which is a reduction of the multi-
compartmental model described in Saraga et al. (2003). The current-balance equa-
tion is given by

C
dV

dt
= gNam3h(VNa − V ) + gKn4(VK − V ) + gAab(VA − V )

+ghr (Vh − V ) + gL (VL − V ) + I (6)

with

dx

dt
= x∞(V ) − x

τx (V )
for x = m, h, n, a, b, r (7)

For x = m, n, h, the functions x∞(V ) and τx (V ) are the same as in (4) and (5),
and the rate functions αx and βx are defined as follows:

αm(V ) = −0.1(V + 38)

exp(−(V + 38)/10) − 1

βm(V ) = 4 exp(−(V + 65)/18)

αh(V ) = 0.07 exp(−(V + 63)/20)

βh(V ) = 1

1 + exp(−(V + 33)/10)

αn(V ) = 0.018(V − 25)

1 − exp(−(V − 25)/25)

βn(V ) = 0.0036(V − 35)

exp((V − 35)/12) − 1

For x = a, b, r , we provide the functions x∞(V ) and τx (V ) below:

a∞(V ) = 1

1 + exp(−(V + 14)/16.6)
τa(V ) = 5

b∞(V ) = 1

1 + exp((V + 71)/7.3)
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τb(V ) = 1
0.000009

exp((V −26)/18.5) + 0.014
0.2+exp(−(V +70)/11)

r∞(V ) = 1

1 + exp((V + 84)/10.2)

τr (V ) = 1

exp(−14.59 − 0.086V ) + exp(−1.87 + 0.0701V )

The parameter values are C = 1.3, gL = 0.05, gNa = 30, gK = 23, gA = 16,
gh = 12, VNa = 90, VK = −100 , VA = −90, Vh = −32.9, VL = −70.

Synaptic model: We adopt the synaptic model of Ermentrout and Kopell (1998).3

Each synapse is characterized by a synaptic gating variable s associated with the
presynaptic neuron, with 0 ≤ s ≤ 1. This variable obeys

ds

dt
= ρ(V )

1 − s

τR
− s

τD

where ρ denotes a smoothed Heaviside function:

ρ(V ) = 1 + tanh(V/4)

2

and τR and τD are the rise and decay time constants, respectively. To model the
synaptic input from neuron i to neuron j , we add to the right-hand side of the
equation governing the membrane potential Vj of neuron j a term of the form

gi j si (t)(Vrev − Vj )

where gi j denotes the maximal conductance associated with the synapse, si denotes
the gating variable associated with neuron i , and Vrev denotes the synaptic reversal
potential. For AMPA receptor-mediated synapses, we use τR = 0.1, τD = 3, and
Vrev = 0; for GABAA receptor-mediated synapses, τR = 0.3, τD = 9, and Vrev =
−80, if the synapse originates from a basket cell, and τR = 0.2, τD = 20, and
Vrev = −80, if it originates from an O-LM cell.

3 The models presented in section “Nested Gamma and Theta Rhythms” use the NEURON built-in
function Exp2Syn() for modeling the synaptic gating variable s, which takes as parameters the rise
and decay time constants. This is a double exponential function that is close to, but not identical
with, the function s described here.



Gamma and Theta Rhythms in Biophysical Models of Hippocampal Circuits 449

Appendix 2: Parameter Values in Section “Gamma Rhythms, in
Various Guises”

Here we specify the parameter values used in the simulations of Fig. 1, and briefly
discuss how variations in these values would affect the results. We have also
included with the code the six parameter files which produce the panels of Fig. 1.

Notation: We denote by NE and NI the numbers of E- and I-cells, respectively.
We take the maximal conductance of the synaptic connection from the i th I-cell to
the j th E-cell to be

X IE,i j
ĝIE

pIE NI

with ĝIE ≥ 0, 0 < pIE ≤ 1, and

X IE,i j =
{

1 with probability pIE,

0 with probability 1 − pIE

where pIE NI is the expected number of I-cells from which an E-cell receives synap-
tic input, and ĝIE is the expected value of the maximal total inhibitory conduc-
tance affecting an E-cell. Similar formulas are used for the E→I, I→I, and E→E
synapses. The random variables X IE,i j , XEI,i j , X II,i j , and XEE,i j are assumed to be
independent.

The external drive has deterministic and stochastic components. The determinis-
tic drive (“I ” in Eq. (1) of Appendix 1) is IE,i for the i th E-cell and II,i for the i th
I-cell. The stochastic component of the drive to a cell is modeled by an additional
term on the right-hand side of Eq. (1), of the form −sstoch(t) gstoch V . The gating
variable sstoch decays exponentially with time constant τD,stoch during each time step.
At the end of each time step, sstoch jumps up to 1 with probability Δt fstoch/1000.
This simulates the arrival of external synaptic input pulses. The mean frequency
with which input pulses arrive is fstoch. Even though we measure time in ms, we
measure frequencies in Hz = s−1; this unit, like the others, will usually be omitted
from here on. Different cells in the network receive independent stochastic input
streams. We use subscripts E and I to label the values of gstoch, fstoch, and τD,stoch

for the E- and I-cells, respectively; for instance, the value of gstoch for the E-cells is
gstoch,E.

Numerics: The simulations shown in Fig. 1 were carried out using the midpoint
method with Δt = 0.02. Results obtained with smaller values of Δt were not sig-
nificantly different.

Parameter values common to all panels of Fig. 1: NE = 80 and NI = 20. Since
we scale the excitatory and inhibitory synaptic conductances by NE and NI, respec-
tively, the network size does not affect the results much. Connectivity is all-to-all:
pEE = pEI = pIE = pII = 1. Plots similar to those of Fig. 1 are also obtained
with sparse, random connectivity, provided that each I-cell receives input from
sufficiently many E-cells, and vice versa (Börgers and Kopell, 2003; Golomb and
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Hansel, 2000). The synaptic rise and decay time constants and reversal potentials
are as specified in Appendix 1. Variations in the rise time constants, and in the
decay time constant τD,E of excitation can have effects similar to those of variations
in synaptic strengths (see below). The decay time constant τD,I of inhibition is a
crucial factor in determining the frequency of the rhythms of panels A through C:
the oscillation period depends on it linearly. The reversal potential of the excitatory
synapses, Vrev,E = 0, does not much affect the simulations of Fig. 1. However, if
the reversal potential of inhibitory synapses, Vrev,I = −80, is raised (for instance,
to −65, modeling inhibition that is shunting rather than hyperpolarizing), gamma
frequency rhythms are obtained only if the external drive to the E-cells is lowered,
or the I→E synapses strengthened. There are no E→E synapses in Fig. 1: ĝEE = 0.
Such synapses can raise the number of E-cells participating in each population spike
volley; for instance, with ĝEE = 0.5, no E-cells would be suppressed in Fig. 1a, and
the weak PING rhythm of Fig. 1b would turn into strong PING.

Specific parameter values for the six panels:

Panel A: (strong PING) ĝEI = 0.5, ĝIE = 1.5, ĝII = 0.5, IE,i = 2.5 + 2i/NE for
the i th E-cell (cell number 20+ i in Fig. 1), gstoch,E = 0, II,i = 0, gstoch,I = 0.
All parameters can be varied considerably without losing the PING rhythm.
When ĝEI is raised, the spiking of the E-cells triggers the response of the
I-cells more promptly; as a result, more E-cells are suppressed. In agreement
with analysis (Börgers and Kopell, 2003), the population period T depends
logarithmically on ĝIE (T = 23.4, 29.4, 35.4 for ĝIE = 1.5, 3, 6), and lin-
early on τD,I (T = 23.4, 29.1, 34.6 for τD,I = 9, 12, 15). The external drive
IE must be strong enough to drive the E-cells at an intrinsic frequency (the
frequency that would be obtained in the absence of any synaptic connec-
tions) in or above the gamma range (Börgers and Kopell, 2003). In Fig. 1a,
the intrinsic frequencies of the E-cells vary between 80 Hz (IE = 2.5) and
120 Hz (IE = 4.5). Strong drive to the I-cells abolishes the rhythm. Under
idealized circumstances, there is a sharp threshold value of II above which
the rhythm is lost (Börgers and Kopell, 2005). In a more realistic network,
the threshold is not sharp, but the transition can be fairly rapid (Börgers
et al., 2008). For instance, there is a PING rhythm very similar to that in
Fig. 1a if II,i = 1.5 + i/NI, but for II,i = 2.0 + i/NI, the I-cells spike
largely asynchronously, and the E-cells are suppressed. The PING rhythm
can be protected against the effects of external drive to the I-cells by raising
ĝII (Börgers and Kopell, 2005).

Panel B: (weak PING) Much of the external drive to the E-cells is stochastic in
Fig. 1b: IE,i = 1.25, gstoch,E = 0.1, fstoch,E = 20, τD,stoch,E = 3 (the decay
time constant of AMPA receptor-mediated synapses), all other parameters as
for Fig. 1a. The properties of weak PING rhythms and their parameter depen-
dence require further study. However, as one would expect, the frequency is
a decreasing function of τD,I and ĝIE. It is an increasing function of fstoch,E,
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though the dependence is surprisingly weak. (See Figs. 4 and 6 of Reinker
et al. (2006) for a similar observation.)

Panel C: (strong PING on a weak PING background) IE,i = 3.25 for the first
20 E-cells (cells 21 through 40 in Fig. 1), all other parameters as in panel B.

Panel D: (asynchronous I-cells suppress E-cells) All synaptic inputs to the I-
cells are removed here (ĝEI = ĝII = 0), replaced by strong, brief stochas-
tic input pulses, forcing the I-cells to spike stochastically at approximately
38 Hz (the frequency of the I-cells in panel C): gstoch,I = 0.5, fstoch,I = 38,
τD,stoch,I = 1. All other parameters are as in panel C.

Panel E: (entrainment by a 40-Hz sequence of tight input pulses, in the presence
of a competing 56-Hz sequence of broader pulses) All parameters as in panel
A, except IE,i = 4 sin8(40π t/1,000) + 4 sin2(56π t/1,000).

Panel F: All parameters as in panel E, except ĝIE = 0.

Appendix 3: Parameter Values in Section “Theta Rhythms”

Below we describe the protocol used to construct spike-time response curves
(STRCs) and spike-time difference maps (STDMs). We also specify the parameter
values used in Fig. 2.

The dynamical models of cells and synapses are given in Appendix 1. To con-
struct a phase response curve, two cells (referred to as presynaptic cell and postsy-
naptic cell, respectively) were connected by a synapse. The synaptic conductance
is denoted by gXY, where X is the presynaptic and Y is the postsynaptic cell. The
period of each postsynaptic cell was set to approximately 150 ms by using the corre-
sponding value of the DC current (Iapp = 0.137 for pyramidal cells, Iapp = 0.185 for
fast-spiking interneurons, and Iapp = −4.70 for O-LM interneurons). Presynaptic
cells were set not to spike using appropriate DC currents. The postsynaptic cell
was run for three full periods to make the values of gating variables close to those
on the limit cycle. At that, the dynamical models of pyramidal cells and fast-spiking
interneurons approach their limit cycles well enough regardless of initial conditions.
The initial values of gating variables for the Saraga O-LM cell model, which con-
tains slow currents such as h-current and A-current, were as follows: V = −75.61,
m = 0.0122, n = 0.07561, h = 0.9152, r = 0.06123, a = 0.0229, b = 0.2843.

At time t , the presynaptic cell was given a short (3 ms) DC current pulse to trigger
exactly one spike, and the effect of this spike on the spike time of the postsynaptic
cell was measured (we define the time of the spike as the midpoint between the two
time points at which the membrane potential crosses the +10 mV threshold). Denote
by t0 and t2 the spike times of the postsynaptic cell in two consecutive periods and
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assume that the presynaptic cell spikes at time t1 (t0 < t1 < t2). Note that the
presynaptic cell spikes shortly after, but not at the same time as the DC pulse arrives,
i.e., t1 > t . We define the spike-time response function as f (Δ) = t2 − t0 −T , where
Δ = t1 − t0 and T = 150 ms. This procedure was repeated for different values of t
with the time increment of 1 ms and yielded the values of f (Δ) on a uniform grid
of Δ (0 < Δ < T ). Additionally, we define f (0) = f (T ) = 0.

The synaptic conductances used in Fig. 2c were gO O = 0.09, gI O = 0.30,
gO I = 0.002, and gO E = 0.002. Spike time difference maps in Fig. 2d were
constructed as explained in section “Theta Rhythms” using linear interpolation of
STRCs shown in Fig. 2c. To construct PING-to-O STRCs (Fig. 2e), we created a
PING network by connecting one pyramidal cell (E) and one fast-spiking interneu-
ron (I); the synaptic conductances were gIE = 0.4, gEI = 0.2, and gII = 0.3, where
gII is an autapse. At that, a short DC current pulse to the E-cell triggered exactly one
spike and, through synaptic excitation, exactly one spike of the I-cell. The effect
of the combined excitatory and inhibitory inputs to the O-cell was measured by
the function fEI,O (Δ) shown in Fig. 2e. The PING module was connected to an
O-cell by using gI O = 0.2 and three levels of excitatory conductance: gE O = 0.04,
gE O = 0.08, and gE O = 0.14 (solid, dot-dashed, and dotted traces in Fig. 2e).
STDMs in Fig. 2f were constructed by using the corresponding STRCs from Figs. 2c
and 2e.

Appendix 4: Parameter Values in Section “Nested Gamma
and Theta Rhythms”

Here we specify the parameter values used in the simulations of Figs. 3 and 4.
All these simulations were performed using the software NEURON (Hines and
Carnevale, 1997), which is available for free download.4

Notation: We denote by NE, NI, and NO the numbers of E-, I-, and O-cells inside
a module, respectively. The maximal conductance of the synaptic connection from
the cell type X to cell type Y is given by5

G XY = ĝXY

NX
, X, Y = O, I, E .

We denote by IX the drive current to cell type X (X = O, I, E). Below we report
the values employed for ĝXY and IX in each figure, panel by panel. Any parameter
not explicitly specified has value equal to zero.

4 http://www.neuron.yale.edu/neuron/ and http://neuron.duke.edu/
5 Note that the normalization is only made for the number of cells within one module, and, in
particular, it does not take into consideration the number of modules in the network.
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Figure 3:

Panel A: Top panel: ĝII = 0.1, ĝO I = 0.2, ĝI O = 0.5, II = 1, IO = −3. In the
bottom panel, ĝO I was set to zero.

Panel B: Top panel: ĝII = 0.1, ĝO I = 0.2, ĝI O = 0.5, ĝIE = 0.1, ĝO E = 0.15,
ĝEI = 0.05, ĝE O = 0.01, IE = 0.8, II = 0.8, IO = −3. In the bottom panel,
ĝO I was set to zero.

Panel C: Left panel: ĝII = 0.13, ĝO I = 0.03, ĝI O = 0.7, ĝIE = 0.15, ĝO E =
0.03, ĝEI = 0.05, ĝE O = 0.01, IE = 0.8, II = 0.8, IO = −3. Middle panel:
ĝII = 0.1, ĝO I = 0.15, ĝI O = 0.5, ĝIE = 0.08, ĝO E = 0.15, ĝEI = 0.05,
ĝE O = 0.01, IE = 0.8, II = 0.8, IO = −3. Right panel: ĝII = 0.05,
ĝO I = 0.3, ĝI O = 0.2, ĝIE = 0.02, ĝO E = 0.3, ĝEI = 0.05, ĝE O = 0.01,
IE = 0.8, II = 0.8, IO = −3.

Figure 4:

Panel B: ĝII = 0.1, ĝO I = 0.2, ĝI O = 0.5, ĝIE = 0.1, ĝO E = 0.1, ĝEI = 0.1,
ĝE O = 0.01, IE = 1.3 (all modules), II = 0.8, IO = −1. We set ĝO E = 0.08
among modules, with a 3-ms conduction delay among modules.

Panel C: Same parameters as in Panel B, except that Modules 1 and 2 had
IE = 1.4, whereas IE = 2 in Modules 3 and 4.

Panel D: ĝII = 0.1, ĝO I = 0.2, ĝI O = 0.5, ĝIE = 0.1, ĝO E = 0.6, ĝEI = 0.2,
ĝE O = 0.05, IE = 0.5 + W (all modules), where W is a white noise process
with Var = 0.02, II = 1, IO = −2. We set ĝO E = 0.06 among modules,
with a 3-ms conduction delay among modules.
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