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Simultaneous presentation of multiple stimuli can reduce the firing
rates of neurons in extrastriate visual cortex below the rate elicited
by a single preferred stimulus. We describe computational results
suggesting how this remarkable effect may arise from strong
excitatory drive to a substantial local population of fast-spiking
inhibitory interneurons, which can lead to a loss of coherence in
that population and thereby raise the effectiveness of inhibition.
We propose that in attentional states fast-spiking interneurons
may be subject to a bath of inhibition resulting from cholinergic
activation of a second class of inhibitory interneurons, restoring
conditions needed for gamma rhythmicity. Oscillations and coher-
ence are emergent features, not assumptions, in our model. The
gamma oscillations in turn support stimulus competition. The
mechanism is a form of ‘‘oscillatory selection,’’ in which neural
interactions change phase relationships that regulate firing rates,
and attention shapes those neural interactions.

cholinergic modulation � selective attention � gamma rhythm

Cortical gamma frequency (30–90 Hz) oscillations are known
to be associated with many aspects of cognition, including

sensory processing, attention, memory, and awareness (1). How-
ever, the biophysical underpinnings of gamma oscillations and
the means by which they contribute to cognitive processing are
still not fully understood. Here we continue a series of compu-
tational studies investigating how the biophysics of the gamma
rhythm, and in particular its neuromodulation, affect network
processing associated with attention (2–4).

We focus on the much-cited experiments of Desimone and
colleagues (5–7). These showed that orientation-selective prin-
cipal neurons in macaque V2 and V4 respond to simultaneous
presentation of preferred (‘‘good’’) and nonpreferred (‘‘poor’’)
stimuli in their receptive fields at spike rates well below those
elicited by the preferred stimulus alone. Furthermore, when
attention is directed to either of the two stimuli, the neuron
responds almost as if the unattended stimulus were absent.

The essence of the mechanism we propose here is a relation-
ship between the effectiveness of the excitatory inputs to the
target network and the coherence of the network’s inhibitory
cells: The same drive that produces a robust response when the
inhibition is coherent produces a much less robust response when
the inhibition is incoherent. We describe how this mechanism
can, qualitatively at least, explain the results in (5–7).

Selective attention is associated with an increase in coherence
of spiking and in spectral power of oscillations in the gamma
frequency band (8–10). The model we offer here does not
assume a priori that bottom-up or top-down input is made more
coherent or more oscillatory as a result of attention (11, 12).
Rather, the increased gamma power and coherence of the
network output are consequences of the biophysical effects of
cholinergic modulation. A critical feature of the model is that the
target entity of competing streams of signals is not an individual
pyramidal cell (as in refs. 11 and 13), but a network in which
there is local inhibitory feedback to the pyramidal cells (4). The
gamma oscillation generated by the local network of E cells
(excitatory principal neurons) and I cells (inhibitory interneu-

rons) acts to select the most strongly driven E cells and provides
a ‘‘biased competition’’ (14) mechanism to suppress cells with
weaker drive.

A crucial question is why input from a poor stimulus for a given
cell, presented in isolation, increases activity in that cell, whereas
adding a poor stimulus to a good stimulus makes the activity
decrease. Reynolds et al. (7) showed that this is possible in an
abstract rate model in which the poor stimulus gives strong
inhibition and weak excitation to the target neuron. However, for
a variation on their model in which the target is a spiking neuron,
we show in supporting information (SI) Appendix A that this idea
fails: A stimulus that is excitatory when presented by itself cannot
be suppressive when added to another stimulus.

This result suggests that there is some ingredient essential for
the suppression effect, but absent in the abstract model of
Reynolds et al., and in the spiking variation on that model
considered in SI Appendix A. One natural possibility is that
oscillations may play a crucial role. For instance, a stimulus that,
presented by itself, gives strong but oscillating inhibition and
occasional stochastic bursts of excitation to the target neuron
may elicit spiking on the infrequent occasions when the excita-
tion happens to arrive while the inhibition is weak; yet such a
stimulus may well have a net inhibitory effect when added to a
good stimulus.

A second ingredient that may be essential for the suppression
effect is the nonlinearity of stimulus summation. A simplifying
assumption made in the model of Reynolds et al. (7) and in SI
Appendix A is that the synaptic input added to the target when
the poor stimulus is added to the good stimulus equals the
synaptic input affecting the target when only the poor stimulus
is presented. When the target is a neuron embedded in a
network, this assumption certainly does not hold. It is possible
that the nonlinearity of stimulus summation, by itself, suffices to
explain the suppression effect (15).

In our model, both oscillations and the nonlinearity of stim-
ulus summation play important roles. A stimulus that is poor for
a given neuron gives weak and stochastically f luctuating excita-
tory input to that neuron. When the poor stimulus is presented
in isolation, it also gives rise to inhibition of the target neuron
that is strong, but oscillates at gamma frequency. The oscillations
create windows of opportunity for the excitatory input stream to
elicit some spiking. When the poor stimulus is added to a good
stimulus, the overall drive to the I cells becomes so strong that
the gamma oscillation disintegrates. The resulting asynchronous
inhibition leaves much less room for the noisy excitatory input
stream to elicit postsynaptic spiking.
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The ideas of this article build on previous investigations of
properties of E–I networks, and in particular on ideas from ref.
3. There we used the ‘‘theta model’’ (16–18), a caricature of the
Hodgkin–Huxley model closely related to the quadratic inte-
grate-and-fire model. We examined mechanisms by which py-
ramidal-interneuronal network gamma (PING) oscillations (19)
are formed and lost as parameters are changed, especially in the
presence of noise. In PING, both pyramidal cells and interneu-
rons fire at close to network frequency. The mechanism from ref.
3 most relevant to the current work is one in which the I cells fail
to synchronize, and their asynchronous activity suppresses the E
cells. Whether the E cells can be suppressed by asynchronous
inhibitory activity is determined by the strengths of the inhibi-
tory conductances affecting the E cells and the external drives to
the E and I cells. Escape from suppression is aided by lowering
external drive to the I cells, or by raising drive to the E cells.

In the present article, we work with conductance-based mod-
els for which the analytical results of ref. 3 are not available.
Nevertheless, the ideas of suppression of the E cells by incoher-
ence of the I cells can still be made precise; this is done in SI
Appendix B for the limiting case of pure asynchrony of the I cells.
In practice (including our simulations here), there is reduced
coherence, but not pure asynchrony. The activity of the E cells
is not lost instantaneously as parameters are varied, but over a
range in parameter space that can be fairly narrow (see SI
Appendix, Fig. S1). Motivated by experimental data such as those
of Reynolds et al. (7), we show that the effect of adding stimuli
in the absence of attention can be to move the network param-
eters toward suppression, and the effect of attention to a target
stimulus can be to move them back to the oscillatory regime.

The current work also builds on ideas from ref. 2, which
emphasized the role of timing in suppressing a subset of the E
cells. If some E cells receive more drive than others, they can
govern the frequency of the inhibitory rhythm, making the I cells
spike just before the more weakly driven E cells are ready to
spike in each gamma cycle. Winner-take-all mechanisms are
possible with or without oscillations; however, we showed in ref.
2 that they are particularly effective in the oscillatory regime (see
Discussion). For other work on fast suppression mechanisms
based on oscillatory network dynamics, see refs. 20–24.

Results
We present simulations of a network of excitatory and inhibitory
model neurons (see Methods and SI Appendix, SI Methods for
details). Two effects of attention are included in our model.
First, we assume that cholinergic modulation subjects all cells of
the network to a bath of inhibition, representing activity of
cholinergically excited interneurons, perhaps low threshold spik-
ing (LTS) cells (25, 26). We assume that the natural frequency
of the I cells, i.e., the frequency with which they would spike if
they were isolated from the E cells, is reduced, as a result of the
bath of inhibition, approximately to what it would be with a
single stimulus present. We associate this nonspecific inhibition
with spatial attention directed toward the receptive field con-
taining both the target and the distractor; we assume that it
affects nearby, but not distant, receptive fields. Such nonspecific
inhibition could be activated via the thalamus (27), via inhibitory
systems associated with direct prefrontal pathways (28), or by
localized modulation arising from basal forebrain cholinergic
projections (29). Our assumptions are consistent with data
suggesting that the spatial extent of focal attention in V4 can be
as small as a receptive field (30); data from MT suggest that
attention can even select subregions of the receptive field (31).
The E cells are assumed to be subject to a bath of inhibition as
well; this enhances the attentional selection effect, but is not
required for it (see Fig. 5). Second, we assume that the attended
stimulus is in effect strengthened. This models the effect of a
top-down selection signal, and is needed to break the symmetry

between the two stimuli; it is implemented here by amplifying the
deterministic (constant) component of the drive originating
from the attended stimulus, typically by approximately 30%. This
enables the oscillatory winner-take-all mechanism of ref. 2.

In this article, we assume that inputs are not oscillatory, and
show how gamma oscillations arise and contribute to attentional
selection locally; in ref. 4, we showed how the oscillations can
support attentional selection downstream. See Discussion for
further comments on the assumption of nonoscillatory input
streams.

We will first show how the above ideas work in a simple
example; later we will discuss more generally the parameter
regime in which they work.

Background Network and Assumptions About the Effects of a Single
Stimulus. For simplicity, we start with a network that has no activity
in the absence of input; this can be relaxed (data not shown). We
first consider a single stimulus that strongly drives a subset of E cells;
for these cells, it is a ‘‘good stimulus,’’ in the terminology of ref. 7.
It also noisily and less strongly drives some other E cells, in our
model chosen randomly from the rest; for these, it is a ‘‘poor
stimulus.’’ The stimulus drives all I cells equally; thus, in our model,
the I cells are not stimulus-selective. This assumption, too, can be
relaxed. The essential requirement here is that for any pair of
stimuli, there is a substantial population of I cells driven by both; we
comment further on this assumption in Discussion.

Presentation of such a stimulus creates a PING oscillation,
with the strongly driven E cells and all I cells firing at gamma
frequency (2) (Fig. 1 A–D). We also consider a second stimulus
which has the same effect, but selects a different (nonoverlap-
ping) set of strongly driven cells, and another subset that is driven
less strongly and noisily. There is (in the absence of attention) no
essential difference between the two stimuli, except from the
point of view of a particular cell that may be driven strongly by
one and not by the other; see Fig. 1 E and F.

Presenting Both Stimuli Together Lowers the Rate of Firing and
Eliminates the Oscillation. In Fig. 2 we show the effect of presenting
both stimuli. The input is now the sum of the inputs from Fig. 1, so
the I cells now get twice as much drive as before. No changes have
been made to the drive to any of the strongly driven E cells (there
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Fig. 1. Network response when a single stimulus is presented. (A) Response
of I cells. (B) Inhibitory conductance affecting each E cell. (C) Response of E cells
when first stimulus is presented. (D) Frequency as a function of neuronal index
in C. (E) Response of E cells when second stimulus is presented. (F) Frequency
as a function of neuronal index in E.
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are now just more of them), except possibly if some of the strongly
driven cells also get some noisy drive from the other stimulus. The
stronger drive to the I cells now gives them a higher intrinsic firing
rate, which leads to a higher average level of inhibition of the E cells.
If this is a strong enough effect, one expects the I cells to become
more asynchronous and the E cells to become less active (3). This
is exactly what happens, as shown in Fig. 2.

One possible concern is that the I cell asynchrony and loss of
E cell activity might be independent effects, contradicting the
claim that they are mechanistically related. To address this
concern, we present the first stimulus together with a fraction w
of the second, with 0 � w � 1, to see the change in both the
oscillations and the frequency of the E cells as w increases. As
shown in Fig. 3, the loss of the oscillation and the suppression of
the E cells in fact occur together.

Selective Attention Restores the Oscillation and the Response to the
Attended Stimulus. Fig. 4 shows the network response when both
stimuli are presented as in Fig. 2, with all cells subject to a bath
of inhibition (see SI Appendix, SI Methods), and the deterministic
component of the drive resulting from the first stimulus raised
by 30%, modeling a firing rate increase elicited by a top-down
attentional signal. The oscillation is restored, the response to the
attended stimulus is strong, and the response to the unattended
stimulus is largely suppressed. All E cells respond approximately
as they would if only one stimulus had been presented; compare
Fig. 1 C and D with Fig. 4 C and D.

The bath of inhibition to the E cells is not needed for our
mechanism to work, but enhances the effect. Fig. 5 illustrates
this; it is the same as Fig. 4, but the bath of inhibition is only

applied to the I cells. Neurons 121–140 are now only partially
suppressed.

In ref. 2, we argued that attention increases the excitability of
pyramidal cells by reducing the M current. Here we argue that
attention subjects the pyramidal cell population to a bath of
inhibition. The first occurs in a vigilant state, when the drive to
the pyramidal cells is weak, the second during attentional
selection, when the total excitatory drive is strong. Thus, we
suggest that attention may have opposite effects on the pyrami-
dal cells in different behavioral situations.

Requirements on Parameter Values for the Mechanism to Work. Our
mechanism breaks down when a substantial population of E cells
is strongly driven by both stimuli. (There is no reason to believe
that in the experiments discussed, for instance, in ref. 7, there
was a substantial number of pyramidal cells driven strongly by
both stimuli presented.) In such a situation, simulations (data not
shown here) predict that those excitatory cells driven strongly by
both stimuli will be active, with most others suppressed.

Our mechanism also requires inhibitory synapses strong
enough to enable PING rhythms, but weak enough not to
suppress all noise-driven spiking in the presence of the PING
rhythm. Each stimulus must add enough drive to the I cells so
that two simultaneously presented stimuli desynchronize the I
cells. The bath of inhibition to the I cells and drive to the E cells
must be enough to counter the effects of the added drive to the
I cells. The attended input stream must be strengthened by a
sufficiently large amount. For instance, Fig. 4 would look very
similar if the attended input stream were strengthened by 20%
(in Fig. 4, it was strengthened by 30%), but, if it were strength-
ened by only 10%, the selection mechanism would not work.
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Fig. 2. Network response when both stimuli are presented. (A) Response of
I cells. (B) Inhibitory conductance affecting each E cell. (C) Response of E cells.
(D) Frequency as a function of neuronal index in C.
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Fig. 3. The first stimulus is presented together with w times the second
stimulus. � � mean frequency of E cells 21–40 (A) and � � amplitude of
gamma oscillation (B) as functions of w. The amplitude � is defined to be max
gI(t) � min gI(t), where gI denotes the total inhibitory conductance affecting
each E cell, and the maximum and minimum are taken over the time interval
[300,600] to avoid initialization artifacts. For each value of w, the figure shows
5 different values of � and � (dots) obtained with 5 different seeds of the
random number generator, and their average (bold lines).

1

80

160

E
−

ce
lls

C

time [ms] 0 80 160
0

20

40

neuronal index

fr
eq

 [H
z]

D

0 100 200 300
1

20

40

I−
ce

lls

time [ms]

A

0 100 200 300
0

0.5

time [ms]

in
h.

 c
on

d.

B

Fig. 4. Network response when both stimuli are presented, with a bath of
inhibition, and with the deterministic drive to E cells 21–40 raised by 30%.
Panels as in Fig. 2.
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Fig. 5. Network response when both stimuli are presented, with a bath of
inhibition affecting the I cells only, and with the deterministic drive to E cells
21–40 raised by 30%. Panels as in Fig. 2.
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Within these requirements, the mechanism is robust. Param-
eters such as the synaptic decay time constants and the strengths
of inhibitory synapses, external drives, and the bath of inhibition
can be varied considerably without any qualitative change in
behavior; see SI Appendix, Figs. S2–S6.

Contrast Enhancement and Selective Attention are Not the Same. An
increase in contrast can be thought of as a bottom up increase
in the drive originating from a specific stimulus; in this model,
it plays the same role as specific top down drive. Our model
shows a crucial difference between an increase in contrast and
attention, however: In the presence of several stimuli, an in-
crease in the strength of one of them, without diffuse inhibition
of the I cells, does not easily restore the oscillations; see Fig. 6.

Buia and Tiesinga (11) have previously hypothesized that
attention may correspond to a reduction in driving current to the
inhibitory neurons, and have used this idea to explain the
attentional effect on contrast-response curves.

Selective Attention Without Gamma Oscillations. It is possible to
obtain the attentional selection effect without a rhythm. This is
shown in Fig. 6, in which there is no bath of inhibition to the I
or E cells. However, to obtain the selection effect, one must raise
the strength of the attended stimulus by a factor that is likely to
be unrealistically large; in Fig. 6, it was doubled. The I cells now
fire asynchronously at a high frequency, suppressing the re-
sponse to the second (unattended) stimulus. However, the
response to the first (attended) stimulus is partially suppressed
as well—only approximately half the cells in the strongly driven
group (E cells 21–40) fire. Among those cells that do fire
vigorously, there is a considerable spread in frequencies, ap-
proximately between 20 and 60 Hz. This, at least in our hands,
is the typical difference between oscillatory and nonoscillatory
competition: Without an oscillation, suppression of the response
to unattended stimuli requires a large amount of inhibition,
which will affect even the winning (attended) ensemble, as
suggested by the analysis surrounding figure 4 of ref. 2. The
oscillation allows inhibition to be timed in such a way that it
minimally affects the winning ensemble, and maximally affects
losing ensembles. In summary, Fig. 6 demonstrates that stimulus
competition is possible without a rhythm; it is, however, more
effective in the presence of a gamma rhythm.

We also note that gamma oscillations occur with great ro-
bustness in E/I networks, as long as the E cells are strongly
excited, the I cells are not too strongly excited, the synaptic
interactions between the two cell populations are strong, and the
decay time constant �D,I of inhibition is approximately on the
order of 10 ms (32). Shorter (33) and longer (34) time constants
have been reported for GABAA-receptor mediated synaptic

transmission under some circumstances. The precise value of �D,I
is not important for our mechanism; see SI Appendix, Figs. S2
and S3.

Stimulus Competition With Gamma Oscillations in the Absence of
Attention. SI Appendix, Fig. S7 shows that the suppression of a
good stimulus by a poor one, in the absence of attention, can
occur, in a somewhat different parameter regime, without a
reduction in gamma power. Selection by means of a bath of
inhibition and moderate strengthening of the attended input is
possible in this parameter regime as well (see SI Appendix, Fig.
S8). However, for reasons discussed in detail in SI Appendix, SI
Figures, we find it less plausible that this parameter regime is
physiologically realistic.

Discussion
Model Assumptions. In our model, attention inside the receptive
field leads to reduced drive to the I cells associated with that
receptive field. This models the presumed effect of cholinergic
activation of some network of interneurons, perhaps LTS cell
(25, 26), that inhibit fast-firing interneurons. [Although Beierlein
et al. (35) have shown slow oscillations generated by LTS cells
coupled by gap junctions in thalmo-cortical slices, such synchro-
nization would not necessarily preclude their providing the bath
of inhibition that we postulate; this bath does not have to be
tonic.] Froemke et al. (36) have shown that activation of nucleus
basalis, the main source of acetylcholine in the cortex, leads to
a rapid reduction of synaptic inhibition in rat primary auditory
cortex; our assumption is in line with this result.

We also assume that attention amplifies the specific input
generated by the attended stimulus. We note that this firing rate
increase need not be the same as that seen when attention is
directed to a single stimulus in the receptive field, which has been
found to be weak or nonexistent in some cases (for example, see
ref. 6, but also ref. 37). Our assumptions are in agreement with
Roberts et al. (38), who proposed that ‘‘the effects of spatial
attention are mediated by an interaction of cholinergic input and
feedback connections. from higher cortical areas.’’ Herrero et al.
(39) have recently demonstrated that muscarinic acetylcholine
receptors play an important role in mediating effects of selective
attention.

Our simulations were done assuming that the E cell ensembles
selected by the two stimuli do not overlap much. This does not
preclude broad tuning curves, as long as there are no cells that
are strongly driven by both stimuli. We predict that in experi-
ments in which the overlap is substantial, the results of ref. 7
about firing rates and attention will not hold.

Our mechanism requires that there be a population of fast-
spiking interneurons that are strongly excited by both stimuli.
This does not imply that all such neurons must be nonselective
(see refs. 40–45). For instance, the results of ref. 45 are
consistent with our assumption, even though they demonstrate
stimulus selectivity of inhibitory interneurons in area TA of the
inferior temporal cortex.

In the present article, inputs are nonoscillatory, but the
network generates oscillatory outputs. We hypothesize that this
is how selective attention may enhance gamma frequency co-
herence at early stages of processing. In ref. 4, inputs were
oscillatory, and the modeling showed how more coherent oscil-
lations can shut out less coherent, distracting ones. We hypoth-
esize that the mechanism of ref. 4 may enhance selection at later
stages of processing. Simulations (data not shown) indicate that
the mechanism of the present article can in fact also operate at
a stage when inputs are already oscillatory.

The idea that two classes of interneurons participate in the
attentional effects has independently been suggested in a recent
article by Buia and Tiesinga (46). There are substantial differ-
ences between their model and ours, however. In ref. 46, gamma
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Fig. 6. Network response when both stimuli are presented, without any bath
of inhibition, and with the deterministic component of the first stimulus
doubled. Panels as in Fig. 2.
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oscillations are created by inhibitory cells responding to top-
down signals; in our model, they are created locally in the
network of pyramidal cells and fast-spiking interneurons (19). In
ref. 46, the local fast-spiking interneurons are stimulus selective;
in our model, it is crucial that they be less stimulus selective than
the pyramidal cells. Also, in contrast with our work, asynchrony
does not play a role in ref. 46.

Implications of our Model. Our reasoning in this article is based on
the connection between the effectiveness of excitatory inputs to
a target network and the coherence of the inhibitory cells in the
network (2, 3). We showed how one can use this notion to
understand the results of Reynolds et al. (7) on the changes in
firing rates associated with competing inputs and attention.
(Refs. 12, 13, 15, and 47–50 also address those data.) Multiple
inputs can decrease coherence of the interneurons by increasing
their drive, and attention can increase their coherence by
providing a bath of inhibition that reduces their drive. Although
the simulations were for two stimuli, the ideas apply to multiple
stimuli, provided that there is saturation of the total amount of
inhibition.

Our model predicts that when two stimuli are in the same
receptive field, the spike-spike coherence (SSC) should decrease
significantly, provided that there is no attentional selection, the
stimuli are strong enough, and there is no group of E cells driven
strongly by both. To our knowledge, there are no experimental
data that address this prediction directly; such data would
provide a critical test for our model. An SSC analysis was not
done in ref. 7. In ref. 51, this analysis was done, but the stimuli
were in different receptive fields. In some of the early literature
on binding, experiments were described in which two stimuli in
the same receptive field failed to abolish a local gamma oscil-
lation; see for instance figure 5 D–F of ref. 52. However, there
was no control for attention in ref. 52. There may also be cases
in which two stimuli in the same receptive field, even in the
absence of attention, do not abolish the gamma oscillation
because they are not strong enough. In ref. 53, a gamma
oscillation was found to be evoked by a single moving grating,
and abolished by adding a second grating (plaids), in keeping
with our prediction, even though some E cells were driven
strongly by both stimuli. However, in contrast with our model,
the data of ref. 53 indicate that the gamma oscillation is lost
without a reduction in the activity of the E cells; this does not
occur in the parameter regime of our modeling study, although
it is possible when the drives to the E and I cells are quite strong.
(In figure 7C of ref. 3, the region in which asynchronous activity
of both the E and the I cells occurs is the region above the solid
and below the dashed line, in the right upper corner, corre-
sponding to strong drive to both E and I cells.)

Our model also provides a framework in which to understand
recent results of Mitchell et al. (54), showing that attention
lowers the Fano factor (ratio of spike count variance to mean
spike rate) more for the fast-spiking interneurons than for the
pyramidal cells. This may be a consequence of the PING
mechanism: In PING, the excitation synchronizes the interneu-
rons more tightly than the inhibition does the pyramidal cells
(55).

In the current article, we described a situation in which both
stimuli lie in the same receptive field. In this case, there is a large
shared pool of relevant interneurons. The condition is related to,
but not identical with, that of Fries et al. (51), in which the target
and distractor lie in different, although possibly nearby receptive
fields. In the latter case, there may still be overlapping pools of
interneurons, but also other interneurons driven by only one of
the two stimuli.

The transition from states of little coherence to gamma
rhythms always goes together with an increase in firing rates of
individual E cells in our model. However, the coherence of the

gamma oscillation can be tightened without any change in the
population frequency (see for instance ref.9). In our model, cells
participating strongly in the gamma oscillation always fire at the
population frequency. A more complex model, perhaps involv-
ing more stochasticity in drives (2), could allow cells to skip
cycles. In such a model, it should be possible to tighten gamma
coherence without altering the firing frequency of participating
cells much.

Sustained and Selective Attention. In ref. 2, we modeled sustained
attention (vigilance) with a low amplitude noisy gamma rhythm,
which provides a windowing of the inhibition, allowing low level
excitation to break through. We showed that disturbing the
coherence of the inhibitory cells leads to a much lower response
to excitatory drive. Weaker stimuli are suppressed by an oscil-
latory winner-take-all mechanism: The E cells coding for the
salient input are given more drive and cause the I cells to fire;
they themselves are ready to fire again when the inhibition is
lowest. By contrast, the less excited E cells corresponding to the
distractor input are not ready to fire before the more excited cells
induce another barrage of inhibition and prevent firing. The
windowing of the inhibition is thus a barrier to a ‘‘poor’’ stimulus.
It is crucial to this mechanism that the poor stimulus not be strong
enough to disturb the rhythm formed by the interaction of the I cells
and the set of E cells coding for the more salient input.

In the present work, the two stimuli are equivalent in strength
in the absence of attention. The interaction of the two stimuli
leads to a reduction or suppression of the rhythm, with an
associated reduction of firing rate. The effect of attention is to
make one of the two inputs stronger than the other (the result
of a selective top-down signal) and to reduce the effect of the
distractor input on the I cells with the bath of inhibition. This
effectively recreates the situation of ref. 2, in which the locked
oscillation of the cells coding for the stronger input can suppress
the effects of the weaker input.

Attention and Oscillatory Selection. The gamma rhythm plays three
separate roles in our models of attention. First, it increases
sensitivity to weak excitatory stimuli by creating windows of
opportunity (2). Second, it allows a more strongly driven en-
semble to efficiently suppress a less strongly driven one, as
described in ref. 2 and the present article; this is a timing effect
(23, 24, 56). Third, the gamma rhythm allows some signals, the
tightly coherent ones, to be processed downstream while others
are suppressed (4).

All three of the above mechanisms are examples of what one
might call ‘‘oscillatory selection.’’ We see this as closely related
to the idea of ‘‘communication through neuronal coherence’’
proposed by Pascal Fries (57). Womelsdorf et al. (58) wrote, ‘‘We
provided evidence suggesting that neuronal interactions mech-
anistically depend on the phase relationship between rhythmic
activities.’’ We agree but emphasize here that phase relation-
ships, their functional consequences, and even the capacity of the
networks to phase lock or oscillate at all, mechanistically depend
on neuronal interactions.

Methods
We only sketch our model here (refer to SI Appendix, SI Methods for details).
Our E cell model is from Ermentrout and Kopell (59), and our I cell model is
from Wang and Buzsáki (60). Our networks contain 160 E cells and 40 I cells.
The external drive to each cell has a constant component, chosen from a
Gaussian distribution with coefficient of variation 0.1. In addition, there is a
Poisson train of excitatory input pulses to each neuron. Synaptic interactions
are modeled as in ref. 2. Network connectivity is all-to-all; our mechanism
would work equally well with sparse, random network connectivity, as long as
each E cell receives synaptic input from a sufficiently large number of I cells and
vice versa (55). We assume strong E3 I, I3 E, and I3 I synapses. Although our
mechanism works when there is recurrent excitation within each of the
stimulus-driven ensembles of E cells (data not shown), E3 E synapses are not
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essential, and are omitted here. In a realistic network, they might effectively
add tonic excitation to the E cells (61). The numerical methods are as in ref. 2.
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