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Dynamics of neuronal networks can be altered in at least two

ways: by changes in connectivity, that is, the physical

architecture of the network, or changes in the amplitudes and

kinetics of the intrinsic and synaptic currents within and

between the elements making up a network. We argue that the

latter changes are often overlooked as sources of alterations in

network behavior when there are also structural (connectivity)

abnormalities present; indeed, they may even give rise to the

structural changes observed in these states. Here we look at

two clinically relevant states (Parkinson’s disease and

schizophrenia) and argue that non-structural changes are

important in the development of abnormal dynamics within the

networks known to be relevant to each disorder. We also

discuss anesthesia, since it is entirely acute, thus illustrating

the potent effects of changes in synaptic and intrinsic

membrane currents in the absence of structural alteration. In

each of these, we focus on the role of changes in GABAergic

function within microcircuits, stressing literature within the last

few years.
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Introduction
Parkinson’s disease and schizophrenia are both diseases

with significant alterations in neuronal network structure

as well as alterations in brain rhythms. In each of these

diseases, there are biochemical and structural changes

that are associated with changes in network dynamics,

including changes in rhythms. Much of the literature has

emphasized the role of structural changes in the etiology
www.sciencedirect.com 
of these diseases. By contrast, we focus here on changes in

intrinsic and synaptic currents of microcircuits to show

how these affect network dynamics. Furthermore, we

discuss how some of these alterations in dynamics may

lead to compensatory anatomical changes in the net-

works. Within this framework, the fundamental differ-

ence between Parkinson’s disease and schizophrenia is

that the former represents a derangement of established,

normal brain dynamics whereas the latter represents a

derangement of the processes needed to establish normal

brain dynamics in the first place. In order to highlight that

changes in sizes and dynamics of currents are tightly

correlated with changes in network dynamics, we also

discuss the changes in network rhythms that occur in

anesthesia, and the potential relation to loss of conscious-

ness. In each of these, changes in GABA functionality, or

GABA interaction with other changed currents, are cen-

tral to the changes in the microcircuit network dynamics.

Parkinson’s disease
Parkinson’s disease is a neurodegenerative disorder invol-

ving loss of dopaminergic neurons of the substantia nigra

pars compacta (SNpc) that project primarily to the stria-

tum. The efficacy of new treatments for Parkinson’s

disease, such as deep brain stimulation (DBS) to the

subthalamic nucleus (STN) or the internal segment of

the globus pallidus (GPi), highlights the fact that Parkin-

son’s disease not only affects the SNpc and the striatum,

but is a network disorder, involving alteration of the

dynamics within and between the nuclei of the basal

ganglia, the thalamus and the cortex.

A well-known dynamical abnormality in parkinsonian

networks is the emergence of a prominent beta frequency

rhythm in the basal ganglia and more coherent beta

oscillations in the cortex [1–3,4] (Figure 1a). There exists

correlation between the exaggerated beta oscillations and

the bradykinesia and rigidity characteristic of the parkin-

sonian state [5]. Interestingly, both in the basal ganglia

and cortex, modulation of beta oscillations occur with

movement [6,1,7–9]. This indicates that the prominent

beta rhythms in the basal ganglia and cortex found in

Parkinson’s disease may be an abnormal expression of a

normal dynamical state of the network. A contrary point of

view is that structural changes must occur before the

increase in beta. Supporting evidence for this viewpoint is

that a rat model of Parkinson’s disease require several

days post lesion before increases in beta oscillations are

observed, and prominent beta oscillations do not occur

immediately in response to dopamine antagonists [10].
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Figure 1
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The search for the origin of pathologic rhythmic activity

in Parkinson’s disease has recently focused on striatum

(Figure 1b and c): a recent study suggests that structural

changes in striatal networks may be responsible for the

rhythmic changes seen in Parkinson’s disease patients by

showing that chronic dopamine depletion increased con-

nectivity between fast-spiking interneurons (FS cells)

and ‘indirect-pathway’ medium spiny neurons (MSNs)

in mouse striatum [11�] (Figure 1c). Computational mod-

eling of the striatal MSN-FS network showed increased

connectivity between FS cells and MSNs resulted in

increased synchrony between MSNs, suggesting that this

structural change in striatum may underlie the pathologic

oscillatory changes seen in Parkinson’s disease. (We note

that the simulations in the Gittis et al. [11�] paper did not

display synchrony in the beta frequency range.)

In contrast, another study suggests that the pathologic

beta oscillations in Parkinson’s disease may be the result

of neuromodulation of a normal striatal network. Com-

putational modeling of striatal networks shows that inter-

actions between striatal MSNs, which account for 90–95%

of the neurons in the rodent striatum [12] and are the only

output neuron of the striatum, have the ability to generate

robust beta oscillations under conditions that increase

MSN excitability, including high cholinergic tone, loss

of dopamine or increased background excitation from

cortex or thalamus [13��] (Figure 1b and d). This model

striatal MSN network produces beta oscillations indepen-

dent of striatal FS interneurons. Experimentally, infusion

of carbachol, a cholinergic agonist, into normal mouse

striatum produced prominent beta frequency rhythms

[13��] (Figure 1d). High striatal cholinergic tone is

relevant to Parkinson’s disease since dopamine tonically

inhibits release of striatal ACh [14] and loss of dopamine

increases ACh levels in the 6-OHDA rat, an animal model

of Parkinson’s disease [15].

We argue here that, although structural changes to net-

works may take place in Parkinson’s disease, consider-

ation should be given to viewing certain aspects of the

pathologic dynamics as abnormal dynamical states of

underlying normal networks. The increase in FS-MSN

connectivity with dopamine depletion occurred within 3

days [11�], whereas high cholinergic tone promotes exag-
( Figure 1 Legend ) A prominent beta oscillation emerges in the basal gangl

some of the major connections between the nuclei of the cortico-basal gan

connections are denoted by a red arrow and inhibitory connections are den

microcircuits of possible importance in the generation of rhythmic activity in P

connected to each other via GABAa synapses can produce beta oscillations.

the MSN M-current conductance and increases the excitability of the individ

sufficient to amplify beta oscillations in the model MSN network. (c) Model ne

as additional FS-MSN connections are added [11�]. (d) Computational mod

conductance due to high ACh (the ‘parkinsonian’ state) can induce MSNs to s

a beta frequency rhythm seen in the model spectrogram (second row). Expe

normal mice produces a beta frequency rhythm seen in the spectrogram (th

agonist, carbachol. Subfigure d adapted from McCarthy et al. [13��].
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gerated beta oscillations within minutes [13��]. This

suggests that the underlying network connectivity

already exists in striatum to support the pathologic beta

oscillations in Parkinson’s disease and that structural

changes are not necessary to promote exaggeration of

network dynamics. Furthermore, since increased ACh

decreases FS cell GABAergic inhibition of MSNs through

presynaptic muscarinic receptors, FS cells are likely not

necessary for the production of the exaggerated beta

oscillations due to high cholinergic tone [16]. Gittis

et al. [11�] find increased mIPSC frequencies in the D2

MSNs of the parkinsonian mouse; although they attribute

this to increased FS to MSN connections, it could also be

attributed to increased spiking of MSN neurons, a pre-

diction of the MSN model network [13��]. The increased

connectivity between FS and MSN cells seen in the

‘indirect pathway’ after chronic dopamine depletion

could be a homeostatic response to the increased MSN

spiking. A similar reactive response has been noted in

mouse GPe neurons, which develop an HCN channelo-

pathy after being rendered parkinsonian [17�]. Loss of

HCN current can lead to increased synchronization be-

tween GPe neurons [17�]. However, viral introduction of

the HCN subunits to GPe neurons did not eliminate the

motor pathology in the parkinsonian mice, indicating that

the HCN channelopathy is a reaction to, rather than an

underlying cause of, network pathology.

Another study suggesting that normal circuitry is impli-

cated in parkinsonian symptoms is [18��], in which opto-

genetic activation of D2-expressing MSN neurons caused

parkinsonian symptoms in normal mice. Importantly, this

study also showed that increased D1 MSN activation

relieved the motor deficits caused by D2 MSN stimu-

lation, indicating multiple points of interception in the

normal network for abnormal network behavior. The

MSN network model of [13��] predicts that the increased

beta oscillations in Parkinson’s disease occur in the MSNs

with D2 receptors, since loss of dopamine increases

activity in the D2 pathway [19].

Dopamine has been implicated in alterations of the

dynamics of synaptic currents in other nuclei of the basal

ganglia including GPe, GPi, STN and SNpr, many invol-

ving changes to the GABAergic system within these
ia and cortex of Parkinson’s disease patients. (a) Schematic diagram of

glia-thalamic loop (note: not all connections are shown). Excitatory

oted by a blue arrow. (b, c) Highly schematic diagrams of striatal

arkinson’s disease. (b) Model networks of medium spiny neurons (MSNs)

 Beta oscillations are amplified in the presence of high ACh, which lowers

ual MSNs [13��]. Lowering the maximal MSN M-current conductance is

tworks of MSNs and fast-spiking interneurons show increased synchrony

eling of networks of striatal MSNs suggests that lower M-current

pike more synchronously, as seen in the raster plots (top row) producing

rimental testing of the computational model revealed that the striatum of

ird row) and the LFP trace (last row) in the presence of the cholinergic
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nuclei [20�]. Some alterations to synaptic currents, such

as decreasing the GABAergic conductance between GPe

neurons and increasing GABAergic inhibition from stria-

tum to GPe, have been shown to increase oscillatory

activity in mathematical models of the STN-GPe net-

work [21]. Both computational modeling and experimen-

tation give evidence that the STN-GPe network is

capable of generating rhythmic activity, which may have

implications for rhythm generation in Parkinson’s dis-

ease [22,23,24]. Furthermore, a cortical component of the

pathologic beta rhythm is suggested by the evidence that

beta frequency oscillations can be elicited in slices of

primary motor cortex (M1) following application of the

glutamate receptor agonist, kainate and the muscarinic

agonist, carbachol in a manner dependent on intact

GABAergic connections [25]. Additionally, beta rhythms

can be generated from networks of layer V pyramidal

cells of somatosensory cortex in a manner dependent on

intact gap junctional connections but independent of

input from higher cortical layers and independent of

AMPA input [26]. Again, this argues that networks in

M1 and S1 are both capable of generating robust beta

frequency rhythms independent of structural changes

within these networks. Beta oscillations in these net-

works are relevant to Parkinson’s disease since beta

oscillations are more coherent in the cortical EEG in

untreated Parkinson’s disease [4] and cortical layer V

pyramidal neurons are the cells of origin of the corticosp-

inal pathway.

Although the origin of the beta rhythms in Parkinson’s

disease is still under debate, the findings of multiple sites

within the cortico-basal ganglia-thalamic loop that sup-

port oscillatory activity in response to changes in the

dynamics of synaptic and membrane currents suggest

that the exaggeration of beta oscillations in Parkinson’s

disease may be primarily due to alterations in the cur-

rents, rather than structural network changes.

Schizophrenia
Unlike Parkinson’s disease, schizophrenia is not con-

sidered a neurodegenerative disorder. Instead, failure

of neuronal networks to develop into a normal, mature

brain is currently being proposed [27��]. These authors

argue that the normal global connectivity changes associ-

ated with adolescence are left incomplete in affected

individuals — a scenario that fits very well with the peak

onset age [28]. Structurally, changes in both gray matter

volume (usually highly lateral [29]) and white matter

tracts are evident, with suggestions of interrelatedness

in these two measures [30]. Such changes are also seen in

non-schizophrenic siblings and prodromally [31,32] so it is

difficult to determine whether they are a direct cause or

merely one of many risk factors. However, functionally,

such large-scale changes in anatomy are paralleled by

global network function changes. In the resting state,

there is loss of weak connections between brain areas; this
Current Opinion in Neurobiology 2012, 22:693–703 
correlates with deficits in cognitive function (attention

and memory in particular [33]). In addition recent novel

network analyses have revealed large differences in ‘com-

munity structure’ — which brain regions commonly

interact with others — in schizophrenic patients [34].

Given the accepted neurodevelopmental nature of

schizophrenia, it is perhaps not surprising that such global

structure and function deficits are seen. However, it is not

clear whether relationships between structure and func-

tion are casual or causal and, if the latter, which causes

which. Here we propose that the majority — if not all —

of the structural changes above may arise secondary to the

failure to produce appropriate cortical dynamics during

brain development. Models of neurodevelopmental

abnormalities linked to schizophrenia provide clues here.

Dysbindin-1 is a candidate susceptibility gene in schizo-

phrenia and linked to gray and white matter structural

changes [35]. However, the predominant effect of

mutation of this gene is reduction in synaptic inhibition

in local circuits [36�]. Such inhibition plays a critical role

in many aspects of brain function: It is critical for visual

orientation tuning, a psychophysical measure disrupted in

patients [37]. It is vital for the generation of many EEG

rhythms of cognitive relevance (auditory beta rhythms

[38], hippocampal theta rhythms [39] and gamma

rhythms [40,41]). Each of these readily recordable fea-

tures of cognitive function, but particularly gamma

rhythms, is affected in schizophrenia and experimental

models in a highly region-specific manner [42]. The

interregional interaction between brain rhythms has been

proposed to be critical for the formation of cortical net-

works during cognitive tasks [43]. Thus, a region-by-

region difference in rhythm generation would be

expected to contribute to a functional disconnect in

cortex as seen in patients [44].

In terms of functional cortical connectivity in schizo-

phrenia, gamma rhythms have received intense interest.

Abnormalities in gamma rhythms have been repeatedly

observed in schizophrenic patients [45��]. Gamma

rhythms are associated with several correlates of cog-

nitive function including perception, attention, mem-

ory, and experimental and computational modeling

have shown the importance of fast-spiking interneurons

in the generation of cortical gamma rhythms [46].

Optogenetic activation of fast-spiking interneurons

has been shown to increase cortical gamma oscillations

both in vitro and in vivo [47,48]. Interestingly, opto-

genetically increasing, but not decreasing, the interplay

between local circuit excitatory and inhibitory synaptic

activity in the medial prefrontal cortex of mice rever-

sibly both engendered cognitive and social dysfunction

and increased oscillations in the gamma frequency

range [49��]. This deficit appears to be the result of

an acute dysfunction of information processing within

cortical circuitry. In contrast, in other brain regions
www.sciencedirect.com
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schizophrenia is associated with decreases in gamma

power. This has been seen in primary auditory and

visual cortices as well as parietal regions [50], and is

particularly marked in entorhinal cortex in animal

models [51].
Figure 2
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The key role played by gamma rhythms in timing

neuronal activity patterns implicates it in controlling

synaptic plasticity — a process which in turn can change

both structural and functional connections within and

between brain regions (Figure 2). The precise timing
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Local effects of propofol anesthesia manifest in thalamocortical networks. (a) In a normal state, thalamocortical networks are governed by an interaction

between low threshold interneurons (LTS), fast-spiking interneurons (FS), pyramidal cells, thalamic reticular cells (RE) and thalamocortical cells (TC). (b)

With a low dose of propofol anesthesia, cortical networks experience an increase in GABAergic inhibition that interacts with intrinsic properties of LTS cells

to produce beta oscillations [64]. (c) With a higher dose, inhibition increases further in cortical networks leading to a further decrease in cortical oscillation

frequency. Simultaneously, elevated inhibition in thalamic networks interacts with h-currents to promote thalamic rebound spiking at alpha frequency. (d)

These effects combine to produce an alpha rhythm that coalesces within the entire thalamocortical network [72]. Example of model spiking activity in the
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of pre-synaptic and postsynaptic excitation in neurons

is critical for the control of synaptic strength (spike

timing-dependent plasticity, STDP). If synaptic strength

is modified, then so are the spine densities and dendritic

arbors of principal cells. These two factors are well

characterized as local cytoarchitectonic changes in brains

of patients with schizophrenia [52�,53]. These plastic

changes, and in certain areas the very gamma rhythm

that may control STDP in the first place, are all de-

pendent on NMDA receptor function [51,54,55].

Changes in NMDA receptor activation may, in turn, feed

back to control genetic and histochemical factors impli-

cated in schizophrenia such as DISC1 [56] and parvalbu-

min immunoreactivity [57].

A selective deficit in NMDA receptor-mediated drive to

parvalbumin-immunopositive interneurons forms a core

feature of the glutamate hypothesis of schizophrenia

[58��]. Not all interneurons maintain NMDA receptor

mediated excitation into adulthood, perhaps explaining

the region specificity of deficits despite more global

changes in markers such as GAD67. However, in inter-

neurons that do lose this drive, compensatory effects

may follow in an attempt to boost what inhibitory signal

is present presynaptically and postsynaptically — thus

generating the array of postmortem findings reported

for the inhibitory system in schizophrenia: Reducing

calcium sequestration by parvalbumin boosts inhibition

and gamma rhythms [59]. Changes in GABAA receptor

subunit expression [41] may serve to boost postsynaptic

signals. Cannabinoid receptor changes associated with

schizophrenia may enhance GABA release [60].

Reduced GAT function may increase the time released

GABA spends in the synaptic cleft, thus increasing

inhibitory charge transfer [61]. This latter facet of the

documented changes in inhibitory system may also have

a profound effect on the rhythmicity seen in brains of

patients with schizophrenia. Studies have shown that

the EEG response to 40 Hz auditory clicks elicit a

40 Hz, gamma, response in normal individuals but elicit

both a 20 Hz, beta, and a 40 Hz response in patients

with schizophrenia. Computational modeling by Vier-

ling-Claassen et al. [62] suggests this deficit in gamma

and increase in beta could be the result solely of

increasing the decay time constant of cortical GABA-

ergic synapses — as seen with GAT dysfunction

(above). As the time constant is increased, the excit-

atory cells, which are believed to carry the EEG signal,

cannot always respond to every 40 Hz pulse but instead

responded mainly to every other pulse, thus creating a

prominent 20 Hz component in the EEG signal

(Figure 3).
( Figure 3 Legend Continued ) transition from low to high dose behavior, tha

beta oscillations are mediated by LTS and FS cells with minimal thalamic partic

concurrently with an increase in thalamic participation, resulting in a thalamoc
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General anesthesia and states of reduced
arousal
General anesthesia — the pharmacologically induced

state of reversible coma — provides powerful evidence

that changes to intrinsic membrane and synaptic currents

within networks, devoid of structural abnormalities, can

elicit highly pathological brain dynamics. Historically, the

study of anesthetic drugs has focused on their effects at

the molecular level. Such descriptions do not completely

explain the diversity of anesthetic effects, which can

range from the profound (a state akin to brain death)

to the paradoxical (excitation, delirium, hallucinations).

Recent research has shifted the focus from the molecular

targets of anesthesia to effects in larger networks, treating

the anesthetic drugs as perturbations to the dynamics of

an underlying but intact network [63��]. Such an approach

has revealed how seemingly local neuromodulatory

effects can lead to vast changes in behavior. Moreover,

understanding anesthesia at a network level has exposed

novel connections to related pathologies such as coma

[63��,64�], suggesting interesting ways to investigate fun-

damental properties of the brain’s arousal mechanisms

and new treatments in disorders of consciousness.

To date, the clearest example of the network effects of

general anesthesia is through propofol, a common clinical

drug that is thought to act primarily through an increase in

GABAergic inhibition [63]. At subanesthetic dose levels,

the drug causes ‘paradoxical’ excitation, a delirium-like

state that is associated with beta (16–25 Hz) frequency

oscillations in the EEG [66]. When viewed only through

the lens of inhibition, such oscillations are difficult to

explain. However, when network elements are considered,

a clear mechanism emerges. Indeed, it has been shown that

a subset of cortical interneurons — LTS cells — can inter-

act with elevated GABA kinetics (decay-time) and

increased conductance in order to pattern pyramidal cell

spiking into a beta rhythm. Potentiation of the GABA

synaptic currents causes a reduction in the M-current (a

slow potassium membrane current), leading to an increase

in LTS cell excitability and, eventually, rebound spiking

[65]. A similar mechanism has been proposed in the context

of Parkinson’s disease, where a GABA — M-current inter-

actions are thought to provide the basis for aberrant beta

oscillations in striatal networks [13��]. The connection to

striatal networks is particularly intriguing given recent

evidence of another type of paradoxical ‘excitation,’ invol-

ving zolpidem. That drug, also a GABA agonist, has been

shown to promote behavioral improvement in patients in

minimally conscious states. The purported mechanism

involves cortex, striatum, globus palladus and thalamus

[67]. When considered in this broad network setting, it is
t is, from (b) to (c) (adapted from [72]). During the low dose regime, cortical

ipation. In the high dose regime, cortical oscillations decrease in frequency

ortical alpha rhythm.
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suggested that the GABAergic actions of zolpidem may act

selectively on the GPi, leading to a disinhibition of

thalamic neurons and subsequently restoring the thalamo-

cortical network to a basal dynamic regime [68,69�].

Thalamocortical networks are particularly relevant in the

mechanisms of anesthesia at higher dose levels. At such

levels, the paradoxical effects give way to reduced arou-

sal, awareness and, as defined clinically, unconsciousness

[63,70�,71]. When this happens, the EEG displays a 9–
12 Hz alpha rhythm that is broadly coherent over frontal

cortices [72,73�,70�,71]. Modeling has shown that such a

phenomenon can arise through altered time-scales of

inhibition in thalamic relay and reticular neurons [73�].
Increased decay-time and conductance of inhibition from

reticular cells causes relay cells to enter a hyperpolarized

state. This engages hyperpolarization-activated currents

that render the relay cells more susceptible to rebound

excitation and intensify existing mechanisms of thalamic

alpha such as the well-known spindle oscillation [74]. In

cortical networks, larger and longer IPSPs lead to rhyth-

mic activity in the alpha range. Thus, neural activity may

coalesce into a state of alpha ‘hypersynchrony,’ impeding

function within the thalamocortical loop [73,71]. Here,

again, it is intriguing to consider a connection with a

pathological condition of similar phenomenology: ‘alpha

coma’ [75]. Although structural lesions are involved in the

pathophysiology, the possibility of mechanistic overlap

with anesthesia raises a complementary network-oriented

interpretation that — as in aforementioned case of zolpi-

dem — may lead to novel therapeutic strategies. For

instance, emerging research suggests that methylpheni-

date (Ritalin) may serve to counteract the efficacy of

isoflurane [76�], suggesting a nuanced network interplay

between inhibition, dopamine and the anesthetic state.

Other network effects associated with deep general

anesthesia, such as slow and delta-band oscillations, have

been studied in the context of drugs such as enflurane

[77], isoflurane [78], etomidate [79] and nitrous oxide

[80]. The mechanisms suggested in these studies involve

a general increase in cortical inhibition, leading to slowing

of network activity [81,82] and impaired functional con-

nectivity between cortical regions [83]. In contrast, the

anesthetic drug ketamine, whose site of action is thought

to be the NMDA receptor, is known to create higher-

frequency patterns of activity in cortical field potential

[84,85]. Such patterns correlate with the well-known

dissociative effects of the drug. The fact that reversible

neuromodulatory changes can lead to such a range of

network and behavioral changes establishes the role of

neuronal kinetics in governing larger-scale brain function.

Conclusion
Here we have argued that alterations in the amplitudes

and kinetics of neuronal intrinsic and synaptic currents

play an important role in changes to network dynamics,
Current Opinion in Neurobiology 2012, 22:693–703 
even in the absence of structural changes (anesthesia),

and may provide a substrate for compensatory anatomical

changes in neurological disease processes. Viewing patho-

logical dynamics as an aberrant state of an underlying

normal network or the source of structural deviations has

broad implications for treatment of these disorders. In

future work, anesthesia can serve as partial model of the

network changes due to alterations in the amplitudes and

kinetics of neuronal currents that occur in underlying

disease processes. For example, proposed network

changes at low doses of anesthesia have been shown to

relate to a source of the pathological beta oscillations in

Parkinson’s disease. Changes in brain rhythms that occur

in anesthesia are likely to shed light on network pathology

associated with minimally conscious states. An important

question for neurological diseases including schizo-

phrenia is to what extent correction of pathologies of

rhythms can have a beneficial effect on symptoms and

progression of these diseases; DBS can be considered

such an example for Parkinson’s disease.
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