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In the CNS, activity of individual neurons has a small but quantifiable relationship to sensory representations
andmotor outputs. Coactivation of a few 10s to 100s of neurons can code sensory inputs and behavioral task
performance within psychophysical limits. However, in a sea of sensory inputs and demand for complex
motor outputs how is the activity of such small subpopulations of neurons organized? Two theories dominate
in this respect: increases in spike rate (rate coding) and sharpening of the coincidence of spiking in active
neurons (temporal coding). Both have computational advantages and are far from mutually exclusive.
Here, we review evidence for a bias in neuronal circuits toward temporal coding and the coexistence of
rate and temporal coding during population rhythm generation. The coincident expression of multiple types
of gamma rhythm in sensory cortex suggests a mechanistic substrate for combining rate and temporal
codes on the basis of stimulus strength.
In determining how the brain codes for sensory inputs and motor

outputs two types of measurement dominate the literature: the

outputs (action potentials or units) of identified neurons or

groups thereof and the local mean synaptic inputs (local-, far-

or extracranial field potentials). Patterns observed in either

measurement are clearly related; being dependent on the

computational processes occurring in compartments of indi-

vidual neurons and distributed networks. However, which, if

any, of the patterns of activity observed in either type of mea-

surement correspond to psychophysical performance in an

organism remains open to a great deal of debate. This review

attempts to put forward a synergistic view whereby the interrela-

tionship between rates of neuronal output are considered with

respect to the frequencies and types of synaptic input in

neocortex. We first consider whether the behavior of individual

neocortical neurons may relate to cognitive and/or motor perfor-

mance, arguing that the interconnectedness of neurons strongly

favors population coding. Working from this argument we then

consider how many neuron’s outputs may constitute such a

population code, what brings the population together, what

features of the population’s inputs and outputs aremost psycho-

physically salient, and finally how this relates to patterns of short

and long term plasticity in cortex.

Is a Neuronal Network a Valid Functional Entity?
Individual neurons make a quantifiable contribution to the func-

tion of simple nervous systems (e.g., McAllister et al., 1983).

But when a nervous system consists of not ca. 102 neurons

but 1011 neurons, as in man, do individual neurons still matter?

It is well recognized that single neuron spiking contributes to

the code for specific orientations of features in specific regions
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of the visual field (Hubel and Wiesel, 1959). Similarly, discrete

spectrotemporal properties of auditory sensory presentations

can be seen to be represented by the spiking of individual

cortical neurons (Fritz et al., 2003; Figure 1). Single neurons

may also be seen to code for higher-order sensory object

properties on occasion (e.g., Logothetis et al., 1995; Quiroga

et al., 2005), and spike outputs from single neurons may influ-

ence the motor act of whisking in rodents (Brecht et al., 2004;

Figure 1).

However, individual neurons in the cortex are densely intercon-

nected, both locally and distally, with a disparate population of

other neuronal subtypes. In addition, single-modality sensory

objects have many features that need to be coded together,

and motor outputs are often extremely complex. It is also rare

for just one neuron to be activated by a single stimulus or stimulus

property (see Braitenberg, 1978; Abeles, 1988; Duret et al., 2006)

but far more common that neurons may respond to multiple

events in a sensory task (Vaadia et al., 1995). In addition, many

sensory inputs present multimodally and thus require the activa-

tion of numerous, spatially separate cortical regions (Singer,

2010). Thus, despite demonstrations of a clear role for individual

neurons, the evidence for multiple neuronal involvement in sen-

sory processing and motor activity has led to the suggestion

that population coding is ‘‘inevitable’’ (Sakurai, 1998).

The Size and Nature of a Population Code
If the output of a single neuron alone is rarely, if ever, sufficient

to generate a useful representation of sensory input or motor

output, then howmany neurons are needed? In studies focusing

on synaptic inputs to cerebellar granule cells during vestibular

stimulation a highly precise relationship between individual
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Figure 1. Contribution of Single Neurons to Sensory Input Coding
and Motor Output Generation
(A) Individual primary auditory cortex neurons respond to complex sounds
varying in time and frequency. Specific components of presented auditory
stimuli are reflected in the spectrotemporal response field (STRF) of each
neuron. The STRF shown was estimated by cross-correlation of the spectro-
gram of the reference stimuli delivered (temporally orthogonal ripple combi-
nations (TORCs) with the post-stimulus time histogram of the neurons unit
activity (PSTH). In this study the authors used behavioral reward to show that
neuronal STRFs could be tuned to pure tone target stimuli (adapted from Fritz
et al., 2003).
(B) Single layer 5 neuron outputs in motor cortex can induce whisker move-
ment in rat. (i) The neuron shown was stimulated to generate 10 action
potentials at 50 Hz and induced the phasic pattern of movement only in
whisker D1 shown in (ii). Note the two trials illustrated (black and blue lines)
produced movements in phase. (iii) Average of 15 trials showing the well
conserved motor pattern induced by the single cell. Figure reproduced from
Brecht et al. (2004).
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Figure 2. Small Populations of Active Neurons Are Sufficient to
Accurately Represent Sensory Input
(A) ca.100 neurons can convey velocity information about horizontal head
movement at the mossy fiber-granule cell (MF-GC) synapse in cerebellum. (i)
The horizontal stimulus used to drive vestibular inputs. (ii) EPSC frequency in
a single granule cell correlates linearly with velocity and direction ofmovement.
(iii) Bayesian reconstruction algorithm results estimating the accuracy of
motion representation by MF-GC EPSCs. Note the reliability (i.e., decreased
standard deviation of the movement error) and accuracy (decreased mean
error) increased dramatically to within psychophysical limits (4�–8�/s) as the
number of synapses considered increased from just a few to ca. 100. (Adapted
from Arenz et al., 2008).
(B) Stimulation of a few 100 channelrhodopsin expressing neurons in
somatosensory cortex can accurately induce a learned behavior (reward
seeking). (i) In Huber et al. (2008) mice initiated a behavioral trial by activating
the central port. If cortical neurons were activated by photostimulation the
mouse was rewarded if it chose the left port (hit, green star). If no stimulation
was given the mouse was rewarded if it chose the right port (reject, green
circle). (ii) Example session data for a single photostimulus present (blue dot) or
absent. Each block of responses shows 20 trials at the light intensity shown on
the left. Reproduced from Huber et al. (2008).
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neuron input and the vector of associated movement was seen

(Arenz et al., 2008). These authors estimated that as few as

100 synapses were needed to provide a resolution of sensory

input approaching psychophysical limits (Figure 2). The authors’

own caveat to this work is that the cerebellar granule cell used in

this study is a simple neuron with only a few, well-defined inputs.

More complex cortical neurons with large dendritic arbors
may require the integration of far more inputs. However, using

precisely targeted photostimulation of such complex neurons

in superficial somatosensory cortex in mice a similar magnitude
Neuron 75, August 23, 2012 ª2012 Elsevier Inc. 573
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of neuronal involvement correlated with a measure of psycho-

physical salience (Huber et al., 2008; Figure 2). Following

training, a correct behavioral response could be detected in

mice with single action potentials being generated in as few as

300 neurons. This size of active population fell even further if

individual neurons were stimulated to generate short trains of

multiple action potentials (see below).

From an anatomical perspective, assuming interconnectivity

is required between cofunctioning neurons, evidence points to

neuronal populations being highly distributed entities. Despite

the tens of thousands of synapses on individual cortical principal

cells, very few come from local excitatory neurons. Estimates

for connectivity rates in pairs of principal cells within cortical

regions range from ca. 1:25 to 1:400 (Deuchars and Thomson,

1996; Andersen, 1995). Thus, for every 1,000 neurons, each

one is likely to receive connections from approximately 2–40 of

its neighbors. Low specific connectivity rates also appear

when considering longer range interactions. In primary sensory

areas, only ca. 5% of synapses arise from ascending inputs

(Peters and Payne, 1993), with similar proportions for inputs

from other distal cortical regions (Anderson et al., 1998; Budd,

1998). Estimates of interconnectivity suggest a ‘‘chorus’’ of ca.

20–30 different anatomical origins for inputs to a single cortical

region (Scannell and Young, 1999; Young, 2000). Efficacy of

single excitatory synapses onto principal cells is also weak in

most cases. Measures range from ca.1 mV down to 0.1 mV

(Holmgren et al., 2003; Williams and Atkinson, 2007) at rest in

most principal cells, and become even less in the presence of

neuromodulators associated with the wake, attentive state

(e.g., Levy et al., 2006).

These properties of neuronal connectivity allow us to suggest

a lower bound on the size of cell assemblies. Assuming linear

heterosynaptic summation of inputs coincident within a few

milliseconds (but see below), a single downstream target

neuron could be made generate an output from a synchronous,

upstream assembly consisting of a few 10 s to 100 s of member

neurons depending on membrane potential and conductance

state—a figure that fits well with the functional studies described

above. Therefore, for a general estimate of assembly size

these data suggest a spatially distributed population of order

no less than 101–102 neurons, as also suggested for local

assembly formation during gamma rhythms (Börgers et al.,

2012). However, principal neuronsmay also influence each other

indirectly via activation of inhibitory interneurons and gap junc-

tion-mediated electrical synapses (Hormuzdi et al., 2001)—

both predominantly local phenomena. Neighboring neurons

appear to share many of their coding properties (Smith and

Häusser, 2010), and local inhibition and gap junctional commu-

nication are both capable of organizing spike outputs in time

(Pouille and Scanziani, 2001; Traub et al., 2003). Thus many

different ‘‘copies’’ of distributed, excitatory functional popula-

tions may concurrently arise from activation of a single primary

sensory area without the existence of any direct Hebbian excit-

atory connectivity between their member neurons.

What Brings a Population Together?
The predominant feature of population coding is that member

neurons must act together in time. This is considered for the
574 Neuron 75, August 23, 2012 ª2012 Elsevier Inc.
most part to mean neurons generate outputs synchronously

(Eckhorn et al., 1988; Gray and Singer, 1989; Deppisch et al.,

1994). Thus, a coactive neuronal population—an assembly of

neurons—exists in both time (the relative temporal relationship

between outputs frommember neurons) and space (the physical

location of the member neurons). First we consider these

features separately.

In response to sensory input the incidence of near-synchro-

nous spike generation among multiple neurons is very common

and may even be the defining feature of the cortical representa-

tion of information received (Engel et al., 2001; Freiwald et al.,

2001). This is, at first glance, surprising, since individual spike

times in cortical neurons are highly variable (Softky and Koch,

1993; Shadlen and Newsome, 1994, 1995), a property proposed

to be related to the relative distributions, in time, of near-random

patterns of many thousands of inhibitory and excitatory inputs.

In this scheme, each neuron effectively generates an output in

the rare instances when excitation is not balanced by inhibition,

a phenomenon analogous to statistical coincidence detection

at a single-neuron level (Softky, 1995). Within such a scheme

the probability of many multiple neurons generating outputs

synchronously is extremely low. Nevertheless, such coinci-

dences in spike generation are seen to some extent even in

cortex in the absence of salient stimulus presentation (Arieli

et al., 1995). It should also be noted that the fact that oscillations

are observable at all with macroscopic electrodes in extracranial

recordings indicates a high degree of synchrony over at least

several centimeters in neocortex is commonplace. Thus, some

mechanism is needed to produce this near-synchrony.

How precise does this synchrony have to be to be functionally

meaningful? The processes underlying assembly formation in

time appear highly non-stationary, with significant synchroniza-

tion among populations of neurons often observed over only

short epochs (e.g., Riehle et al., 2000), often iteratively on time-

scales corresponding to the gamma-theta EEG period range

(20–200 ms (Singer and Gray, 1995; Harris et al., 2003; Figure 3).

Even within such epochs, the degree of synchronization (align-

ment of spike times in multiple neurons making up the assembly

of neurons) can be time variable, so it is important to consider

just howmuch ‘‘jitter’’ in relative timing of spikes can be tolerated

and still be able to consider assembly member neurons to be

‘‘acting together.’’ If cortical neurons are fed inputs modeled

upon the faster components of postsynaptic events, they can

generate spikes with precision in the order of one millisecond

or less (Mainen and Sejnowski, 1995). Ascending cortical inputs

have been shown to be most efficient in generating cortical

responses when presented on a timescale of ca. 5 ms for both

visual (Wang, 2010) and auditory (Kayser et al., 2010) modalities.

This order of temporal precision fits very well with synaptic

biophysical properties relevant to intercommunication between

cell assembly member neurons and their targets.

A further complication when considering what constitutes an

assembly is that their identity, in terms of neurons involved and

their spatial location, is often seen to evolve over time following

stimulus (Beggs and Plenz, 2003). Avalanches of neuronal

activity arise as a consequence of propagating local synchrony

(Plenz and Thiagarajan, 2007). Taking all these factors into

account, it is clear that an assembly (a functional neuronal
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Figure 3. Small Populations of Active Neurons (Assemblies) Are
Temporally Organized
(A) Raster plot of 25 extracellular spikes active over 1 s of field potential theta
rhythm accompanying spatial exploration in hippocampus of the awake
behaving rat. Vertical lines are referenced to the peak negativity of the theta
field. Aligned with these periods of the on-going theta rhythm are repeatedly
synchronous epochs of spike generation (circled). Color coding represents the
spatial location of each raster (recording electrode number).
(B) Graph of enhancement of predictability of spike timing with peer activity
over location alone versus relative time between spikes. The data show a very
strong relationship between synchronous spike generation (assembly forma-
tion) and the period of the gamma rhythm (30–80 Hz). Figure adapted and
reproduced with permission from Harris et al. (2003).
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population) can be transient, highly spatiotemporally dynamic

entities, very difficult to experimentally characterize but never-

theless of immense computational potential.

Population Coding through Rate and Synchrony?
The original concept of a neuronal assembly comes from Hebb’s

seminal work (Hebb, 1949) in which he proposes cooperative

activity within networks of interconnected neurons—essentially

a population code for cortical function. Since then many variants

have emerged, but most converge on a definition of the form:

a set of neurons in a population that act together to perform

a specific computational task (Palm, 1990; Eichenbaum, 1993).

There is much discussion over whether rate coding or tem-

poral coding is used to represent sensory objects in populations

of neurons in cortex. Experimental evidence for changes in firing

rate only on change of perceptual state (e.g., Roelfsema et al.,

2004; Lamme and Spekreijse, 1998) are as compelling as those

which show changes in synchrony in the absence of firing rate

changes (Fries et al., 1997; Engel et al., 2001; Womelsdorf

et al., 2006). Inmost experiments, changes in both rate and spike

correlations are observed concurrently (e.g., Biederlack et al.,

2006), leading to the suggestion that rate changes in single

neurons code for the discrete properties of a stimulus, whereas

temporal code tags relatedness of each neuron’s change in firing

rate to form a broader percept (Singer, 2010). A number of

reports suggest that asmuch as 90%of information in a stimulus
may be held in the rate code of active neurons (Aggelopoulos

et al., 2005), while others suggest synchrony is key (deCharms

and Merzenich, 1996).

Both rate and temporal codes are eminently capable of gener-

ating transient synchronous population events but do so in

different ways. In superficial neocortex, gamma rhythms accom-

pany sparse firing of individual principal cells (Cunningham et al.,

2004). Somatic spike rates with modal zero values are common

but assembly formation is still possible (Figure 6A). While sparse

codes can generate assemblies by chance (see Shadlen and

Movshon, 1999), the rate of coincident spike generation is far

above this. The reason is simply that each principal cell, whether

directly connected or not, shares a common pattern of phasic

somatic inhibition (Whittington et al., 1995), limiting peak proba-

bility of spike generation towindows only a fewmillisecondswide

on every period of the underlying local population rhythm

(Olufsen et al., 2003). Thus, while numbers of coactive neurons

in a population are low, their temporal precision in very high (Fig-

ure 6C). In contrast, bursts of high spike rates in multiple neurons

concurrently can also generate assemblies (Figure 6B), but in this

case temporal precision is low and numbers of coactive neurons

high (a function of mean population rate). Interspike intervals

between peers approximate to a broad gamma function

(Figure 6D) and one is left with the problems of quantifying just

howprecise the relative timing of spikes has to be to imply coding

and deciding whether spikes lying outside this limit of precision

are simply ‘‘wasted’’ or also subserve some coding function.

Between the above extremes of relationship between spike

rate and synchrony, there is clearly a great deal of overlap

between the rate and temporal coding schemes when consid-

ering temporal codes dictated by cortical rhythms. Synergy

may also be evident. Near-synchronous generation of single

action potentials in ca. 300 neurons in cortex produced behav-

ioral responses equivalent to brief trains of 5 action potentials

in only 60 neurons (Huber et al., 2008). In addition, population

outputs organized by different frequencies of oscillation code

for different visual feature scales in sensory objects (Smith

et al., 2006) hand in hand with activation of rate changes in

spatial frequency-selective neurons in visual cortex (De Valois

et al., 1982). Action potential outputs at different frequencies

(spike rates) imply time-varying phase relationships between

coactive neurons (Markowitz et al., 2008) and seemingly uncor-

related spike pairs (over timescales associated with synchrony)

can arise from robust rhythmic population activity at multiple,

coexistent frequencies (Roopun et al., 2008). An interesting

suggestion from a combination of spike rate and synchrony

approaches has been proposed by Silberberg et al. (2004). Anal-

ysis of population activity when neurons are seen to output

a range of different spike rates (distributed rate encoding) impli-

cated ‘‘instantaneous population rate’’ as a coding strategy. In

this case, it is the number of neurons generating spikes in a given

time window that underlies a cortical code. With more and more

brief time windows, this converges on a quantitative definition of

transient neuronal assembly.

Synaptic Limitations to Assembly Formation
To attempt to address whether assemblies generated by rate or

temporal codes differ in their implications for cortical function
Neuron 75, August 23, 2012 ª2012 Elsevier Inc. 575
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Figure 4. Short-Term Excitatory Synaptic
Plasticity Favors Downstream Effects of
a Population Temporal Code over Single
Neuronal Spike Rate Code
(A) Supralinear summations of synchronous
EPSPs. Cartoon illustrating a situation where
two cortical neurons in assembly generate syn-
chronous outputs converging on a single target
neuron. Middle panel shows example data in
which two EPSPs are received simultaneously
from such synchronously active neuron pairs. The
two individual EPSPs are shown as the black
traces (with single presynaptic neuron activation).
The algebraic sum of these two inputs to the target
cell (assuming no interaction) is illustrated as the
blue trace. Note, however, that the actual post-
synaptic response from synchronous discharges
in the presynaptic neurons is considerably larger
than this predicted value (red trace). The right
panel shows the dependence of supralinear
summation on degree of presynaptic neuronal
synchrony. The amplitude of the response to
paired inputs is represented as the ratio between
actual response observed and the predicted
algebraic sum of the two individual responses
(filled squares). Note the amplification of the
postsynaptic response is maximal when spike
generation is <5 ms time separated. This property
of synchrony is dependent on postsynaptic
intrinsic conductances, as shown by its near
absence in QX314-loaded target neurons (open
squares). Data reproduced, with permission, from
Nettleton and Spain (2000).

(B) EPSPs generated by spike trains show frequency-dependent depression. In contrast to the amplification of near-synchronous EPSP from different neurons
(A), driving a single presynaptic neuron to generate EPSP trains with interspike intervals corresponding to short heterosynaptic EPSP intervals results in synaptic
depression. The left panel shows a cartoon of the situation being considered. The EPSP traces show 5 overlaid target neuron events when a single presynaptic
neuron generates a single spike, or two spikes with intervals ranging from 10 ms to 40 ms. The right panel shows the pooled data from 22 paired recordings from
layer 5 pyramidal cells in which the presynaptic neuron was stimulated to generate two spikes with intervals ranging from 5 to 55 ms. Note the overt, near-linear
depression of the postsynaptic response to the second spike with decreasing ISI (interstimulus interval). Data reproduced, with permission, from Thomson (1997).
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one has to consider their consequences for synaptic activity—

the primarymode of transmission of information from one neuron

to another. For example, is presentation of a number of spikes

synchronously from multiple presynaptic neurons (a temporally

coded pattern) as effective as an equal number of spikes from

a single presynaptic source (a rate coded pattern)?

Two biophysical phenomena controlling synaptic efficacy are

pertinent to this issue. First, the high degree of possible temporal

precision seen during oscillations for neurons in vivo (Gray and

Singer, 1989) and more reduced approaches (Mainen and

Sejnowski, 1995) brings temporally coordinated inputs from

multiple sources into the window in which supralinear summa-

tion of excitatory postsynaptic potentials (EPSPs) can occur.

Multiple excitatory inputs onto principal cells can generate

a postsynaptic response that ismuch greater than their algebraic

sum (Nettleton and Spain, 2000; Fujisawa et al., 2008; Figure 4A).

Spike timing precision between coactive peers needs to be ca.

<5 ms—as seen in ascending inputs in both visual and auditory

streams (Wang, 2010; Kayser et al., 2010). This timescale is

partly related to active dendritic spiking (Losonczy and Magee,

2006) under control of potassium conductance (Nettleton and

Spain, 2000; Goldberg et al., 2003).

Second, for single-neuron inputs, rate codes are at the mercy

of short-term synaptic plasticity. Synaptic depression at excit-

atory neuron to excitatory neuron synapses predominates

(e.g., Thomson, 1997; Thomson and Bannister, 1999; Thomson
576 Neuron 75, August 23, 2012 ª2012 Elsevier Inc.
et al., 2002; Williams and Atkinson, 2007; Figure 3B). The

phenomenon is robust and involves both pre- and postsynaptic

mechanisms such as sodium channel inactivation in intensely

activated axons (e.g., Debanne, 2004), and release probability

changes (Tsodyks and Markram, 1997). Depression of multiple

postsynaptic responses from a single neuron is more evident

for shorter interspike intervals, thus higher rates of spiking in

a presynaptic neuron will have increasingly less of an effect on

the postsynaptic neuron as the train progresses (Figure 4B).

This phenomenon is not apparent for the first spike in a train

though, perhaps in part explaining the observation that the

first sensory-induced spike in a rate increase carries most infor-

mation in vivo (Chase and Young, 2007; Panzeri et al., 2001).

Synaptic depression is therefore a seemingly potent limitation

on the time-window in which an increase in spike rate may carry

information. However, transient, instantaneous increases in

spike rates in a population (defined as the number of spikes in

the population over a small time epoch) can reliably generate

strong postsynaptic signals (Silberberg et al., 2004). On a larger

scale, rapid transitions in EEG state have been proposed to

flag cortical computation (Fingelkurts, 2010).

From the above, it appears that while increases in spike rate,

in the absence of an overt temporal code, in many neurons in

a population can readily generate assemblies (e.g., Figure 6B)

the influence of assembly activity on target and peer neurons

is time limited. Influence is maximal only in the first 5–10 ms of
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rate increase. However, responses to sensory input outlast

discrete stimuli by many 100s of ms (Altmann et al., 1986;

Metherate and Cruikshank, 1999) to several seconds during

short term memory tasks (Tallon Baudry et al., 1998). These

longer responses are often accompanied by a clear signature

of temporal coding, such as the gamma rhythm, whose basis

in synaptic inhibition serves to time-limit postsynaptic effects

of all but precisely timed concurrent inputs (e.g., Burchell et al.,

1998). It is possible then to suggest that instantaneous changes

in spike rates may dominate the cortical population code

immediately on stimulus presentation, but that more persistent,

iterative assembly formation via temporal, oscillation coding

dominates thereafter. However, this does not per se rule out

interaction between rate and temporal codes as sensory inputs

often phase reset ongoing gamma rhythms. Thus, the initial

spikes in a response to cortical input may already be part of

a gamma-synchronized response (Fries et al., 2001).

Gamma Rhythm Heterogeneity Provides Multiple
Temporal Structures for Assembly Generation
While a pure rate code may be feasible as means to provide an

initial cortical representation of sensory stimuli, one cannot rule

out an interaction with gamma rhythms as a temporal code

here either. Many different modes of gamma rhythm generation

can be experimentally induced (Whittington et al., 2011), but

none of the known manifestations truly behave as a ‘‘clock’’ for

principal cell spike timing. Principal cell inputs to interneurons

are vital to drive the observed rhythm and changes in principal

cell spike behavior can alter the gamma rhythm on a period by

period basis (Whittington et al., 1995). The main differences lie

in the way fast spiking interneurons are recruited into the popu-

lation rhythm by principal cells—they can be recruited by tonic

excitation through glutamate overspill at synapses activating

metabotropic receptors, convergence onto excitatory synapses

on interneurons of ectopic action potentials generated in prin-

cipal cell axons, or conventional somatic spike generation.

Persistent, highly frequency-inert gamma rhythms associate

with sparse somatic spiking (Miller, 1996) in superficial neo-

cortex. Gamma rhythms can also be generated in hippocampus

that are associated with high spike rates in individual neurons (an

order of magnitude greater than in persistent gamma rhythms)

and are considerably more frequency—and thus spike rate—

variable (Whittington et al., 1997). In neocortex, spike rates are

closely related to gamma rhythm generation (in conjunction

with slower changes in membrane potential (Mazzoni et al.,

2010), with gamma rhythms being the single most important

determinant of spike-density function (Rasch et al., 2008). But

many in vivo studies show sensory-induced spike rate changes

that peak at mean rates way above the classical gamma band

frequency (e.g., Zinke et al., 2006). If it is assumed that spike

timing is precisely determined by the trains of GABAergic inhibi-

tion that are the signature of population gamma rhythms, then

how is this possible? One explanation for these data is that there

are at least two gamma rhythm generators in neocortex.

First, a persistent rhythm provides relatively rigid temporal

structure despite low principal cell spike rates and low popula-

tion gamma frequencies (ca. 40 Hz). Such a rhythm has been

documented in superficial layers of primary sensory and associ-
ation cortices (Cunningham et al., 2004; Ainsworth et al., 2011;

Figure 5), where spike rates favor sparse coding (Wolfe et al.,

2010). Such a scheme is particularly evident in local representa-

tions of sensory stimuli (Ohiorhenuan et al., 2010) where input

increases quiescence but also increases temporally brief

periods of common (population) activity. This sparseness has

been proposed to be due to increases in surround inhibition

(Haider et al., 2010), which is, in turn, related to the magnitude

of observed gamma rhythm (Bartolo et al., 2011).

Second, a more frequency labile rhythm associated with large

increases in principal cell spike rates on stimulation is seen

(Uhlhaas et al., 2010). Using in vitro models of cortical activation,

such a rhythm can be seen to coexist with the persistent rhythm

described above, but with different laminar origins in primary

sensory cortex (Figure 5). Low levels of excitation to primary

auditory cortex generate a ca. 40 Hz gamma rhythm in layers

2/3. In this situation, layer 2/3 regular spiking (RS) neuron

somatic outputs are sparse—in the order of a few Hz. In layer

4 somatic spiking is absent or also sparse, with membrane

potential of stellate cells dominated by large-amplitude inhibitory

postsynaptic potentials (IPSPs) at the superficial layer gamma

frequency. However, if cortical excitation is increased an

additional spectral peak, arising from layer 4, is seen in field

potential data corresponding to the high gamma band (50–

90 Hz; Figure 5). This granular layer gamma rhythm is associated

with high principal cell spike rates and is locally variable in

frequency of both the population field potential and individual

neuronal action potential rates.

Similarly, frequency separated gamma generators are

observed in entorhinal cortex and hippocampus (Colgin et al.,

2009) and have been shown to correspond to different local

circuits with differing laminar involvement of interneurons (Mid-

dleton et al., 2008). Both the neocortical rhythms described

above are also inhibition based, being critically dependent on

activation of GABAA receptor-mediated synaptic inhibition.

However, the faster, more frequency-labile layer 4 gamma

rhythmwas significantly less dependent on phasic synaptic exci-

tation and more on recurrent excitation via NR2C/D-containing

NMDA receptors preferentially located on layer 4 principal cells

(Binshtok et al., 2006; Ainsworth et al., 2011). Examining indi-

vidual neuronal synaptic inputs and spike outputs also pointed

to different local circuit processes. While principal cells in layers

2/3 spiked sparsely during the mixed gamma rhythm, they

received robust synaptic inputs dominated by trains of IPSPs

at the low gamma frequency (Ainsworth et al., 2011). The

mismatch between somatic spike rates and intensity of phasic

drive to interneurons is explained by ectopic action potential

generation and propagation through gap-junction-coupled

axons—a fundamental mechanism underlying persistent, low

frequency gamma rhythms (Traub et al., 2000). Thus, the layer

2/3 low gamma rhythm resembled the persistent form of

gamma driven by increased axonal action potential rates

induced by kainate (Juuri et al., 2010), being gap junction and

phasic excitation dependent. A separation of function for high

and low gamma bands such as these has been precedented

for a number of sensory modalities and cognitive tasks (Vidal

et al., 2006; Wyart and Tallon Baudry, 2008; Kaiser et al., 2008;

Herrmann et al., 2010).
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Figure 5. Two Mechanistically and
Frequency-Distinct Gamma Rhythms
Coexist in Primary Auditory Cortex
(A) Pooled power spectrum (n = 5) of field potential
activity recorded from upper layer 4 primary
auditory cortex in the presence of 0.8 mM kainate
in vitro (Ainsworth et al., 2011). Below is a 0.5 s
example of raw data. The two modal peak
frequencies within the gamma band were distrib-
uted in a lamina-specific manner. Plotting mean
power at peak frequency (colormap, dB above
mean spectral power) against electrode laminar
location and mean peak frequency shows both
the layer 4 location of the high gamma rhythm
and the broader frequency range compared with
the layer 2/3 gamma rhythm.
(B) Example intracellular somatic recordings from
layer 2/3 and layer 4 fast spiking interneurons (FS)
and regular spiking principal cells (RS) during low
or high gamma generation. Upper traces show
0.5 s examples of spiking in each cell type in layers
2/3 and the profile of EPSPs (FS neurons recorded
from �70 mV) and IPSPs (RS neurons recorded
from �30 mV) accompanying the field oscillation.
Lower traces show corresponding recordings
during layer 4. Note the faster frequency of RS
neuron spike generation (almost one per period)
and IPSP input. Note also the weaker, more
irregular phasic excitatory synaptic input to layer 4
FS cells. Scale bar 20 mV (rmp), 5 mV (psp).
(C) Locally generated layer 4 gamma rhythms
and gamma projected from layer 2/3 cause local
field potential/spike dissociation depending on
network frequency. Data show pairwise plots of
data points for layer 4 cell interspike interval and
concurrent instantaneous frequency of the local
field potential (LFP). Note population frequency
remains at ca. 40 Hz in layer 4 while layer 4 spike
rates are relatively lower than this. Once spike
rates increase the LFP frequency increases to
match spike rate in the experimental conditions
used (global activation of the region studied).
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The presence of a fast, frequency-variable population gamma

rhythm in the main target for ascending cortical input (layer 4)

adds the intensity of spike generation associated with rate-

coded phenomena to the highly precise temporal control of

spike times seen with lower frequency gamma rhythms. The

dominance of each type of temporal/rate code was seen to be

dependent on the degree of excitation in layer 4, with the super-

ficial layer population rhythm (temporal code) dictating activity in

the layer 4 principal cell population until spike rates exceeded

the layer 2/3 population rhythm frequency. Thereafter, further

increases in excitation generated a population frequency in

layer 4 that exceeded the layer 2/3 gamma frequency but

closely matched individual principal cell spike rates closely

(Figure 5C). The result is a means to iteratively (on a gamma
578 Neuron 75, August 23, 2012 ª2012 Elsevier Inc.
period-by-period basis) generate assem-

blies involving over 50% of coactive

neurons (Figures 6C and 6E), without

the broad distribution of spike times, rela-

tive between active units, in the popula-

tion seen for increases in spike rate alone.

It also provides a substrate for competi-

tive interactions between coactivated
neurons where more strongly excited layer 4 neurons (with

higher spike rates) can suppress those receiving weaker input

via lateral inhibition (Moran and Desimone, 1985; Börgers

et al., 2005), a phenomenon not possible with sparse spiking at

closely matched frequencies as seen in layers 2/3.

Different subtypes of gamma rhythm are seen in both auditory

and visual cortex (Ainsworth et al., 2011; Oke et al., 2010).

However, the precise laminar origin of the two components of

the gamma band are different. This region-specific laminar

distribution of different frequency subbands has also been

reported for alpha rhythms (Bollimunta et al., 2008; Buffalo

et al., 2011), suggesting region-specific, fundamentally different

laminar organization of rhythmic activity. The presence of locally

expressed, different population frequencies may in part provide
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Figure 6. Pyramidal Interneuron Network Gamma (PING) Combines
High-Spike Rate Coding with Temporal Coding Associated with
Gamma Rhythms
(A) Example raster plot of spiking from 24 units recorded during persistent
gamma rhythm generation in neocortex in vitro. Gamma was generated by
400 nM kainate and a 300ms epoch of layer 2/3 field potential is superimposed
for reference. Peak negativity of each field gamma period is show by the gray
lines. Note despite the very sparse spike incidence clear example of highly
synchronous concurrent spike generation are evident (circled).
(B) Transient population bursts in neocortex generated by partial disinhibition.
Graph shows raster plots for 23 concurrently recorded units along with
a 300 ms field potential from layer 2/3. Peak field negativity of the transient is
shown by the gray line. Note the intense (relative to A) but brief increase in
spike rate for each unit, with nearly all units generating synchronous spikes
around the field potential maximum deflection.
(C) Raster plot of spikes from 6 units in mid cortical layer and corresponding
local field potential (300 ms epoch). Gray lines show the peak negativity in the
field potential. Note most periods of the high gamma are accompanied by
tightly synchronized spikes in most of the units recorded.
(D) Left panel, histogram of interspike interval (ISI) distribution between
different units during persistent gamma rhythms in layer 2/3 neocortex in vitro.
Data normalized to peak ISI incidence. SEM of the data is plotted as the blue
band between upper and lower errors. Middle panel, histogram of interspike
interval distribution between different units during transient population bursts
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a possible substrate for some of the highly task-dependent, con-

trasting effects of spike timing and gamma rhythm power

changes seen in vivo (Chalk et al., 2010; Fries et al., 2001) and

higher frequency gamma ‘‘suppression’’ or enhancement during

task performance depending on cortical subregion studied

(Shmuel et al., 2006; Hayden et al., 2009; Jerbi et al., 2010).

Consequences of Gamma Frequency Variance: Relation
to Long-Term Plasticity
Gamma rhythms are reported to be involved in a number of

correlates of memory (see Wang, 2010), as are neuronal assem-

blies (Dupret et al., 2010). Precise synchrony of spiking in

anatomically disparate populations of neurons is ideal to take

advantage of positive, short-term synaptic plastic phenomena

favoring a temporal code (see above). However, the same

cannot be said for long-term potentiation of synapses critical

for linking Hebb’s original ‘‘fire together, wire together’’

proposals with useful substrates for storage and recall of infor-

mation (e.g., Blumenfeld et al., 2006). Spike-timing-dependent

plasticity (STDP) is near ubiquitous in cortex (Dan and Poo,

2006; Graupner and Brunel, 2010) and shows a marked discon-

tinuity when pre- and postsynaptic spike time separations are

zero. Thus, synchronous spiking in connected principal cells

may result in postsynaptic activity preceding presynaptic activity

(with a delay dependent on conduction time between each

neuron) and depressing the synapses involved. Thus, systematic

phase shifts between connected neurons or areas may potently

and bidirectionally alter the synaptic influence of one over the

other (Vinck et al., 2010). Similarly, a rate code alone is unlikely

to provide a robust means to selectively change synaptic

weights in an STDP-dominated network given the lack of

requirement for specific phase relationships between spikes in

active neurons.

The synaptic depression likely in an STDP scheme with

synchrony may, however, be computationally advantageous

within assemblies and onto their targets. An enhancement of

direction sensitivity, and perhaps other computations requiring

both spatial and temporal neural components, is afforded by

such gamma-induced synaptic depression in computational

models (Carver et al., 2008). However, with dual gamma

rhythm-generating circuits the situation becomes more

complex. The combination of a highly frequency-stable superfi-

cial layer gamma generator with one of more considerable

frequency variance in layer 4, dependent on excitatory input

strength, suggests a range of frequency ratios. Such mis-

matched frequencies generate highly time-variable phase

relationships between laminae that can differentially influence
(no gamma) in layer 2/3 neocortex in vitro. Note the much broader distribution
of relative spike times between units and the greater variance in the data,
particularly at longer ISI times illustrating the effect of oscillations in spike
temporal precision (Schaefer et al., 2006). Right panel, mean ISI distribution
histogram between different units during layer 4 high-frequency PING gamma
generation.
(E) Median (±IQR) number of maximal units active within 5 ms of their peers
for each of the network behaviors in (A)–(C). Note high gamma activity in layer 4
is associated with both the high temporal precision seen with low gamma
rhythms and the high rate of closely temporally correlated spikes seen during
transient bursts making it a very effective generator of neuronal assemblies.
Figures adapted from Ainsworth et al. (2011).
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Figure 7. Dual Local Gamma Rhythms Favor Intralaminar Synaptic
Plasticity Mismatch
Graph shows the pattern of spike-timing-dependent potentiation (blue
squares) or depression (red squares) of NMDA receptor-containing synapses
from principal cells in one gamma oscillating network to principal cells in an
independent gamma oscillating network. The data are from conductance-
based model simulations of pyramidal-interneuron network gamma rhythms
and show clear bands of synaptic plasticity dependent upon both the ratio of
the input (fI) and target network frequencies and the natural frequency (fN)
of the target network. Overlaid are the mean ±SEM frequency ratios for the
layer 2/3 low gamma versus the layer 4 high gamma rhythms plotted at their
natural frequencies (black circles). Note that the frequency mismatch between
the two gamma rhythms favors potentiation of ascending inputs from layer
4 to layers 2/3 and not vice versa. Figure adapted and reproduced from
Lee et al. (2009).
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spike-timing-dependent plasticity. Interestingly, a computational

model of just such a situation predicts marked changes in

synaptic plasticity depending on precise frequency ratio (Lee

et al., 2009). By focusing on a reduced model of assembly

behavior including NMDA receptor-dependent STDP, the

simulations predict that depression will occur with frequency-

matching throughout the low gamma band (30–50 Hz; Figure 7).

However, a higher frequency input, as seen for layer 4 to layer

2/3 projections during dual gamma rhythm generation) gener-

ates potentiation. The effect is highly direction selective, with

the converse projection (layers 2/3 back to deeper layers)

showing depression with such a frequency mismatch. Evidence

for such connectivity (at least between excitatory neurons)

is weak, but where seen it also shows a strong short term

depression (Williams and Atkinson, 2007). These data together

suggest a situation where dual gamma rhythm generation can

selectively potentiate layer 4 to layer 2/3 connectivity only

when neurons in layer 4 are strongly activated, but that the

converse pathway is continually suppressed as long as the

appropriate frequency differences are maintained.

Summary
Is the concept of a spike timing-dependent population code

likely to be useful in guiding future research hypotheses? The

existence of multiple, frequency-labile gamma rhythm genera-

tors partly supports both sides of the arguments favoring rate

versus temporal code. However, it also does not fit comfortably
580 Neuron 75, August 23, 2012 ª2012 Elsevier Inc.
with the idea of synchrony being predominant as a flag for active

population coding. Considering phase space, the existence of

two different frequencies of gamma rhythm goes beyond even

the ‘‘synchrony versus sequence’’ concepts—the former

providing a readily observable correlate of intercortical commu-

nication (Fries, 2005), the latter providing a robust means to

address STDP issues (Aviel et al., 2005). Stable spike rate

differences between coactive neuronal populations may result

in time-variant phase relationships. These too can be manipu-

lated to generate synaptic plastic effects (Lee et al., 2009), but

their existence suggests the conventional definition of a neuronal

assembly may merely be ‘‘tip of the iceberg’’ for the cortical

computational code. Highly temporally precise spike times are

easy to spot, as are rate changes. But at any time period during

cortical activity a myriad of coexistent phase relationships and

spike frequencies may manifest in a neuronal population (e.g.,

Canolty et al., 2010)—particularly when comparing concurrent

activity patterns across different laminae. Unraveling the resul-

tant spatiotemporal complexity may be vital to understand the

true nature of cortical coding and computation but currently

seem experimentally rather daunting. In this respect experi-

mental approaches to understanding cortical function sample

either too broadly (local field potentials) or with too much focus

(a few spike trains). A move to more massively parallel neuronal

recordings (e.g., the 4,096 electrode arrays used in vitro (Ber-

dondini et al., 2005), with more focus on laminar interactions

(e.g., Maier et al., 2010) may provide the data sets needed to

take these thorny issues further.
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