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Abstract
We describe a transition from bursting to rapid spiking in a reduced mathematical model of a
cerebellar Purkinje cell. We perform a slow-fast analysis of the system and find that — after a saddle
node bifurcation of limit cycles — the full model dynamics follow temporarily a repelling branch of
limit cycles. We propose that the system exhibits a dynamical phenomenon new to realistic,
biophysical applications: torus canards.

Bursting — a repeated pattern of alternating quiescence and rapid spiking — occurs in many
neural systems, perhaps with functional implications [1,2]. Mathematical models developed
to characterize bursting neural activity typically share common dynamical traits (e.g.,
excitability, slow-fast dynamics) and bifurcations [3,4]. In these models, the mechanisms that
produce both periodic spiking and bursting activity are well understood [5,6]. Yet the transition
between these states often produces complicated dynamics (e.g., chaos, homoclinic
bifurcations, blue sky catastrophes, period doubling cascades) more difficult to characterize
[7–11].

In this letter, we describe a novel mechanism for the transition from bursting to spiking activity
observed in a realistic, biophysical model of a cerebellar Purkinje cell. We propose a reduction
of this detailed model to study the transition and describe an intermediate state during which
fast spiking activity is amplitude modulated by a slower rhythm. In this intermediate state we
observe a new type of dynamics in a continuous system that follows the attracting and repelling
branches of limit cycles in the fast subsystem. We compare these dynamics to traditional canard
phenomena and propose that a new type of canard — a torus canard — occurs in the reduced
model and provides a potential explanation of the detailed model activity.

The modeling and analysis were motivated by results observed in a detailed computational
model of a cerebellar Purkinje cell [12,13]. The detailed model consists of 559 compartments,
each with 12 types of ionic currents, resulting in over 6000 dynamical variables. We illustrate
the results of a typical numerical simulation of this model in Figure 1. Between the quiescent
intervals of bursts (Q), we observe rapid spiking activity modulated in amplitude. This
modulation becomes more complicated as time progresses until the activity reenters the
quiescent burst phase. What dynamical and biophysical mechanisms produce this bursting
activity interspersed with amplitude modulated (AM) spiking?

To answer this, we propose a reduced model of the detailed cerebellar Purkinje cell consisting
of a single compartment with four ionic currents. The voltage and current dynamics follow:
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(1a)

(1b)

Five currents affect the voltage in (1a): a delayed rectifier potassium current (gK =10.0), a
transient inactivating sodium current (gNa=125.0), a leak current (gL=2.0), a high-threshold
noninactivating calcium current (gCa=1.0), and a muscarinic receptor suppressed potassium
current (or M-current,gM=0.75). The dynamics of each gating variable follow (1b) with x
replaced by n, h, c, or M. We implement the equilibrium function (x0[V]) and time constant
(τx[V]) for each current from [14] and make the standard approximation of replacing the sodium
activation variable with its equilibrium function (m0[V]). Of the five variables, the M-current
evolves on a much slower time scale (at least ten times slower) and acts as the slow variable
in this slow-fast system. In what follows, we increase the excitation of the reduced model
neuron by increasing the magnitude of parameter J and compute numerical solutions and
bifurcation diagrams for the system with XPPAUT and AUTO [15].

We begin with a description of the voltage activity computed for decreasing values of the
parameter J to illustrate the transition from bursting to rapid spiking. For J > −22.5, the
dynamics approach a stable fixed point (V ≈ −54 mV for J = −22.5, not shown.) As we decrease
J through −22.5, bursts of activity emerge (Figure 2, top). Within a burst the interval between,
and amplitude of, the rapid spiking increase (from 1.6 ms to 2.0 ms, and 40 mV to 65 mV,
respectively) after an initial transient. The interburst intervals (lasting approximately 200 ms)
are much longer than the intervals between spikes. Decreasing J further we find that the burst
duty cycle increases, but that the interval between burst onsets remains approximately constant.
As we depolarize the neuron, more M-current must slowly accumulate to stop the bursting;
thus, the duration of spiking, compared to quiescence, increases. Near J = J⋆ = −32.93825 the
transition from bursting to rapid spiking begins and a new type of activity appears: bursts
interspersed with amplitude modulated (AM) fast spiking activity (Figure 2, middle). The new
activity increases the interval between bursts by integer multiples of 120 ms, the period of one
complete AM cycle. In Figure 2, one AM cycle separates the quiescent burst phases. We find
(but do not show) that the number of AM cycles between bursts appears unpredictable; in
simulations, we have observed between zero and 25 AM cycles between bursts. Reducing the
parameter further to J = −32.94 we find only AM spiking (and no bursting) activity. For J <
−32.96 only rapid spiking without amplitude modulation occurs and the transition from
bursting to rapid spiking is complete.

What dynamical mechanisms govern the intermediate state between bursting and rapid spiking
in the model? To address this, we isolate the fast subsystem and examine its set of equilibria
(i.e., the critical manifold) and periodic orbits. In this slow-fast decomposition of (1), we fix
J, treat the slow variable M in (1) as a parameter, and compute bifurcation diagrams numerically
in AUTO as implemented in XPPAUT [15]. We then study the global dynamics of the full
model on the bifurcation diagram of the fast subsystem. For J = −23.0 the dynamics exhibit
well known behavior: rapid spiking begins at a fold of fixed points and ends at a fold of limit
cycles (i.e., fold / fold cycle bursting [4]). But, as we decrease J towards J⋆, we find novel
activity develops as we now describe.

In Figure 3 we plot a bifurcation diagram (thick and color) for the fast subsystem and simulation
results for the full system (thin and grayscale) with J = J⋆. In the full system, rapid spiking
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begins when the M-current decreases past the fold of fixed points in the fast subsystem; at this
fold or knee, the attracting and repelling fixed points merge and annihilate. The voltage then
increases rapidly, and the full dynamics approach the attracting curve of limit cycles in the fast
subsystem. With each spike, the slow M-current in the full system increases until the dynamics
reach a fold of limit cycles in the fast subsystem. At this fold, we expect spiking to cease
consistent with the fold / fold cycle bursting observed for J = −23.0. Instead we find that spiking
continues as the dynamics of the full system follow the curve of limit cycles through the fold
to the branch of repelling limit cycles. The M-current decreases, and the full dynamics follow
temporarily the repelling branch of limit cycles until returning to the branch of attracting fixed
points (light gray) or limit cycles (black). If the former, then the dynamics enter the quiescent
phase of bursting and the M-current decreases. If the latter, then an AM cycle occurs; rapid
spiking continues and the dynamics again approach the fold of limit cycles as the M-current
increases.

Decreasing J past J⋆ to −32.94 eliminates bursting in the full model dynamics and results in
AM spiking alone. During one complete AM cycle, the slow M-current in the full dynamics
increases along the branch of attracting limit cycles, passes through the fold of limit cycles,
and decreases along the branch of repelling limit cycles before returning to the branch of
attracting limit cycles (Figure 4). As J decreases the extent of this slow modulation also
decreases both in period (from approximately 0.11 s to 0.08 s) and in magnitude (the AM of
the rapid spiking decreases from approximately 16 mV to 0.5 mV). These reductions are
suggested in Figure 4 and coincide with smaller excursions of the full dynamics from the fold
point as J decreases. The transition from AM spiking to unmodulated spiking occurs at a
supercritical torus bifurcation (negative first Lyapunov coefficient) near J = JTB = −32.96 in
the full system. At this bifurcation, a stable torus and unstable limit cycle meet, and a stable
limit cycle emerges. The multipliers of the bifurcating limit cycle possess a complex conjugate
pair whose moduli decrease through one as J decreases through JTB. The resulting stable limit
cycles possess four multipliers of moduli less than one, and one multiplier of unit modulus
corresponding to the fixed radius of the orbit. We illustrate this transition in a Poincare map
sampled at the apex of each spike in V (Figure 4). Decreasing J further produces lower
amplitude, faster oscillations that cease when J < −150 and the supercritical Hopf bifurcation
occurs at M > 1, outside the physiological range.

We propose that the dynamics described above extend in new directions the classical canard
phenomena observed in lower dimensional slow-fast systems. The prototypical canard example
consists of two variables evolving on different time scales (e.g., the van der Pol equation.) For
this two dimensional system, the critical manifold contains curves of attracting and repelling
fixed points. In the full (2-D) system, the canards initiate at a Hopf bifurcation. The subsequent
periodic dynamics follow the curve of attracting fixed points until reaching a fold of fixed
points in the fast subsystem. Here, the slow variable reverses direction and the full dynamics
follow temporarily the curve of repelling fixed points of the fast subsystem, eventually
returning to a stable branch of fixed points [16].

A related, but novel, phenomena appears to occur in the reduced, 5-dimensional model of the
cerebellar Purkinje cell. The bifurcation diagram in Figure 3 illustrates the union of fixed points
and limit cycles of the fast subsystem as M is changed. During the active phase of the burst,
the full model dynamics follow the curve of attracting limit cycles. Each (fast) cycle within
the burst increases the (slow) M-current until the global dynamics reach a fold in the bifurcation
diagram. At this fold of limit cycles the average dynamics of the slow variable reverse direction
(i.e., the dynamics of the M-current averaged over individual spikes in the fast subsystem
change sign from positive to negative.) The full dynamics then follow temporarily the curve
of repelling limit cycles. Consistent with classical canard phenomena, the parameter value (J)
determines the length of time spent near the repelling branch and to which stable branch the

Kramer et al. Page 3

Phys Rev Lett. Author manuscript; available in PMC 2009 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



dynamics return. What differs here is that the canard initiates not after a Hopf bifurcation at a
fold of fixed points, but instead after a torus bifurcation at a fold of limit cycles. We therefore
label this phenomena a torus canard.

The torus canard serves as an intermediary between the bursting and rapid spiking states. This
is often the case for canards associated with dramatic changes in dynamics resulting from small
changes in a control parameter (e.g., a canard explosion). In addition, complex (or chaotic)
behavior often appears near the transition between different types of activity and may occur
here (Figure 2, middle). The sequence of bifurcations in this transitional region may be quite
complicated and warrants further study.

The (slow) M-current and (fast) calcium current play complementary biophysical roles in the
reduced model. During the active phase of a burst, the M-current acts to hyperpolarize the cell
and discourage spiking, while the calcium current acts to depolarize the cell and promote
spiking. When J > J⋆, the hyperpolarization eventually wins, spiking stops, and the cell enters
the quiescent phase of the burst. The M-current is essential to this bursting activity [17]. For
J < J⋆, the depolarizing effect of the calcium current prevents the runaway hyper-polarization
due to the M-current. The quiescent phase of the bursts no longer occurs and we find instead
only slow modulation of the fast spiking activity. Decreasing J further reduces the M-current
dynamics and produces unmodulated fast spiking activity. We note that, in the reduced model,
blocking either the M or calcium current during AM spiking produces unmodulated rapid
spiking. These predictions were confirmed in the detailed model.

In this letter we described a novel mechanism that occurred during the transition from bursting
to rapid spiking activity: torus canards. We identified this activity in a physiologically realistic
computational model of a cerebellar Purkinje cell that motivated the simplified mathematical
model. By studying the slow-fast dynamics of the reduced system, we developed a better
understanding of the physiological mechanisms (the M-current and calcium current) and
dynamical mechanisms (the torus canard) that could produce the activity observed in the
detailed model.

Canards have been observed in other mathematical models of neural systems [18–21].
However, in all of these systems, the canards occur along branches of attracting and repelling
fixed points. The dynamics presented here are unique in that the canards occur along branches
of attracting and repelling limit cycles in a realistic, biophysical model. In addition, these results
were not limited to the reduced model; similar dynamics were also observed in a detailed
biophysical model. Moreover, the slow modulation of the fast spiking activity appears to occur
in vitro (see Figure 7A and Figure 8A of [22]). Additional recordings from cerebellar Purkinje
cells could test experimentally the existence of torus canards and the role of the M-current in
these dynamics.

Our analysis focused on a computational, slow-fast decomposition of (1). Although useful, this
decomposition appears inadequate; we note in particular that small changes in the middle three
bifurcation diagrams of Figure 4 coincide with large changes in the full dynamics (namely, the
transition from bursting to AM spiking to rapid spiking). A better understanding of these
dynamics will require a more sophisticated treatment [23] involving, perhaps, dimensional
reduction [24] or an analysis of the canards in associated Poincare maps [25]. The transition
from bursting to spiking exhibits a mixed mode oscillation pattern (with bursts acting as the
large amplitude oscillations and AM cycles as the small amplitude oscillations). The system
may therefore benefit from this type of analysis as well [26].
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FIG. 1.
Simulation results of the soma compartment voltage (black) from a detailed Purkinje cell model
[13]. An injected current (gray) depolarizes the cell and produces rapid spiking modulated in
amplitude (AM, upper left expanded trace) followed by more complicated activity (upper right
expanded trace) between the quiescent intervals (Q) of bursts. The horizontal and vertical scales
(right) denote 50 ms and 50 mV, respectively.
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FIG. 2.
The transition from bursting to AM spiking to rapid spiking in the reduced model as J decreases.
We plot in gray the voltage activity of the neuron for five different values of J. In the middle
trace (J = J⋆) we observe both bursting and AM spiking activity. We shade one complete AM
cycle in black. Further reductions in J result in AM spiking and (unmodulated) spiking. The
vertical bars in the top and bottom traces denote a 100 mV range, extending from −60 mV to
40 mV, with 10 mV between tick marks.
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FIG. 3.
Bifurcation diagram of the fast subsystem (thick and color) and dynamics of the full system
(thin and gray/black) for J = J⋆. In the fast subsystem, the attracting and repelling fixed points
and limit cycles meet at folds (yellow circles) labeled Fold FP and Fold LC, respectively. The
attracting limit cycles appear in a supercritical Hopf bifurcation (not shown). At the fold of
limit cycles the (slow) M-current changes direction and the complete dynamics follow the
branch of repelling limit cycles temporarily until returning to the curve of attracting fixed points
(gray) or attracting limit cycles (black).
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FIG. 4.
Bifurcation diagrams of the fast subsystem (thick and color) and dynamics of the full system
(thin and gray/black) for five different values of J. In the main figures, the vertical axes are
identical; the horizontal axes (identical for top four figures) indicate the value of M and the
axis is expanded for the bottom figure. For J = −23, only fold / fold cycle bursting occurs (gray).
At J = J⋆, the dynamics follow temporarily the branch of repelling limit cycles, eventually
returning to the branch of attracting fixed points (burst in gray) or the branch of attracting limit
cycles (AM cycle in black). Reducing J further results in AM spiking alone and rapid,
unmodulated spiking. Inset: Poincare map (voltage versus M-current) of the full system for
five different values of J. Stable fixed points, corresponding to unmodulated rapid spiking,
occur for three values of J. For J = {−32.95, −32.94} stable invariant closed curves indicate
amplitude modulation in the complete system.

Kramer et al. Page 9

Phys Rev Lett. Author manuscript; available in PMC 2009 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


