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bstract

Recent electroencephalogram (EEG), electrocorticogram (ECoG), and local field potential (LFP) observations suggest that distinct frequency

ands interact. Numerous measures have been proposed to analyze such interactions, including the amplitude envelope modulation of high frequency
ctivity by the phase or signal of low frequency activity. In this short communication, we describe how abrupt increases or decreases in voltage
ata may produce spurious coupling in these measures and suggest techniques to detect these effects.
 2008 Elsevier B.V. All rights reserved.
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. Introduction

Rhythms appear universal in neural population voltage activ-
ty (Buzsaki, 2006). For nearly 100 years researchers have
ivided these rhythms into discrete frequency bands often
ssociated with physiologically distinct functions. Recent obser-
ations suggest that oscillations of different frequency are not
ompletely isolated, but instead interact (Jensen and Colgin,
007). In one type of interaction the phase of lower frequency
hythms modulates the amplitude envelope of higher frequency
hythms. This frequency comodulation – or nesting – appears
o be a prominent characteristic of population voltage activ-
ty; it has been reported to occur between theta (approximately
–12 Hz) and gamma (approximately 40–100 Hz) frequencies
n rat and mouse (Bragin et al., 1995; Buzsáki et al., 2003;
entschke et al., 2007), and between theta and 30–50 Hz, and

heta and 80–150 Hz rhythms in man (Canolty et al., 2006;
akatos et al., 2005).

In this short communication, we show that sharp edges

n time series data (as observed in, for example, the sharp
aves of epilepsy (Niedermeyer, 1999a), slow wave oscil-

ations (Contreras and Steriade, 1995), and the mu rhythm
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Niedermeyer, 1999b)) produce artifactual frequency comod-
lation. To do so, we implement three frequency comodulation
easures in current use and employ three simulated examples.
e develop two examples to confuse the measures and pro-

uce spurious coupling results, and a third to exhibit the most
asic features of frequency comodulation. Our goal in this work
s not to invalidate the results of previous analysis but to alert
esearchers to some pitfalls associated with frequency comodu-
ation measures. We conclude by suggesting techniques to detect
he occurrence of sharp edges in time series data. We also empha-
ize the utility of simulated data in testing new measures.

. Methods

All comodulation measures typically involve three general
teps. First, the data are bandpass filtered into two frequency
ntervals: a low frequency band (e.g., theta 4–12 Hz) and a higher
requency band (e.g., gamma 40–100 Hz). Second, the instan-
aneous phase is extracted from the low frequency filtered data,
nd the instantaneous amplitude envelope is extracted from the
igh frequency filtered data by applying the Hilbert transform.
e note that the first two steps are sometimes accomplished
y wavelets (e.g., as in Lakatos et al. (2005) and Mormann et
l. (2005)) and that the Hilbert and wavelet decompositions are
quivalent (Bruns, 2004; Le Van Quyen et al., 2001). Third, the
oupling between the low frequency phase and high frequency
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mplitude envelope is determined. The method to compute this
oupling and determine its statistical significance often distin-
uishes the different measures.

We apply three comodulation measures in this manuscript.
n the first (Figs. 1b, 2b and 3b), we compute the mean and
tandard deviation of the instantaneous amplitude envelope for
very 10◦ of the instantaneous phase and plot the result (Buzsáki
t al., 2003). In the second (Figs. 1c, 2c and 3c), we compare
he high frequency amplitude envelope with the low frequency
andpass filtered signal (Hentschke et al., 2007). We note that
his measure utilizes the low frequency signal, and not the phase
i.e., an envelope-to-signal correlation (Bruns and Eckhorn,
004)). To determine the statistical significance of the peak
ross-correlation between the amplitude envelope and signal,
shuffling procedure of the amplitude envelope is implemented
ith 100 surrogates (Hentschke et al., 2007). In the last measure

Figs. 1d, 2d and 3d), we compute the normalized modulation
ndex of Canolty et al. (2006). This measure requires that we
reate a composite signal consisting of the high frequency ampli-
ude envelope and low frequency phase. We then determine the
verage length of this complex vector, and compare it to a sur-
ogate distribution (200 surrogates) computed by shifting the
mplitude of the composite signal by random amounts (Canolty
t al., 2006).

We apply the comodulation measures to three sets of simu-
ated data: (i) sawtooth data, (ii) imperfect sinusoid data, and
iii) sinusoid + high frequency noise data. For each data set,
e use a sampling interval of 1 ms and compute 12 s of

imulated data. We bandpass filter the data using a two-way
east-squares FIR filter (the eegfilt.m routine from the EEGLAB
oolbox (Delorme and Makeig, 2004)), and always eliminate
he first and last 1 s of the filtered data to avoid filtering arti-
acts. For (i), we create a sawtooth wave of unit amplitude and
ith interval 166 ± 30 ms between successive peaks (Fig. 1a).
he linear decrease in each cycle is not instantaneous; instead,

his decrease requires from 1 to 20 ms, uniformly distributed
cross all cycles. For (ii), we first create a 6 Hz sinusoid with
nit amplitude (Fig. 2a). To each cycle of the sinusoid we add
sharp edge that linearly increases the amplitude of the 6 Hz

scillation by one after 1–5 ms (uniformly distributed over the
ycles). The sharp edge begins at phase values uniformly dis-
ributed between 212 and 233◦ (cosine phase), and the unit
ncrease tapers to zero after 100 ms. For (iii), we first con-
truct a sinusoidal signal of unit amplitude and with random
ntervals of 166 ± 17 ms between successive peaks (Fig. 3a).
o each cycle, we add 50 ms of high frequency noise (uni-
ormly distributed random numbers bandpass filtered between
0 and 150 Hz) tapered with a Hanning window and of maxi-
um amplitude 0.5. The onset of the noise begins at random

hases uniformly distributed between 0 and approximately 20◦
cosine phase) for each cycle. To all three data sets we add nor-
ally distributed random numbers with mean zero and standard

eviation 0.1.

We implement the simulated data and measures in MATLAB

Mathworks Inc., Natick, MA). The routines to generate and
nalyze the data, and produce all figures in this manuscript, are
ncluded in the Supplementary Material.
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. Results

In this section, we show the results of applying the three
omodulation measures to the simulated data. We begin with
he sawtooth example. In Fig. 1a we show one second of data
n which the sharp edge reoccurs every 166 ± 30 ms. We fil-
er the data between 4–8 Hz (middle gray trace) and 40–100 Hz
lower gray trace) and compute the low frequency phase (middle
lack trace) and high frequency amplitude envelope (lower black
race). To represent a sharp vertical edge requires many high fre-
uency sinusoidal components and produces localized increases
n the amplitude envelope. A close inspection of Fig. 1a suggests
hat these increases occur at a particular phase of the low fre-
uency filtered signal (near approximately 90◦ for the cosine
hase). Thus, frequency comodulation occurs in this signal; the
ow frequency phase and high frequency amplitude envelope are
oupled.

To verify that the comodulation measures detect this cou-
ling, we apply the three measures to the sawtooth data. We
mploy the broad bandpass filtering of the data (low and high
requency bands from 4–8 Hz and 40–100 Hz, respectively) and
lot the average envelope versus phase in Fig. 1b. We find a
arge increase in this measure near 90◦, as expected. We also
ompute the envelope-to-signal measure, and show in Fig. 1c
hat the largest correlations for the unshuffled data (black curve)
xceed those for the shuffled data (gray curves). We compute the
-score for the peak correlation compared to the surrogates and
nd values greater than 5.5 (p � 0.0001). We conclude from

hese two measures that frequency comodulation occurs in the
awtooth wave between the low (4–8 Hz) and high (40–100 Hz)
requencies and that this coupling is statistically significant.

Using the broad bandpass filtering we might overlook more
ocused comodulation features. For example, does the low fre-
uency activity modulate the entire 40–100 Hz interval or a
ubset of this band? To answer this question, we follow the
rocedure in Canolty et al. (2006) and divide the signal into
eparate low frequency bands (with frequencies from 2 to 41 Hz
n 1 Hz steps) and high frequency bands (with frequencies from

to 205 Hz in 5 Hz steps). We then compute the modulation
ndex for each pair of low and high frequency bands (a total
f 1560 pairs) and show the results in Fig. 1d. Here we plot
he z-score as a function of the phase and envelope frequen-
ies and find large intervals of statistically significant coupling
with z ≥ 5, say). We make two observations about the structure
f the results. First, the largest z-scores tend to occur at phase
requencies (vertical bands) equal to the fundamental oscilla-
ion frequency (5–8 Hz) and its harmonics: near 10–14 Hz (2nd
armonic), 15–18 Hz (3rd harmonic), and 20–25 Hz (4th har-
onic). The reason for this is that a fixed phase of the harmonic

ignals also aligns with the sawtooth edge and co-occurs with
he envelope increase. Second, an abrupt increase in z-scores
ccurs along a positively sloped line in Fig. 1d indicating that
igher phase frequencies require higher envelope frequencies

o exhibit significant comodulation. This occurs because higher
hase frequencies require sharper amplitude envelopes to exhibit
ignificant coupling. Consider for example a phase frequency
f 15–16 Hz. During one sawtooth cycle, this phase undergoes



354 M.A. Kramer et al. / Journal of Neuroscience Methods 170 (2008) 352–357

Fig. 1. Sawtooth wave data. (a) The simulated data (top) filtered 4–8 Hz (middle gray) and filtered 40–100 Hz (bottom gray). We extract the phase (middle black)
from the lower frequencies and the amplitude envelope (bottom black) from the higher frequencies. (b) The average amplitude envelope (black solid) and standard
deviation (gray dashed) vs. the phase. (c) The envelope-to-signal measure for the raw data (black curve) and 100 surrogates (gray curves). (d) For the comodulation
index we plot the z-score in grayscale as a function of the phase and envelope frequencies.

F revea
a (d) Th

t
m
l
a
e
w
t
p
c

f
d
h
a
s
s
a
4

t
i
t
i
−
c
fi
t
c
c
t
s
c

f

F
v

ig. 2. Imperfect sinusoid data. Careful inspection of the simulated data in (a)
verage amplitude envelope vs. the phase. (c) The envelope-to-signal measure.

hree complete revolutions (it is the 3rd harmonic of the funda-
ental). If the amplitude envelope is too broad and not tightly

ocalized to the sawtooth edge, then a nonzero envelope will
ppear at the many different phase values near the sawtooth
dge. The result is an apparent lack of coupling. Conversely,
hen the amplitude envelope decays quickly around the saw-

ooth edge (at fast enough envelope frequencies) only a narrow
hase interval associates with the nonzero envelope. In this case,
oupling between the phase and envelope occurs.

The sawtooth data present an extreme example of artificial
requency comodulation resulting from a sharp edge. In these
ata, high frequency oscillations do not exist. Yet we require
igh frequency sinusoids to represent the sharp edge, and the
mplitude envelopes of these high frequencies couple with the
lower rhythms. As a more realistic example, we consider nearly

inusoidal data modified to include a steep increase between 212
nd 233◦ (cosine phase). We show one second of these data, the
–8 Hz bandpass filtered data, and the 40–100 Hz bandpass fil-

t
s
t

ig. 3. Sinusoid + high frequency noise data. (a) During the falling phase of the sinu
s. the phase. (c) The envelope-to-signal measure. (d) The modulation index.
ls a sharp edge and corresponding increase in the amplitude envelope. (b) The
e modulation index.

ered data in Fig. 2a. The sharp edges produce localized increases
n the amplitude envelope, although to a lesser extent than for
he sawtooth wave. We plot the average envelope versus phase
n Fig. 2b and detect an increase for phases between −150 and

100◦ (or equivalently between 210 and 260◦ cosine phase). We
ompute the envelope-to-signal measure for the broad bandpass
ltered data (Fig. 2c) and detect a significant peak correla-

ion (z ≈ 2.5, p < 0.05). Finally, we plot the two-dimensional
omodulation measure in Fig. 2d and find regions of statisti-
ally significant coupling particularly at phase frequencies near
he fundamental and its harmonics. We conclude that even a
mall imperfection in the sinusoid, resulting from a sharp edge,
an produce spurious frequency comodulation results.

Of course, not all frequency comodulation results from arti-
act. As a final example, we consider simulated data constructed

o possess true phase coupling: a low frequency (5–7 Hz) sinu-
oid with high frequency (between 50 and 150 Hz) noise coupled
o the low frequency phase. We show one second of the unfil-

soid, an increase in high frequency activity occurs. (b) The amplitude envelope
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Fig. 4. Proposed methods to detect sharp edges in time series data. The event-related average for (a) the imperfect sinusoid and (b) the sinusoid + high frequency
noise data. The average was triggered by the peaks of successive high frequency activity. The power spectra of (c) the imperfect sinusoid and (d) the sinusoid + high
f dame
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requency noise data. Note the occurrence of harmonic spectral peaks of the fun
inusoid + high frequency noise data (f). The phase-locked harmonic activity p

ered and filtered data in Fig. 3a. For the broad bandpass filtered
ata, we plot the average envelope versus phase (Fig. 3b) and
nvelope-to-signal measures (Fig. 3c) to find statistically sig-
ificant coupling (peak correlation z > 5.5, p � 0.0001). The
odulation index – shown in Fig. 3d – also reveals significant

oupling at the expected phase and envelope frequencies.

. Discussion

In this short communication we propose that data consisting
f sharp edges may produce spurious frequency comodulation

esults. We show this by applying three comodulation measures
n current use to three simulated data sets. We find that even mod-
rate sharp edges in the data can induce artifactual frequency
omodulation. All three methods fail for the same reason: to

M
q
e
p

ntal 6 Hz activity in (c). The bicoherence of the imperfect sinusoid (e) and the
es a clear effect in the bicoherence of the imperfect sinusoid.

epresent a sharp edge requires high frequency sinusoids. Thus,
lthough the original data do not possess high frequency oscil-
ations, the filtered data do exhibit high frequency components.
n improved frequency comodulation measure would distin-
uish between high frequency oscillations and sharp edges in
he original data.

We note that wavelets (rather than bandpass filtering followed
y a Hilbert transform) may also be used to extract the phase and
mplitude envelope of low and high frequency signals, respec-
ively (Lakatos et al., 2005; Mormann et al., 2005). We have
pplied the same analysis described above using the complex

orlet wavelet to filter the data and again find spurious fre-

uency comodulation (data not shown). We note that, for the
xamples considered here, phase coupling measures (e.g., n:m
hase coupling (Palva et al., 2005; Tass et al., 1998)) are not
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ppropriate. The coupling occurs between the low frequency
hase and high frequency amplitude envelope, not between the
ignal phases.

To ameliorate the potential problem of spurious frequency
omodulation, we recommend careful inspection of the unfil-
ered data to distinguish between sharp edges and true high
requency oscillations. This inspection is usually difficult; the
igh frequency activity of EEG, ECoG, and LFP data are typ-
cally weak and hidden by noise. Moreover, the amplitude
nvelopes of true and artifactual high frequency activity can be
uite similar (compare the lower traces of Figs. 2a and 3a). Mea-
ures that display the modulation results without normalization
such as the average envelope versus phase measure shown in
igs. 2b and 3b) help distinguish the magnitude of the effects;
ery small values may result from subtle imperfections in sinu-
oidal activity and require a careful inspection of the data. From
he normalized envelope-to-signal and comodulation results we
annot deduce the magnitude of the amplitude envelope. There-
ore, even weak high frequency activity – perhaps resulting from
rief sharp edges – could produce significant coupling effects in
hese normalized measures.

We conclude by suggesting four techniques to detect sharp
dges in data. First, we recommend visual inspection of the
nfiltered data at times corresponding to increases in the ampli-
ude envelope of the high frequency activity. At these times, do
he unfiltered data exhibit high frequency oscillations or sharp
dges? To help visualize the high frequency activity, we rec-
mmend a second technique: an event related average of the
nfiltered data triggered by the peaks of successive high fre-
uency waves (Bragin et al., 1995). We illustrate this suggestion
n Fig. 4, where we plot the event related averages of the imper-
ect sinusoid (Fig. 4a) and sinusoid + high frequency noise data
Fig. 4b). The distinction between high frequency activity result-
ng from sharp edges or oscillations becomes clear in these
verage results.

Third, we recommend computing the power spectrum of the
aw data and searching for harmonic peaks of the dominant
ow frequency oscillation. We show the power spectra for the
mperfect sinusoid and sinusoid + high frequency noise data
n Fig. 4c and d, respectively. The sharp edges in the former
esult in numerous peaks at harmonics of the fundamental fre-
uency (in this case, integer multiples of 6 Hz.) Such a power
pectrum implies sharp edges may be impacting the frequency
omodulation results.

Of course, multiple peaks in the power spectrum do not nec-
ssarily indicate harmonic activity. For example, theta (near 6
z) and alpha (near 12 Hz) rhythms often appear in the human
EG. Therefore, we recommend a fourth technique: computing

he bicoherence of the raw data. The bicoherence is a normalized
easure (ranging from 0 to 1) that reaches a maximum when

hree frequencies (f1, f2, and their sum f1 + f2) maintain a
onstant phase relationship (Barnett et al., 1971). We illustrate
he bicoherence for the simulated data in Fig. 4 and find dis-

inct results. The imperfect sinusoid (Fig. 4e) exhibits strong
icoherence for many frequency pairs compared to the bico-
erence of the sinusoid + high frequency noise data (Fig. 4f).
he numerous pairs of strong bicoherence for the imperfect

C

C

cience Methods 170 (2008) 352–357

inusoid occur at the fundamental oscillation frequency (near
Hz) and its phase locked harmonics (12, 18, 24 Hz, etc.). For

he sinusoid + high frequency noise data, the high frequency
ctivity always begins at approximately the same low frequency
hase (near 0◦). In this sense, the high and low frequency phases
re related, and it is this relationship that produces the ver-
ical and horizontal bands of strong bicoherence in Fig. 4f.

e conclude that the bicoherence – which indicates interact-
ng frequency triplets – distinguishes these two data sets while
he frequency comodulation measures do not. A similar strat-
gy may be employed for the characteristic two-dimensional
attern of frequency comodulation shown in Fig. 1d. In this
wo-dimensional measure, we find the effects of coupling due to
harp edges more apparent. These types of measures may facil-
tate detection of spurious results. We note that the bicoherence
tilizes the phase and amplitude values from three distinct fre-
uencies. We would prefer a measure focused on the quantities
f interest, namely the phase and amplitude envelope of the low
nd high frequency data, respectively. In addition, more sophis-
icated coupling measures (e.g., synchronization or causality

easures (Pereda et al., 2005)) might help eliminate spurious
etection of coupling while still revealing true phase-envelope
orrelations.
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