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Coherent rhythms in the gamma frequency range are ubiquitous in the
nervous system and thought to be important in a variety of cognitive activ-
ities. Such rhythms are known to be able to synchronize with millisecond
precision across distances with signi�cant conduction delay; it is myste-
rious how this can operate in a setting in which cells receive many inputs
over a range of time. Here we analyze a version of mechanism, previously
proposed, that the synchronization in the CA1 region of the hippocam-
pus depends on the �ring of “doublets” by the interneurons. Using a
network of local circuits that are arranged in a possibly disordered lat-
tice, we determine the conditions on parameters for existence and stability
of synchronous solutions in which the inhibitory interneurons �re single
spikes, doublets, or triplets per cycle. We show that the synchronous solu-
tion is only marginally stable if the interneurons �re singlets. If they �re
doublets, the synchronous state is asymptotically stable in a larger subset
of parameter space than if they �re triplets. An unexpected �nding is that
a small amount of disorder in the lattice structure enlarges the parameter
regime in which the doublet solution is stable. Synaptic noise reduces
the regime in which the doublet con�guration is stable, but only weakly.

1 Introduction

Coherent rhythms in the gamma range of frequencies (30–80 Hz) have been
found in many parts of the cortex (Gray, Konig, Engel, & Singel, 1989; Llinas
& Ribary, 1993; Bragin et al., 1995; Singer & Gray, 1995; Steriade, Amzica,
& Contreras, 1996) and are hypothesized to be important in the creation of
cell assemblies (Engel, Konig, & Singer, 1991; Singer & Gray, 1995; Vaadia
et al., 1995; Stopfer, Bhagavan, Smith, & Laurent, 1997) and in cognitive
function (Bressler, Coppola, & Nakamura, 1993; Joliot, Ribary, & Llinas,1994;
Fries, Roelfsma, Engel, Konig, & Singer, 1997). Coherent rhythms with no
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phase lags among the participating cells have a potentially important role
to play in plasticity, since synchronous activity is known to encourage the
strengthening of mutual connections (Hebb, 1949; Ahissar et al., 1992; Bliss
& Collingride, 1993; Magee & Johnston, 1997; Markram, Lubke, Frotscher, &
Sakmann, 1997); though synchronous behavior is possible without rhythms,
for the visual cortex it has been reported that such cells having a distance of
more than 2 mm synchronize their activity only in the presence of rhythms
(Konig, Engel, & Singer, 1995). In addition, coherent activity of a set of cells
potentiates their effects downstream in the processing.

Synchronization is known to exist between areas of the neocortex that
are widely separated (Engel, Kreiter, Konig, & Singer, 1991; Bressler et al.,
1993; Konig et al., 1995; Roelfsema, Engel, Konig, & Singer, 1997). In hip-
pocampal slice preparations, synchronization of local �eld potentials and
single unit recordings in the gamma frequency range are observed with ar-
eas up to several millimeters apart synchronized within a millesecond in
spite of conduction delays that are many times that long (Andersen, Silfve-
nius, Sundberg, Sveen, & Wigstrom, 1978; Traub, Whittington, Stanford, &
Jefferys, 1996). This article takes up the question of how such synchroniza-
tion over long distances can take place in a stable manner.

For networks of spiking neurons, this question has been addressed in
two closely related articles. In a pioneering article about the CA1 region of
the hippocampus, Traub, Whittington, Stanford, and Jefferys (1996) used
large-scale simulations of models containing excitatory pyramidal cells and
inhibitory interneurons. They showed that synchronization was invariably
accompanied by double spikes (or “doublets”) per cycle in many of the
interneurons. The role of the doublets in the synchronization at a pair of
separated sites was deduced by Ermentrout and Kopell (1998). In a much
reduced setting, the latter showed that in order for the doublets to aid in the
synchronization process, it was important that the �rst spike of the doublet
be due to excitation from the local pyramidal cells and the second spike be
due to excitation from the remote site. The delay between the two spikes of
a doublet encoded not just the conduction and synaptic delays but also the
longer time to spiking that a cell experiences when it is not fully recovered
from a previous spike. Ermentrout and Kopell (1998) demonstrated that
the timing between the spikes could be used by the system to adjust the
timing of the pyramidal cells automatically on the next cycle, in such a
way as to make the coherent rhythm stable. (Related articles not as directly
relevant are referred to in section 5.) The hypothesis that the �rst spike
be due to excitation leads to a phase lag between the local excitatory and
inhibitory cells. The value of this lag plays no role in the analysis here or
in Ermentrout and Kopell (1998) and can be arbitrarily small. Indeed, as
in Whittington, Traub, and Jefferys (1995), the I-cells can be in a parameter
regime in which they would �re by themselves in the absence of excitation;
the only restriction is that they not �re before the E-cells, a situation that
would produce suppression of the E-cells.
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The work of Ermentrout and Kopell (1998) gave an answer to how the
mechanism of Traub, Whittington, Stanford, and Jefferys (1996) could work
if all the remote inputs to a local set of cells arrive with the same conduction
delay. It left open the question of how the mechanism could work if a cell is
to receive many inputs with a wide range of conduction delays. The role of
doublets, in particular, is mysterious in such a larger network because there
are now many sources of excitation, not just two. This article addresses that
question and shows, surprisingly, that doublets still provide information
crucial for synchronization, and that in large-parameter regimes, bursts with
more than two spikes cannot support stable synchronization.

The network investigated in this article is a one-dimensional array of N
identical local circuits of excitatory and inhibitory cells that mimics the CA1
region of the hippocampus. There are two different architectures: a spatially
ordered network and one with some disorder in the positions of the local
circuits. Each local circuit receives input from a large number of others, with
conduction delays proportional to the distances traveled; thus, the inputs
to a local circuit come over a range of times. The connection strengths are
scaled with the number of inputs, so it takes many inputs to create a re-
sponse, unlike the network of Ermentrout and Kopell (1998), in which all
distant inputs are lumped, and the strengths are such that a single signal
from the distant circuit creates a response in the local one. The distributed
network is potentially much more �exible in its response; depending on
conduction times, strengths of synapses, and other parameters like the volt-
age threshold, the amount of disorder, and the range of connections, the
number of spikes �red by an inhibitory cell in a cycle (de�ned by the peri-
odic �ring of the excitatory cells) can be one, two, or more, and there can be
multiple solutions. The actual outcome of the network therefore depends
on the stability of the solutions.

In order to perform the complicated analytical calculations associated
with this extended network, we introduce a simple model of a neuron that
mimics nonlinear behavior caused by ionic channels and is somewhat more
complex than the standard “integrate-and-�re” neuron: a large input causes
an immediate spike (and reset), and a smaller one that (with the help of
previous small inputs) causes the voltage to pass some threshold eventually
causes a spike, but possibly with a delay. This delay, which depends on the
previous spiking history of the neuron as well as the timing of the inputs,
contains the information used by the network to create the coherence. We
also introduce a probability of inputs arriving at a given cell, depending on
distance from that cell.

With the explicit neuronal dynamics and a lattice-like (though possibly
disordered) structure, we are able to carry out computations for the prob-
abilistic behavior. The computations lead to explicit (though complicated)
formulas for the time difference between spikes of the excitatory cells at dif-
ferent points of the lattice as a function of their differences at the previous
cycle. This is exactly the information needed to decide if synchronous be-
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havior is stable when the I-cells �re single spikes, doublets, or more spikes
per cycle. That is, we do a linear stability analysis near con�gurations in
which the spiking order and the idea of cycles are well de�ned. From the
analysis, we can get bounds on the parameter regions in which one or more
of the above synchronous solutions exists and is stable. We are able to see
from this that doublets appear to provide more stability than either single
spikes or a large number of spikes per cycle. Furthermore, we get the unin-
tuitive result that a small amount of disorder in the lattice structure helps
to stabilize the synchronous state. The article gives the central ideas and a
broad outline of the computation; a more detailed outline is given in the
appendixes. Finally, we analyze the effect of synaptic noise and �nd that it
reduces the parameter range in which the doublet con�guration has stable
synchrony, although rather weakly.

The list of symbols used in this article is as follows:

R the linear size of the network measured as a conduction time
N the number of local circuits

Li, j distance in time units between i and j circuits
vl(t) membrane potential of the lth excitatory or inhibitory cell,

speci�ed by the context
vth threshold potential for �ring
v0 reset potential after a spike
kl number of inputs to the lth inhibitory cell after it �res its �rst

spike until its voltage crosses vl D0
nl number of inputs to the lth inhibitory cell after its �rst spike

until it �res the doublet spike (nl > kl)
a strength of excitatory-to-inhibitory synaptic coupling between

circuits
b potential value of inhibitory cell after receiving the kl pulse
c driving current in excitatory cells
g amplitude of inhibition in excitatory cells
s range of synaptic excitatory-to-inhibitory connections
f measure of spatial disorder in positions of circuits

t i
m membrane time constant for inhibitory cells
t i

s inhibitory synaptic time constant between local inhibitory and
excitatory cells

t e
m membrane time constant for excitatory cells

t e
s excitatory synaptic time constant between nonlocal excitatory

and inhibitory cells
tE
l spiking time of the lth excitatory cell in a previous cycle

NtE
l spiking time of the lth excitatory cell in a next cycle

WI
l delay time for �ring of the lth inhibitory cell

WE
l delay time for �ring of the lth excitatory cell
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Figure 1: Network architecture. Local circuits, containing one excitatory (E) and
one inhibitory (I) cell, are connected only via E7!I synapses. These connections
are probabilistic in nature. The distances between neighboring circuits are con-
stant for the ordered network. For the disordered network, these distances are
slightly distorted.

2 Network Model

Assumptions concerning our neural network model can be decomposed
into two classes: assumptions about the network architecture and assump-
tions about the network dynamics.

2.1 Network Architecture. The network we analyze is a one-dimensional
array of linear size R composed of N identical local circuits, each containing
one excitatory (E) and one inhibitory (I) cell with synaptic connections from
E to I and I to E (see Figure 1).

For nonlocal connections, we consider only the synapses from excitatory
to inhibitory cells. As in the smaller network analogue of this work (Ermen-
trout & Kopell, 1998), we neglect the E 7!E connections, which are sparse in
the CA1 region of the hippocampus (Knowles & Schwartzkroin, 1981). The
I7!I local and nonlocal connections are treated as effectively decreasing the
E 7!I connections, and hence are not introduced explicitly. One simpli�ca-
tion from the connectivity in Ermentrout and Kopell (1998) is the neglect
of nonlocal I7!E connections, whose range in the CA1 area is smaller than
the E 7!I connections (Tamamaki & Nojyo, 1990; Freund & Buzsaki, 1996).
Ermentrout and Kopell (1998) showed that the nonlocal E 7!I connections
suf�ced to produce synchrony between a pair of distant circuits (though
the added connection made this synchrony more robust); we therefore in-
vestigated whether such connections would also suf�ce in a much larger
extended network.

We treat the network architecture as probabilistic and assume that the
probability P(Lij) of a connection between the ith and jth circuits separated
by distance Lij depends on only the distance between them (translational
invariance in a statistical sense). In what we describe as an ordered network,
that distance is |i ¡ j|; in what we shall call the disordered network, the
distances are a perturbation of that quantity. In the calculations, only the
times of arrival, not actual distances, are relevant so what we call “distances”
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will carry units of time. Finally, for computational reasons, we use periodic
boundary conditions for our network architecture.

2.2 Network Dynamics. We denote by vl(t) the membrane potential of
the lth I-cell and the lth E-cell. Its dynamics is modeled by

t a
m

dvl

dt
D|vl | C Il, a De, i, (2.1)

where l D1, . . . , N, and Il represents input current. Symbols t i
m and t e

m are
effective membrane time constants for the I- and E-cells. These are much
smaller than the passive membrane time constant determined by the ca-
pacitance and leak current, since there are many active conductances that
dominate the leak conductance (see section 5 for estimates showing that for
the part of the cycle relevant to the calculation, the effective time constant
of the I-cell is a fraction of a msec).

We add to the membrane dynamics represented by equation 2.1 the fol-
lowing property. When the potential crosses the threshold value vth (> 0),
a cell immediately �res, and its potential is reset to v0 < 0, which mimics
the effect of the AHP (afterhyperpolarization) current. We assume that if the
I-cell is close to recovery, a single E-spike elicits a spike from the I-cell. Thus,
in the local network, the E-I circuit forms an oscillator with one spike per
cycle in each cell; the I-cell has recovered by the time it receives excitation
in the next cycle.

When the I-cell is partially refractory, the same input (or several inputs)
to that cell may cause the potential to cross only a resting zero value; equa-
tion 2.1 then implies that the cell will also �re, but with a variable delay
time that depends on the difference between the times of the excitation and
the time of the last spike of that cell. This delay is a central feature of the
analysis in Ermentrout and Kopell (1998) for a two-circuit network; for our
more complicated case, we chose an explicit model that has this delay.

We chose the following form for the Il current. For an I-cell, the current
is completely of synaptic origin and is given by

Il Da
X

k

d(t ¡ tl(k)). (2.2)

Here the delta functions represent pulses (inputs) coming with delays from
nonlocal E-cells with amplitude a at times tl(k) from cell l C k to cell l.

For an E-cell, the current has the form

Il Dc ¡ g
X

j

e¡(t¡tlj
)/t i

s h(t ¡ tlj ), (2.3)

where c is a driving current (e.g., driven by a stimulus) and the second term
represents inhibitory synaptic inputs with a positive amplitude g coming
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from the local I-cell at times tlj with synaptic I7!E time constant t i
s . The

function h(x) is a standard step function de�ned as h(x) D1 for x ¸ 0 and
h(x) D0 for x < 0.

We assume that for I-cells, the synaptic E 7!I amplitude a is smaller than
both |v0 | and vth. For E-cells, we assume the condition g À c > vth C |v0 |. The
�rst inequality means that the local inhibition g is strong enough to prevent
�ring (Traub, Jefferys, & Whittington, 1999); the second implies that the E-
cells �re frequently in its absence. Values t e

m, t i
m, v0, and vth can be different

for I- and E-cells, but we do not use this explicitly.
We assume that the synaptic E 7!I time course t e

s is not important. This
assumption is consistent with experimental studies on the CA1 area (Buhl,
Halasy, & Somogi, 1994) that reveal that excitatory postsynaptic potentials
to I-cells decay rapidly. As a consequence, incoming excitatory inputs to
I-cells are taken as structureless (cf. equation 2.2).

As we will show, the effective membrane time constant t i
m for the I-

cells plays a role in determining parameter regimes in which the doublets
are stable. The corresponding time constant t e

m for E-cells does not play as
important a role. For some calculations, notably of WE de�ned below, we
cannot get speci�c answers in full generality. However, we do the computa-
tion in the complementary regimes t e

m /t i
s ¿ 1 and t e

m /t i
s À 1. Because of the

large amount of active conductances that lower t e
m, we believe t e

m /t i
s ¿ 1 to

be the more relevant regime. The qualitative features are shown to be the
same in each, with different functional dependence of period of oscillations
on t i

s in the two regimes. The qualitative shape of the stability diagrams
does not change at all. We do not put any constraints on the relative value
of t i

s and t i
m.

Note that the membrane dynamics represented by equation 2.1 is piece-
wise-linear and slightly different from standard integrate-and-�re type mod-
els (McCullough & Pitts, 1943; Knight, 1972; Abbott & van Vreeswijk, 1993;
Usher, Stemmler, Koch, & Olami, 1994; Gerstner, 1995) and from the Hop-
�eld model (Hop�eld, 1984; Amit, Gutfreund, & Sompolinsky, 1985; Hertz,
Krogh, & Palmer, 1991). Our simple model mimics some nonlinear behavior
caused by ionic channels. For negative voltages, it acts as a standard leaky
integrate-and-�re neuron. For positive voltages, it models the explosive
depolarization generated by the opening of active voltage-gated sodium
channels. Though we take the same time constants for v < 0 and v > 0, we
note that the analysis below has the same form in the more general case in
which these constants are allowed to be different. As in “type 1 neurons”
(Ermentrout, 1996) for neurons in equation 2.1, there can be a signi�cant
delay between receipt of a suprathreshold signal and the response of the
neuron.

In summary, in our model, the E-cells �re continuously in the absence of
local inhibitory connections. With inhibition, an E-cell can �re only when
the level of inhibition drops below a certain critical value. I-cells �re when
they are suf�ciently recovered from their last spike that the excitation (from
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whatever source) pushes them above its �rst (v D0) threshold. Thus, if the
excitation arrives long after the last spike of an I-cell, the cell �res almost
immediately because it is recovered. However, the same excitation arriving
shortly after a spike will not elicit another spike. We are assuming that the
parameter ranges are such that an I-cell recovers well before the end of a
cycle; recovery time is shorter than decay of inhibition, since the recovery
time depends on the membrane time constant of the cell, which is small.

3 Network Properties Are Revealed by Maps

The above assumptions enable us to obtain analytical results concerning
synchronous oscillations and their stability. We associate the synchronous
state with the situation in which the E-cells �re simultaneously. Below we
construct maps that show how the network uses the timing of spikes to
accomplish synchronization.

The full cycle for E-cells is as follows. An E-cell �res and sends a pulse
to its local I-cell and many nonlocal I-cells. The local I-cell �res almost im-
mediately after receiving the pulse, since the I-cell is recovered from the
last cycle. Simultaneously (or very quickly) it sends inhibition to the origi-
nal E-cell, prohibiting it from further �ring. In the meantime, the I-cell gets
pulses from many nonlocal E-cells, but it must wait to �re, because it is not
yet recovered from the �rst spike. We assume that the range of connectivity
of the nonlocal E 7!I connections (measured in time units) is signi�cantly
smaller than the inhibitory time constant t i

s , which is about 10 msec. This
implies that all the nonlocal EPSPs arrive when the local E-cell is not yet
recovered from its local inhibition.

The parameter range relevant to the doublet case is one in which the
combined excitation from the nonlocal E-cells is adequate to cause the I-
cell to �re again, after a delay we call WI, before the E-cell recovers from
inhibition and �res again. In that case, the doublet spike sends a second
inhibitory pulse to the local E-cell, which will �re in the next cycle when
the level of inhibition falls suf�ciently. We denote the time from the second
inhibitory spike to the E-cell �ring by WE. Thus for the doublet case, we
have the following equations

NtE
l DtE

l C WI
l (t

E
l , tl(1), . . . , tl(nl )) C WE

l (WI
l ), (3.1)

for l D1, . . . , N, where tE
l , NtE

l are the times of spiking of the lth E-cell in the
previous and next cycles. WI

l is a function of tl(1), . . . , tl(nl ), which are times
of arriving pulses from nonlocal E-cells enumerated as l(1), l(2), . . . , l(nl).
We have tl(k) DtE

l(k) C Ll, l(k), where Ll,l(k) is a distance between the lth and
l(k)th circuits. The I-cell �res at some moment between the arrival of the nl
and nl C 1 pulses. We look for a synchronous solution—one in which NtE

i DNtE
j

provided tE
i DtE

j for every i and j. Equation 3.1 is the map that gives the
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timing of the E-spikes in one cycle as a function of spikes in the previous
cycle. Note that the hypotheses on the extent of the excitatory connectivity
is critical for well-de�ned cycles, which are needed to de�ne NtE

l .
In principle, one can generate multispikes in I-cells when the decay of

inhibition is suf�ciently slow and the range of the E 7!I connectivity suf�-
ciently large. In the case of triplets, equation 3.1 is modi�ed to

NtE
l DtE

l C WI,1
l (tE

l , tl(1), . . . , tl(nl )) C WI,2
l (tE

l C WI,1
l , tl(nlC1), . . . , tl(nlCml ))

C WE
l (WI,1

l , WI,2
l ), (3.2)

where WI,1 and WI,2 denote the waiting time of an I-cell for the second and
third spikes from the previous spike. The integer ml denotes the number of
inputs between the occurrence of the second and third spikes. Generaliza-
tion to higher-order multispikes is straightforward.

The same formalism also applies to the singlet case. In the latter, the I-cells
do not receive enough excitation to overcome their partial refractoriness to
reach the threshold v D0. Recall that the decay time of the inhibition is long
enough for the I-cell to recover. Thus, an E-cell spike elicits a spike from the
now-recovered I-cell, which in turn inhibits the E-cell. The formalism is as
in equation 3.1, with the waiting time WI set to zero.

The �rst goal is to compute the WI and WE functions. We compute WI
l

(the �ring time of an I-cell started from time tE
l ) using equations 2.1 and 2.2.

At time t DtE
l the potential of the I-cell is instantaneously brought to the

value vth by the local E-cell and equally instantaneously reset to the negative
value v0 after �ring a spike. Now the I-cell begins to get excitatory pulses
coming from nonlocal E-cells. The time when the I-cell crosses vth is equal
to WI

l , which takes the form

WI
l Dtl(nl) ¡ tE

l ¡ t i
m ln

"
b

vth
exp[(tl(nl ) ¡ tE

l ¡ dtl) /t i
m]

C
a

vth

nlX

iDkl

exp[(tl(nl ) ¡ tl(i)) /t i
m]

#
, (3.3)

where kl is the number of inputs needed for the I-cell to cross vl D0, and
dtl is the time at which this happens. The klth pulse takes the voltage from a
negative to some positive value b satisfying 0 < b < a. The I-cell �res after
receiving nl excitatory inputs. The details of the derivation of equation 3.3
are presented in appendix A.

Computation of WE
l using equations 2.1 and 2.3 is presented in ap-

pendix B. Here we brie�y sketch (Ermentrout & Kopell, 1998) how to derive
an approximate formula for WE

l . In the limit of fast membrane dynamics of
the E-cell relative to the synaptic I7!E time course, that is, when t e

m /t i
s ¿ 1,
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we can set the left-hand side of equation 2.1 with a De to zero. The in-
hibitory current felt by an E-cell decreases with time as g exp(¡t /t i

s ). In the
case of doublets, one has two inhibitory spikes separated by time WI

l ; the to-
tal inhibition is g[exp(¡t /t i

s ) C exp(¡(t¡ WI) /t i
s)]. Similarly, for triplets one

has three exponential terms. Our WE
l is the time interval from the occurrence

of the second inhibitory spike to the local E-cell when the total inhibition
drops below a certain critical value. That value is the one for which the to-
tal current Il in equation 2.3 becomes positive. After the current Il becomes
positive, equation 2.1 implies that the membrane potential starts to grow,
reaching the threshold very quickly at a time of the order of t e

m. In that limit
WE

l takes the form

WE
l Dt i

s ln
h g

c

±
1 C e¡WI

l /t i
s

²i
I (3.4)

at that time, the E-cell �res in the next cycle. In the opposite limit, t e
m /t i

s À 1,
WE

l is of the orderof the membrane time constant t e
m with a similar functional

dependence (cf. appendix B).
In the disordered network, the arriving times of pulses from E-cells to the

lth I-cell form an irregular pattern. Therefore, we must introduce averaging
over those times. We assume that the inputs are independent of one another
and their temporal pattern depends only on initial conditions (tE

l ) and the
architecture of the network fLl,l(k)g. We average equations 3.1 and 3.2 over
the network architecture in which l(k) Dl C k (mod N); this corresponds to
the assumption about periodic boundary conditions. Since arrival times do
not depend on each other, our probability distribution r of fLl,lCkg is of the
form

r (Ll,lC1, . . . , Ll, lCN¡1) D
N¡1Y

kD1

P(Ll,lCk). (3.5)

We choose the probability P(Ll, lCk) of input arriving from (l C k)th circuit to
lth circuit at time Ll, lCk to be

P(Ll, lCk)» 1
2

µ
d

¡
Ll, lCk¡

kR
N

¡f

¢
Cd

¡
Ll,lCk¡

kR
N

Cf

¢¶
e¡Ll, lCk /s , (3.6)

where R is a linear size of the system, f is a measure of spatial disorder
in positions of neurons and is the same for every pair of neurons, and s

represents the range of synaptic connections between neurons. s is chosen
so that if the E-cells are synchronous, all the excitation from the nonlocal
E-cells to a local circuit comes during the recovery of a local E-cell from
its local inhibition. Note that r does not depend on the position of the lth
circuit, which is a consequence of the assumption about the translational
invariance. The probability P(Ll, lCk) is a product of two terms: the one with
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the delta functions represents the probability of arrival of an input at certain
time, and the one with the exponential decay represents the probability of
synaptic connection between circuits. The latter factor mimics the locality of
connections. When s D1,we have a network with global E 7!I connections.

The advantage of formula 3.6 lies in the fact that it captures different
types of network architecture, yet is very simple and suitable for analytical
investigations. When f D0, one has an ordered network with regularly
arriving pulses separated by time R /N. The case with f 6D0 corresponds
to a disordered network in which the positions of the neurons are irregu-
lar or alternatively in which the positions of the neurons are regular but
the lengths of axonal connections between them are irregular. In such a
network, pulses come in at times that are random but symmetrically dis-
tributed around kR /N for every k. In principle, the range of variability of
f can be from zero to R /2N. However, in order to make our calculations
easier, we adopted the weak disorder limit corresponding to fN /R ¿ 1. In
this limit, the moments of distribution 3.6 are the same as those of a gaussian
distribution for arriving times (cf. appendix C). Since the results of this arti-
cle depend only on the moments, this implies that the results are equivalent
for the two distributions.

For the sake of convenience we de�ne D l¡1 ´ htE
l i ¡ htE

1 i, where the
symbol h. . .i denotes averaging with respect to the probability distribution
3.5 and 3.6, that is,

hHi D
Z 1

0
dLl, lC1 . . .

Z 1

0
dLl,lCN¡1 r (Ll, lC1, . . . , Ll, lCN¡1) ¢ H, (3.7)

for any function H depending on fLl, lCkg.
The next step is to rewrite equations 3.1 and 3.2 in terms of the fDg.

This gives us (N ¡ 1) equations for ND l ´ hNtE
lC1i ¡ hNtE

1 i, which constitute the
multidimensional map

ND l Dfl(D1, . . . , DN¡1). (3.8)

(Recall that the overbar denotes a quantity associated with the next cy-
cle.) In the case of the doublet con�guration, the nonlinear function f D
( f1, f2, . . . , fN¡1) is given by

fl(D1, . . . , DN¡1) DhNtE
lC1(fDg)i ¡ hNtE

1 (fDg)i, (3.9)

where

hNtE
l (fDg)i DhtE

l i C hWI
l i C hWE

l i. (3.10)

This means that the average of the next E-cell �ring is a function only of
the last E-cell average �ring time, with no previous history dependence. In
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equation 3.10, WI
l (Ll,l(1), . . . , Ll, l(nl )I fDg) and WE

l (Ll, l(1), . . . , Ll,l(nl )I fDg) are
now functions of fLl,l(k)g and fDg instead of the arrival times ftl(k)g. Formulas
for hWI

l i and hWE
l i are complicated; their sum has the form

hWI
l i C hWE

l iD
t i

s

2nl coshnl (f /s)

2X

a1, ...,anl
D1

exp

0

@¡
nlX

jD1

(¡1)ajf /s

1

A

£ ln
µ

g
c

¡
1C exp

µ
WI

l

¡
R
N

C (¡1)a1 f, . . . ,
nlR
N

C (¡1)anl f I fDg
¢

/t i
s

¶¢¶
, (3.11)

with WI
l (

R
N C (¡1)a1f, . . . , nlR

N C (¡1)anl f I fDg) given by equation 3.3. The
derivation of equation 3.11, including details of how to compute average
values of kl and nl, which we denote as k and n, respectively, is given in
appendix D. We are interested in the existence and stability of a synchronous
state, which corresponds to the �xed point ND l DD l with D l D0, for every
l. For the triplet case, the function f can be obtained explicitly as well but is
more complex.

In principle, the I-cells may produce many spikes in a cycle, provided the
size R of the system is suf�ciently large. Some of these spiking con�gura-
tions may be stable; some may not (see below). In the case of multistability,
the actual con�guration depends on the values of parameters used in the
system. Especially critical is the interplay between the synaptic strength a
and the linear size of the system R. The synaptic strength determines how
many inputs from E-cells are needed to trigger �ring of an I-cell. To have
only doublets, one has to have a suf�cient number of inputs to trigger the
second spike in I-cell, that is, n < N, and insuf�cient to trigger a third spike,
which means (nC k) > N. Using the formulas for kl and nl in appendix D, we
can use these inequalities to get bounds on the synaptic amplitude a such
that the system has only doublets. When R /Nt i

m À 1 and 0 < f /t i
m ’ 1,

which imply weak disorder, these bounds may be written as

cosh f

s

cosh( f
s

¡ f

t i
m

)
e¡R /t i

m <
ab

vth |v0 |

<
¡

b
vth

¢1/2 (cosh( f
s

C f
t i

m
)

cosh( f
s

¡ f

t i
m

)

!1 /2

e¡R /2t i
m . (3.12)

For larger a it is possible to have both doublets and higher-order multispikes.
In that case, the system would choose a stable con�guration (see section 5).
For stronger disorder (but still weak) when R /Nt i

m À f /t i
m À 1, the formula

is slightly more complex, but the conclusion about a is still valid.
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We check the stability of synchronous solutions using the (N ¡ 1) by
(N ¡ 1) stability matrix A de�ned as Al,m D@ ND l /@Dm |DD0. The synchro-
nized �xed point is stable when the modulus of all eigenvalues l l of A
is smaller than unity. Invoking the Gershgorin theorem (Horn & Johnson,
1985), one can determine an upper limit of |l l | as

PN¡1
mD1 |Al,m |. If this upper

limit is smaller than unity, we obtain a suf�cient condition for stability that
allows us to compute the stability diagrams presented in Figure 2. In these
�gures, we plot the region in parameter space in which the suf�cient con-
dition holds. We have chosen to vary R /Nt i

m and t i
m /t i

s , since they emerge
naturally as suitable coordinates; the other parameters are �xed. Details of
this computation are included in appendix E.

For the singlet case we �nd that the modulus of each eigenvalue of A is
one; that is, the synchronized oscillations with singlets are marginally stable.
In the case of doublets, we obtain stability regions for both the ordered and
the disordered network. A crucial factor for this stability is the presence of
delay time functions hWIi in equation 3.10. To make the calculated stability
diagrams plausible, we now show that diagrams such as the ones depicted
in Figure 2 are to be expected for solutions with doublets. Both �gures show
that for suf�ciently small values of R /Nt i

m, the doublets are unstable. To get
some insight into this behavior, notice that in order for an I-cell to �re, it
must receive a suf�cient number of inputs to cross the zero value of its
potential. Therefore, the size of the system R must be suf�cient to produce
enough inputs. The value of R /N plays the same role in this network as
does the delay time d in the network for two circuits (Ermentrout & Kopell,
1998); in the latter network, stability requires d to be above some minimum
magnitude, provided the coupling is not too strong. Similarly, when the
effective membrane time constant t i

m (from v0 to zero) is too large relative to
the number of inputs, then the I-cell will not �re; hence doublets cannot exist.

Figure 2 shows that ordered and disordered networks differ with respect
to stability for a large t i

m /t i
s ratio. This can be made plausible, again invoking

existence arguments. If the synaptic time constant t i
s of an I-cell is too small,

the inhibition felt by an E-cell falls off faster than arrival of inputs to produce
a second spike in the I-cell. Thismeans that to get doublets, an inequality t i

s >
hWI i must be satis�ed. For the ordered network, we have hWIi » t i

m, since
the time between doublets of the I-cell is governed by its effective membrane
time constant t i

m (cf. appendix D). Therefore we �nd that ratio t i
m /t i

s must
have an upper bound, because hWI i is bounded from below and positive
(see Figure 2A). For the disordered network, our hWIi depends additionally
on the disorder parameter f . This dependence creates a dramatic change,
since now hWIi can assume arbitrarily small values for suf�ciently large
f . That, in turn, implies that t i

m /t i
s does not have an upper bound because

t i
m /t i

s » 1 /hWI i.
Using the stability matrix A, we can calculate the critical value of

(R /Nt i
m)cr; above that value the suf�cient condition for stability is satis�ed
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Figure 2: Stability diagrams for the doublet con�guration in the regime t e
m /t i

s ¿
1. The shadowed area indicates the stability region. (A) Ordered network. Values
x0 and y0 present on the axes are given by equations E.9 and E.10 in sppendix E,
respectively. There is stability only for t i

m /t i
s ¿ 1 and for R /Nt i

m > x0 . For
values b Da /2 and |v0 | /a D5, one �nds x0 ¼ 2. (B) Disordered network. Note
the appearance of the vertical asymptote and the increase in the stability region.
Values x0 and y0 are of the same order of magnitude as for the ordered network.
In the complementary regime (i.e., when t e

m /t i
s À 1), the shapes of the diagrams

remain the same with a substitution t i
s 7! t e

m in coordinates.
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for arbitrary values of t i
m /t i

s (see Figure 2B). In the limit R /Nt i
m À f /t i

m À 1,
this critical value takes the form

(R /Nt i
m)cr ¼ R

Ns
C

R
Nf

ln
µ

8 |v0 |
a

cosh2 f

s

¶
, (3.13)

which is the point where a vertical asymptote crosses the horizontal axis
in Figure 2B. Notice that when f D0, namely, for the ordered network,
this asymptote shifts to in�nity, reducing the stability region. Also note
that the stability region grows with an increasing range of connections s

and synaptic strength a. Details for how to compute (R /Nt i
m)cr are given in

appendix E.
For the triplet case in the ordered network, we �nd that the upper limit of

|l l | is always greater than unity (computation not given). This suggests that
the triplet con�guration in a such network is unstable. On the contrary, in
the disordered network we �nd that synchronized oscillations with triplets
are stable for all t i

m /t i
s provided R /Nt i

m ratio is suf�ciently large, that is,
R /Nt i

m À 1, although we are unable to determine the exact values analyti-
cally.

We see from the above that spatial disorder in a network helps to stabilize
the synchronized oscillations. So does increasing the range of synaptic con-
nections (see equation 3.13). Based on comparison between doublets and
triplets, we conjecture that higher-order multispikes are less stable than
doublets, if they exist at all.

The analysis also allows us to determine the period T of oscillations,
which is equal to hWI i C hWEi (see equation 3.10). In the ordered network,
with the doublet con�guration, a formula is relatively simple. In the limit
t e

m /t i
s ¿ 1 we obtain

T Dt i
s ln

0

@ g
c

2

41 C ( [(vth ¡ a)(1 ¡ e¡R /Nt i
m ) C a]

a[b C (a ¡ b)e¡R /Nt i
m ]

£ [a C |v0 |(1 ¡ e¡R /Nt i
m )]

!t i
m /t i

s
3

5

1

A . (3.14)

Note that the period of oscillations of the whole network is larger than the
period of oscillations of an isolated local circuit, t i

s ln(g/c), but both are of
the same order of magnitude. In the opposite limit, t e

m /t i
s À 1, one should

substitute t e
m for t i

s and g(1 C vth /c)t i
s /t e

m for g.
The period grows with increasing size of the system, saturating for R 7!

1 (for �xed N). This means that the frequency of oscillations is bounded
from below. The dependence on the membrane time constant t i

m is essen-
tially the same as on R. T decreases with the increasing strength of E 7!I
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synapses, which corresponds to increasing the amplitude a. The same con-
clusions are valid in the case of the disordered network with the doublet
solution, but the expression for the period is more complex with similar
logarithmic terms.

In the regime t e
m /t i

s ¿ 1, we obtain the following expressions for the
period of oscillations. For the ordered network, in the limits t i

m /t i
s ¿ 1

and R /Nt i
m À 1, that is, in the parameter range where there is a sta-

ble doublet con�guration, our period is governed only by the inhibitory
synaptic time course t i

s (Whittington et al., 1995; Jefferys, Traub, & Whit-
tington, 1996; Traub, Whittington, Colling, Buzsaki, & Jefferys, 1996) and
reads T ¼ t i

s ln(2g /c). (Proportionality between the period and t i
s has also

been obtained before in a network of inhibitory neurons; Chow, White, Ritt,
& Kopell, 1998.) In the above limits, we also obtain a very simple formula
for the ratio of the averaged timing between doublets hWIi to the period—
hWIi /T ¼ (t i

m /t i
s ) ln(vth |v0 | /ab) / ln(2g /c)—which depends logarithmically

on the synaptic nonlocal (E7! I) strength. In the same limit for the disor-
dered network with additional constraint f /t i

m ¹ 1, we obtain the period

T ¼ t i
s ln
¡

2g
c

¢
¡

f

2
tanh

f

s
. (3.15)

This implies that spatial disorder reduces the period, and in addition, the
longer the range of connections s, the greater is the period.

In the complementary regime t e
m /t i

s À 1, we obtain the following expres-
sion for the period:

T ¼ t e
m ln
¡

2gt i
s

ct e
m

h
1 C

vth

c

i¢
¡

f

2
tanh

f

s
. (3.16)

Note that now the period depends more weakly (i.e., logarithmically) on
the synaptic time constant t i

s .
The triplet case occurs only in the disordered network. Also here, an

analytical expression for T can be obtained, and again we �nd that the
leading dependence is logarithmic, although a formula is more complicated
than for doublets. Nevertheless, the qualitative dependences on R, t i

s , t i
m, a

and the disorder remain valid here.

4 Inclusion of Synaptic Noise

In this section we estimate the effect of a synaptic noise on the stability of the
doublet con�guration in the regime t e

m /t i
s ¿ 1. To simplify considerations

we will consider the network with N D2 local circuits with the same type
of connections as before.

For N D2 circuits, the assumption about the smallness of excitatory E 7!I
synaptic strength a is removed; in this case, a single nonlocal excitatory input
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must trigger the �ring of local I-cell. We assume, however, that a < vth, so
that an I-cell has a delay between receipt of an input and �ring.

We can make use of equations 3.3 and 3.4 derived before for WI and WE

functions. The formula for WI will be modi�ed because now there is only
one strong source of excitation instead of many weak sources. Thus, the sum
in the logarithmic term in equation 3.3 now disappears. We note that the
time dtl when the membrane potential crosses zero is exactly the moment
when nonlocal excitatory pulse arrives, dtl DtE

2 ¡ tE
1 C R, where R is now

the conduction delay time between the circuits. The formula for the value
of the membrane potential b right after the reception of an input can also
be substituted in equation 3.3. This value now is b Dv0 exp(¡dtl /t i

m) C a.
Taking all these changes into account, we obtain for the �rst circuit

WI
1 DtE

2 C R ¡ tE
1 C t i

m ln( vth

v0e¡(tE
2

CR¡tE
1
)/t i

m C a

!
. (4.1)

A similar formula holds for the second circuit with the substitution tE
1 $ tE

2 .
The equation for WE

1,2 remains the same as equation 3.4
In the presence of synaptic noise, synaptic strengths a and g will �uctuate

rapidly around their average values, reducing the precision in values of WI

and WE. To estimate the effect of synaptic noise, we will treat a and g as
random variables.

Repeating the steps from section 3 we have

ND DD C t i
s ln
¡

h(¡D )
h(D )

¢
, (4.2)

where now D ´ tE
2 ¡ tE

1 and ND ´ Nt2
E ¡ Nt1

E
, and

h(D ) D
±

v0e¡(RCD ) /t i
m C a

²t i
m /t i

s
C

±
e(RCD ) /t i

m vth

²t i
m /t i

s
. (4.3)

Notice that synaptic I 7!E strength g cancels out. Averaging the above equa-
tion over different possible values of a with a simple probability distribution
(cf. appendix C) P(a)noise D1

2 [d(a¡a0¡da)Cd(a¡a0 Cda)], whereda is a mea-
sure of synaptic noise, and solving the stability inequality |@ ND /@D |DD0 | < 1
in terms of R, in the limit da /a0 ¿ 1 we obtain, after some tedious algebra,

R /t i
m > ln(2 |v0 |

a0

"
1 C r
¡

da
a0

¢2#!
, (4.4)

with

r D
2

h
(4 |v0 |vth)t i

m /t i
s C a2t i

m /ts

0 (1 C t i
m /t i

s)
i

(4 |v0 |vth)t i
m /t i

s C a2t i
m /ts

0

. (4.5)
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When the synaptic noise is absent (da D0), the right-hand side of equa-
tion 4.4 is smaller than ifda > 0. Hence, inclusion of synaptic noise decreases
the parameter regime in which there is stability. However, the effect of noise
is rather weak, since dependence in equation 4.4 is logarithmic.

Finally, let us note that since g dropped out from equations 4.4 and 4.5,
synaptic noise in a local I7!E inhibitory synapse is irrelevant. This is the con-
sequence of the fact that we assumed slow I 7!E inhibition, that is, t e

m /t i
s ¿ 1.

When inhibition is slow, fast synaptic �uctuations do not have a great in�u-
ence on synaptic transmission, since the synapse has time to average over
�uctuations. This is not the case for E 7!I nonlocal synaptic connections,
since in that case excitation is fast (Buhl et al., 1994) and the system lacks
the time to average. Therefore, synaptic �uctuations in the latter case are
important.

5 Discussion

The literature on synchronization is very large; some related papers using
the properties of inhibition are Lytton and Sejnowski (1991), Wang and
Rinzel (1992, 1993), Friesen (1994), van Vreeswijk, Abbott, and Ermentrout
(1994), Bush and Sejnowski (1996), Gerstner, van Hemmen, & Cowan (1996),
Wang and Buzsaki (1996), Terman, Kopell, and Bose (1998), Terman and
Rubin (1998), White, Chow, Ritt, Soto, & Kopell (1998), and Chow et al.
(1998). In most articles on synchronization, conduction delays do not play a
part. One that explicitly addresses that question is Konig and Schillen (1991),
whichgives simulations of a �ring-rate model showing that synchronization
could be accomplished with delays up to roughly a third of the period.
It differs in two respects from our article. First, we consider the spiking
neurons type model, in which the timing between single spikes is very
important; in �ring-rate models, the �ne temporal structure is lost. Second,
our synchronous state is stable even for in�nite-range delays, that is, for
s 7! 1 (see equation 3.13 and Figure 2B); if there is heterogeneity in the
driving current, the range could be reduced (Ermentrout & Kopell 1998).

Crook, Ermentrout, Vanier, and Bower (1997) considers temporal delays
caused by axons in a continuous model of excitatory oscillators. They found
that the synchronous state is stable provided delays are not too large. These
authors do not consider the effect of inhibition. Other articles, like Campbell
and Wang (1998) and Ernst, Pawelzik, and Geisel (1995) deal with pulse-
coupled relaxation oscillators. The �rst of these uses excitation with homo-
geneous global inhibition. The second uses either excitatory or inhibitory
homogeneous connections, but not both, as a mechanism for generation
of long-range synchronization. Neither of these articles takes into account
the time structure of inhibition. Thus, they are quite different in spirit from
the models of Whittington et al. (1995), Traub, Whittington, Stanford, and
Jefferys (1996) and Ermentrout and Kopell (1998), which deal with synchro-
nization of excitatory and inhibitory cells that spike once or twice per cycle,
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and make central use of the time course of the inhibition. Another recent
related article is Traub, Whittington, Stanford, and Jefferys (1999), which in-
cludes a more detailed model than the one in Traub, Whittington, Stanford,
and Jefferys (1996) and summarizes a body of work on gamma and beta
rhythms. (See also Traub, Jefferys, & Whittington, 1999.)

This article extends the work of Ermentrout and Kopell (1998) on gamma
oscillations in a smaller network. We have analyzed the mechanism for pro-
ducing long-range synchrony in a distributed network of spiking neurons,
in which each interneuron receives a large number of inputs arriving at
different times. We showed that even with many inputs, a �ring con�gura-
tion in which interneurons produce doublets yields stable synchronization
over a larger-parameter range than other con�gurations. These doublets
have been seen in large-scale simulations, as well as in vitro studies (Traub,
Whittington, Stanford, & Jefferys, 1996; Traub, Whittington, Buhl, Jefferys,
& Faulkner, 1999), and might provideadditional support for a temporal cod-
ing hypothesis (Rieke, Warland, de Ruyter van Steveninck, & Bialek, 1997).
We note that (as in Tsodyks, Mitkov, & Sompolinsky, 1993, van Vreeswijk
et al., 1994, and Gerstner et al., 1996), our calculations deal only with linear
stability, and hence do not give information about global stability.

In Ermentrout and Kopell (1998), the synchronization mechanism de-
pends on the properties of the waiting time function called WI in this article
and TI in Ermentrout and Kopell (1998). The analysis in that article was
valid for all functions TI that have the qualitative property that they decay
in time. That is, the longer the time from the spike of an I-cell until when
it receives further excitation, the shorter the wait until it then �res. This
property was shown to hold for a class of biophysical models reduced from
those of Traub and Miles (Ermentrout & Kopell, 1998; Traub & Miles, 1991).
The analysis in this article uses a particular form for the dynamics (see equa-
tion 2.1), a one-dimensional system having two thresholds. This form was
chosen as the simplest equation for which the waiting time function TI has
a form similar in shape to that computed from the reduced model of Traub
and Miles (1991). This was used in the computation of equation 3.3.

The essential role in our mechanism is played by local inhibitory neu-
rons that �lter inputs coming from nonlocal excitatory cells to a local E-
cell, inhibiting it from �ring by producing appropriately timed multispikes.
Especially in the regime t e

m /t i
s ¿ 1, this inhibition governs the period of

oscillations of excitatory cells, as well as stabilizes the synchronous state.
For the ordered network (see Figure 2A) this inhibition must be slower than
the effective membrane time constant of inhibitory cells in order to preserve
stability. In the case of the disordered network (see Figure 2B) this inhibition
does not have to be slow for suf�ciently large R /Nt i

m. In the complementary
regime, t e

m /t i
s À 1, the time course of the inhibition does not play any role

in the stability.
Our stability diagrams and the period of oscillations scale with factor

R /N, the average time needed for a pulse to travel between neighboring
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circuits. This scaling is a direct consequence of equation 3.6 and indicates
that the stability diagrams, as well as the period, do not depend on the
network size R, provided the density of circuits R /N is �xed. The stability
diagrams indicate that below a minimal value x0 of R /Nt i

m, the doublet
con�guration is not stable. From equation E.9 (in appendix E), using as
parameter values b Da /2, and v0 /a D5, we get x0 ¼ 2, with x0 only weakly
dependent on a, b and v0. This gives a minimal size for the distance R /N
between the local circuits: R /N > x0t i

m. If the effective time constant t i
m is

very small (from conductances in Traub, Whittington, Stanford, & Jefferys,
1999, we estimate t i

m to be a fraction of a msec), the local circuits can be
taken to be very close.

This estimate is made as follows: the active conductances include an
excitatory metabotropic conductance, AHP conductance and synaptic con-
ductances from local interactions (Traub, Whittington, Stanford, & Jefferys,
1999). For interneurons, the input conductance is about 10 nS. After the �rst
spike, there is a large, fast AHP. At the peak of the fast AHP, the input con-
ductance is at least 500 to 1000 nS (Traub & Miles, 1995). That means that
after the �rst action potential, the input conductance increases by at least
a factor of 50, which implies that the time constant goes down by such a
factor. An estimate of the baseline time constant in Traub and Miles (1995)
is 37.5 msec; after the �rst action potential and before the doublet, the time
constant would then be less than a msec. This takes into account only the
AHP current. If one includes also the metabotropic glutamate conductances
activated by the tetanic stimulation and the GABAA conductances from the
other interneurons, as documented in Whittington, Stanford, Colling, Jef-
ferys, & Traub (1997), one has an effective time constant that is considerably
lower. We note that all the computations done in this article concern the time
between the �rst and second spikes of a doublet (or the third, in the triplet
con�guration). Thus we are using an effective time constant that re�ects
only the small part of the oscillation cycle.

Another property of equation 3.6 is that the disorder parameter f is the
same for every pair of circuits. This is the consequence of assumed trans-
lational invariance in the system and corresponds to the situation in which
disorder is not too strong. We showed that for weak spatial disorder, the
results of this article are identical if equation 3.6 is replaced by a gaussian
distribution. In the limit of very strong disorder, however, one should not
expect the assumption about translational invariance to be correct. In this
case, the proper approach would require taking f as a space-dependent
variable, that is, different for every pair of circuits.

Our analysis concerns perfect (probabilistic) synchrony, in which every
cell (excitatory and inhibitory) participates in the synchronization process.
For such a complete synchrony, we �nd that weak disorder (fN /R ¿ 1)
enlarges the stability region of the synchronous state in parameter space in
comparison to the ordered network. Our argument probably does not work
for a very strong disorder; the existence argument would be especially dif-
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�cult to make, since the pattern of arriving inputs to every cell would be
very different. Nevertheless, in such a network, there may exist some par-
tially coherent state in which only a fraction of cells participate at a given
time (Tsodyks et al., 1993; van Vreeswijk, 1996). In vitro and in large-scale
simulations (Traub, Whittington, Stanford, & Jefferys, 1996), doublets are
produced by only some interneurons in some cycles. It remains to under-
stand how the mechanism explained in this article can work in the more
disordered situation in which only a fraction of those interneurons that �re
in a cycle also �re a doublet spike.

Synaptic noise in I- and E-cells could also have a drastic effect on the
stability of various multispike con�gurations. Analysis for the two-circuit
case suggests that noise in general reduces stability, although rather weakly.
Thus, noise has an opposite effect from weak spatial randomness in the
network, which in general makes long-range synchronization more robust.

The results of this article seem to be consistent with the recent experi-
mental in vitro studies concerning the effect of morphine on the long-range
synchrony in the hippocampal CA1 area (Whittington, Traub, Faulkner, Jef-
ferys, & Chettiar, 1998). These authors found that adding morphine to the
system, whicheffectively reduces the level of inhibition in the system, causes
bursting of inhibitory interneurons accompanied by lack of long-range syn-
chrony. They suggest that this loss of synchrony may be the reason that
morphine causes cognitive dysfunction clinically (Whittington et al., 1998).
In our model, a decrease in I7!I inhibition corresponds to decreasing |v0 |
and/or vth (so less input is required to trigger �ring of I-cell). This means
that ab / |v0 |vth ratio would increase in equation 3.12, opening the possibility
for generating higher-order multispikes in inhibitory neurons. Because such
higher-order multispikes are probably unstable (or stable only in a limited
parameter space), one could observe bursts without the synchrony.

Also notice that the stability regions in Figure 2 get smaller with decreas-
ingstrength of nonlocal synaptic E 7!I coupling. This is in a qualitative agree-
ment with the large-scale simulations involving multicompartmental real-
istic neurons of the hippocampal CA1 area (Traub, Whittington, Stanford,
& Jefferys, 1996). In those simulations it was found that reduction of E 7!I
AMPA conductance resulted in disruption of coherent global oscillations.

For large values of synaptic coupling, there is some chance that more
than one multispike con�guration may exist and be stable. This may be
undesirable for the network if a �xed con�guration is needed for down-
stream processing. We note that architecture-dependent synaptic depres-
sion (Thomson and Deuchars, 1994; Markram & Tsodyks, 1996; Abbott,
Sen, Varela, & Nelson, 1997, Koch, 1997) might then help to decrease the
synaptic coupling to values at which only the doublets are stable. We also
note that since the period of the network oscillation depends on the extra
inhibition produced by the doublet spike, modulation of the percentage of
interneurons �ring doublets may provide a mechanism for modulation of
the period.
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Appendix A

In this appendix we show how to derive equation 3.3.
The local lth I-cell receives a spike train of nonlocal excitatory cells at

times tl(1), . . . , tl(kl ), . . . , tl(nl ), after which it �res, where l(k) Dl C k. Solving
equations 2.1 and 2.2 with an initial condition v(tE

l ) Dv0, we obtain recursive
formulas for the values of the potential v(t)

v(tl(1)) Dv0e¡(tl(1)¡tE
l
)/t i

m C a,

v(tl(2)) Dv(tl(1))e¡(tl(2)¡tl(1) )/t i
m C a,

¢ ¢ ¢ ¢ ¢ ¢

v(tl(kl )) Dv(tl(kl¡1))e¡(tl(kl )¡tl(kl¡1) ) /t i
m C a, (A.1)

up to the time dtl ´ tl(kl ) when v(dtl) D0. This time is given by

dtl Dt i
m ln

"
|v0 |

a
¡

kl¡1X

iD1

e(tl(i)¡tE
l
) /t i

m

#

. (A.2)

At that time v(t) in equation 2.1 changes its sign. This causes exponential
growth described by the recursive equations

v(tl(klC1)) Db ¢ e(tl(klC1)¡tl(kl)
) /t i

m C a,

v(tl(klC2)) Dv(tl(klC1))e(tl(klC2)¡tl(klC1) ) /t i
m C a,

¢ ¢ ¢ ¢ ¢ ¢

v(tl(nl )) Dv(tl(nl¡1))e
(tl(nl )¡tl(nl¡1) ) /t i

m C a. (A.3)

The I-cell �res between receiving spikes enumerated as nl and nl C 1. Thus
the time of �ring tf is determined from a condition

v(tf ) Dv(tl(nl))e
(tf ¡tl(nl )

)/t i
m ´ vth. (A.4)

This yields tf Dtl(nl ) C t i
m ln(vth /v(tl(nl ))). Inserting values of v(tl(nl )) and tl(kl ),

and using the fact that WI
l Dtf ¡ tE

l , we obtain equation 3.3.
We should mention that v(tl(nl)) ¼ vth; hence the logarithmic term in

the formula for tf is very small. Thus, an approximate formula for WI
l is

WI
l ¼ tl(nl ) ¡ tE

l . We will make use of this fact in appendix D. Nevertheless,
one should be cautious about dropping the logarithmic term too quickly;
this term is important in stability considerations, that is, in the calculation
of the stability matrix A.
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Appendix B

In this appendix we show how to derive the WE
l function in equation 3.4.

At time t DtE
l the lth E-cell �res and its potential is reset to v0 ( < 0).

We solve equations 2.1 and 2.3 with two inhibitory inputs coming from the
local I-cell separated by time WI

l with an initial condition v(tE
l ) Dv0. For

simplicity, we assume that the time t0 when the potential of the E-cell crosses
zero is larger than tE

l C WI
l . The former is determined from the condition

v(t0) D0, which produces

0 Dv0e¡(t0¡tE
l
) /t e

m C c(1 ¡ e¡(t0¡tE
l
) /t e

m ) ¡ gt i
s

t i
s ¡ t e

m

£
h
e¡(t0¡tE

l
) /t i

s ¡ e¡(t0¡tE
l
) /t e

m C e¡(t0¡tE
l
¡WI

l
)/t i

s ¡ e¡(t0¡tE
l
¡WI

l
) /t e

m

i
. (B.1)

In the limit t e
m /t i

s ¿ 1 this equation yields

t0 ¡ tE
l ¼ t i

s ln
h g

c

±
1 C eWI

l /t i
s

²i
, (B.2)

and in the limit t e
m /t i

s À 1 (with c /g ¿ 1),

t0 ¡ tE
l ¼ t e

m ln
µ

gt i
s

ct e
m

±
1 C eWI

l /t e
m

²¶
. (B.3)

At t Dt0, v(t) changes sign and begins to grow exponentially, reaching
the threshold vth. Solving equations 2.1 and 2.3 as before with an initial
condition v(t0) D0, we obtain in the limit t e

m /t i
s ¿ 1, the time tth at which

v(tth) Dvth:

tth ¡ t0 ¼ t e
m ln
¡

1 C
vtht i

s

ct e
m

¢
. (B.4)

In the limit t e
m /t i

s À 1, the time tth is given by

tth ¡ t0 ¼ t e
m ln

±
1 C

vth

c

²
. (B.5)

Since WE
l Dtth ¡ tE

l ¡ WI
l , we can neglect tth ¡ t0 part in the limit t e

m /t i
s ¿ 1,

which then yields

WE
l ¼ t0 ¡ tE

l ¡ WI
l Dt i

s ln
h g

c

±
1 C e¡WI

l /t i
s

²i
. (B.6)

We cannot neglect tth ¡ t0 part in the limit t e
m /t i

s À 1, because both parts are
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of the same order. As a result, in this limit, we obtain

WE
l ¼ t e

m ln
µ

gt i
s

ct e
m

±
1 C

vth

c

² h
1 C e¡WI

l /t e
m

i¶
. (B.7)

Formulas B.6 and B.7 differ mainly by a substitution t i
s $ t e

m; this is
the reason that stability diagrams in both regimes look the same. Both
formulas are similar in form to that adopted by Ermentrout and Kopell
(1998).

Appendix C

In this appendix we demonstrate that the probability distribution P1(x) with
delta functions (see equation 3.6) and gaussian distribution P2 Dexp[¡(x ¡
x0)2 /2f 2] are equivalent in the limit f /x0 ¿ 1, which is the limit of weak
disorder.

To prove the above statement, it is suf�cient to show that n-moment of
x computed using both distributions is the same in the above limit. For the
gaussian distribution we have

hxniP2 DZ¡1
Z 1

¡1
dxP2(x) ¢ xn DZ¡1

Z 1

¡1
dx ¢ xne¡(x¡x0 )2 /2f 2

, (C.1)

where Z is the normalization factor. This integral can be computed using

xne¡(x¡x0 )2 /2f 2 ´ e¡x2
0 /2f 2
¡

f 2 @

@x0

¢n
ex2

0 /2f 2
e¡(x¡x0 )2 /2f 2

. (C.2)

The result is

hxniP2 Df 2ne¡x2
0 /2f 2
¡

@

@x0

¢n
ex2

0 /2f 2
, (C.3)

which yields hxiP2 Dx0, hx2iP2 Dx2
0(1 C f 2 /x2

0), hx3iP2 Dx3
0(1 C 3f 2 /x2

0), and
so forth.

On the other hand, for P1 distribution we have

hxniP1 D
1
2

Z 1

¡1
dx ¢ xn [d(x ¡ x0 C f ) C d(x ¡ x0 ¡ f )]

Dxn
0

"
1 C

n(n ¡ 1)
2

f 2

x2
0

#
C O(f 4 /x4

0). (C.4)

Thus, both probability distributions give the same results in the limit f /x0 ¿
1, which in our case corresponds to the limit fN /R ¿ 1. This is the reason
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that we have used simple P1 distribution with delta functions instead of
more complicated gaussian distribution. In that way we avoided complex
multidimensional integrals in equation 3.7.

Notice that our proof is valid for a random variable x, assuming both
positive and negative values. One can also show that the above conclusion
is valid for a random variable de�ned only on a positive interval 0 < x < 1,
although calculations in this case are more tedious.

Appendix D

In this appendix we show how to derive the average value of any function
when the probability distribution is given by equations 3.5 and 3.6. We also
show how to obtain the average number of inputs kl and nl needed for
crossing the zero potential value and threshold, respectively.

For an arbitrary function H
¡
Ll, l(1), . . . , Ll,l(k)I fD lg

¢
we want to calculate

its average value hHi, that is, carry out the multidimensional integrals in
equation 3.7. We obtain

hHiD
1

2k coshk(f /s)

2X

a1, ...,akD1

H
¡

R
N

C (¡1)a1 f, . . . ,
kR
N

C (¡1)ak f I fD lg
¢

£ exp

0

@¡
kX

jD1

(¡1)ajf /s

1

A , (D.1)

where the prefactor term comes from the normalization of the probability
distribution r (fLg). Using this formula and the facts that tl(k) DtE

l(k) C Ll,l(k)

and tE
k ¡ tE

1 ´ D k¡1, we can easily write formulas for hWIi and hWEi based
on equations 3.3 and 3.4. Their forms are as follows

hWI
l iDhtE

l(nl )i¡htE
l i C

1
2 cosh(f /s)

2X

aD1

µ hnliR
N

C (¡1)af

¶

£ e¡(¡1)af /s ¡ t i
m

2nl coshnl(f /s)
£

2X

a1 , ...,anl
D1

exp

0

@¡
nlX

jD1

(¡1)ajf /s

1

A

£ ln
¡

b
vth

exp[(nlR /N C (¡1)anl f ¡ dtl C D lCnl¡1 ¡ D l¡1) /t i
m]

C
a

vth

nlX

iDkl

exp [((nl ¡ i)R /N C [(¡1)anl ¡ (¡1)ai ]f

C D lCnl¡1 ¡ D lC i¡1) /t i
m

¤¢
, (D.2)
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and

hWE
l i D t i

s

2nl coshnl (f /s )

2X

a1 , ...,anl
D1

exp

0

@¡
nlX

jD1

(¡1)ajf /s

1

A

£ ln
µ

g
c

¡
1 C exp

µ
¡WI

l

¡
R
N

C (¡1)a1 f, . . . ,
nlR
N

C (¡1)anl f I fDg
¢

/t i
s

¶¢¶
, (D.3)

where dtl is given by equation A.2.
We can also write the sum hWIiC hWEi Dht i

s ln[ g
c (1Cexp(WI

l /t i
s))]i, which

is equation 3.11 in the text. Note that hWEi and hWIi C hWEi differ only by
the sign of WI present in the logarithmic term; compare equations D.3 and
3.11.

We can also derive the average value of kl and nl, de�ned below, in the
synchronous state using equation D.1. From equation A.1, we obtain

hv(tl(kl ))i Dv0he¡Ll,l(kl ) /t i
m i C a

klX

iD1

he¡(Ll, l(kl )¡Ll, l(i) ) /t i
m i (D.4)

for the synchronous state with D1 D¢ ¢ ¢ DDN¡1 D0. In deriving equa-
tion D.4, we again have used the relation tl(k) DtE

l(k) C Ll,l(k). Invoking equa-
tion D.1 yields

he¡Ll, l(kl ) /t i
m i D

cosh( f
s

C f

t i
m

)

cosh f
s

he¡klR /Nt i
m i (D.5)

and

he¡(Ll, l(kl )¡Ll,l(i) ) /t i
m i D

cosh( f
s

C f
t i

m
) cosh( f

s
¡ f

t i
m

)

cosh2 f
s

he¡(kl¡i)R /Nt i
m i. (D.6)

Condition hv(tl(kl))i D0 determines the average value of kl denoted by k,
which we de�ne as k D(Nt i

m /R) ln[hexp(klR /Nt i
m)i]. The formula for k takes

the form

k D
Nt i

m

R
ln

0

BBBB@

[|v0 |(1 ¡ e¡R /Nt i
m ) cosh f

s

C a cosh( f
s

¡ f

t i
m

)] cosh( f
s

C f

t i
m

)

a[cosh2 f
s

C e¡R /Nt i
m sinh2 f

t i
m

]

1

CCCCA
. (D.7)
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In a similar manner we obtain the average value of nl , denoted by n, from the
condition hv(tl(nl ))i Dvth.Our n, de�ned as n D(Nt i

m /R) ln[hexp(nlR /Nt i
m)i],

takes the form

n D
Nt i

m

R
ln

0

BBBBB@

[(vth ¡ a)(1 ¡ e¡R /Nt i
m ) cosh2 f

s

C a cosh( f
s

C f
t i

m
) cosh( f

s
¡ f

t i
m

)]

[b C (a ¡ b)e¡R /Nt i
m ] cosh( f

s
¡ f

t i
m

)

£
[|v0 |(1 ¡ e¡R /Nt i

m ) cosh f
s

C a cosh( f
s

¡ f
t i

m
)]

a[cosh2 f
s

C e¡R /Nt i
m sinh2 f

t i
m

]

1

CCCCCA
. (D.8)

From the average values k and n, we can compute hWI
l (fD D0g)i of a syn-

chronous state depending only on the parameters of the network architec-
ture. This function plays an important role in the discussion about stability.

Making use of the fact that the fourth, logarithmic term in equation D.2
is small (cf. appendix A), we can neglect it. Thus, in the synchronous state,
equation D.2 has the approximate form

hWI
l i ¼

hnliR
N

¡ f tanh
f

s
. (D.9)

We expect that for large nl, its higher-order cumulants are small, so the
relation hnli ¼ n holds. Using this fact, we can substitute n for hnli into the
above equation. We obtain

hWIi ¼ t i
m ln

0

BBBBB@

[(vth ¡ a)(1 ¡ e¡R /Nt i
m ) cosh2 f

s

C a cosh( f
s

C f
t i

m
) cosh( f

s
¡ f

t i
m

)]

[b C (a ¡ b)e¡R /Nt i
m ] cosh( f

s
¡ f

t i
m

)

£

[ |v0 |(1 ¡ e¡R /Nt i
m ) cosh f

s

C a cosh( f
s

¡ f
t i

m
)]

a[cosh2 f

s
C e¡R /Nt i

m sinh2 f

t i
m

]

1

CCCCA
¡ f tanh

f

s
. (D.10)

Note that hWI i is of the order of the membrane time constant t i
m and addi-

tionally that hWIi can be arbitrarily small provided the disorder parameter
f is suf�ciently large.
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Appendix E

In this appendix we sketch how to compute the stability diagrams depicted
in Figure 2, as well as how to derive equation 3.13. Formulas below are
provided only in the regime t e

m /t i
s ¿ 1. In the opposite regime, t e

m /t i
s À 1,

formulas are the same with a substitution t i
s 7! t e

m.
According to the Gershgorin theorem (Horn & Johnson, 1985), the lth

eigenvalue l l of the stability matrix A lies in a disk such that

|l l ¡ Al, l | ·
X

m 6Dl

|Al,m |, (E.1)

where Al,m ´ @ ND l /@Dm |DD0. Using the inequality |l l ¡ Al,l | ¸ |l l | ¡ |Al, l |,
we obtain |l l | ·

PN¡1
mD1 |Al,m |. The system is stable when |l l | < 1 for every l.

Thus, a suf�cient condition for stability is

N¡1X

mD1

|Al,m | < 1 (E.2)

for every l D1, . . . , N ¡ 1. After some algebra the sum in equation E.2 can
be found as

N¡1X

mD1

|Al,m | D
2

1 C e¡nR/Nt i
s

¡
1 C

b|v0 |

avth
he[Ll, l(nl )¡2Ll, l(kl )

] /t i
m i ¡

b
vth

he[Ll, l(nl )¡Ll,l(kl )
] /t i

m i

C 1
2


b

vth
he[Ll, l(nl)¡Ll, l(kl )

] /t i
m i ¡ e¡nR /Nt i

s


¢

. (E.3)

Next, invoking equations D.1, D.5, and D.6, we can �nd the averages in
the above equation. Combining all this, equation E.2 decomposes into two
complementary cases, each described by a pair of inequalities, due to the
modulus present in equation E.3. We discuss the �rst case in detail. Later
we comment on the complementary second case. The inequalities for the
�rst case are given by

e(n¡k)R /Nt i
m >

vth

b
cosh2 f

s

cosh( f
s

C f
t i

m
) cosh( f

s
¡ f

t i
m

)
e¡nR/Nt i

s (E.4)

and

enR/Nt i
s

"
1 C 2

b|v0 |

avth

cosh( f
s

C 2 f
t i

m
) cosh( f

s
¡ f

t i
m

)

cosh2 f
s

e(n¡2k)R /Nt i
m

¡
b

vth

cosh( f
s

C f
t i

m
) cosh( f

s
¡ f

t i
m

)

cosh2 f
s

e(n¡k)R /Nt i
m

#
< 2, (E.5)
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where n and k are given by equations D.7 and D.8. Inequalities E.4 and E.5
must be satis�ed simultaneously.

Notice that after insertion of equations for k and n, exp(nR /Nt i
s ) be-

comes a function of the ratios t i
m /t i

s and R /Nt i
m, and exp(nR /Nt i

m) becomes
a function of R /Nt i

m ratio for given other parameters. This says that we
can compute a suf�cient condition for the stability in terms of t i

m /t i
s and

R /Nt i
m.

In the ordered network case for f D0, equations E.4 and E.5 reduce to

t i
m /t i

s >
1
K

ln( vth[b C (a ¡ b)e¡R /Nt i
m ]

b[(vth ¡ a)(1 ¡ e¡R /Nt i
m ) C a]

!

, (E.6)

and

t i
m /t i

s < ¡ 1
K

ln(1
2

"
1 C

b[(vth ¡ a)(1 ¡ e¡R /Nt i
m ) C a]

vth[b C (a ¡ b)e¡R /Nt i
m ]

£ [|v0 |(1 C e¡R /Nt i
m ) ¡ a]

[|v0 |(1 ¡ e¡R /Nt i
m ) C a]

#!
, (E.7)

with

K Dln( [(vth ¡ a)(1 ¡ e¡R /Nt i
m ) C a][|v0 |(1 ¡ e¡R /Nt i

m ) C a]
a[b C (a ¡ b)e¡R /Nt i

m ]

!
. (E.8)

The two curves on the right-hand side of equations E.6 and E.7 cross in
the point with coordinates

R /Nt i
m ¼ ln[(a C 2b)|v0 | /2ab] (E.9)

and

t i
m /t i

s ¼ ¡ ln[1 ¡ 2a2 /(a C 2b) |v0 |] / ln(vth |v0 | /ab), (E.10)

denoted as x0 and y0 in Figure 2, respectively. Above this value of R /Nt i
m

the set of inequalities E.6 and E.7 is satis�ed.
The complementary case differs from the �rst by inverting the inequal-

ity sign in equation E.4 and multiplying the third term in the brackets in
equation E.5 by 3 and setting the right side of this inequality equal to zero.
In this case we also obtain the stability region for R /Nt i

m greater than the
value given by equation E.9. Combining these two cases, we �nd the stabil-
ity region as that shadowed in Figure 2A. Notice that the ratio t i

m /t i
s must

be small in order to preserve stability.
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The disordered network case with f > 0 is more complicated alge-
braically to analyze. In this case, there also exists some minimum value of
R /Nt i

m of the order of that in equation E.9 for weak disorder, below which
the doublet con�guration is unstable.

The disordered case differs from the ordered case by the appearance
of a vertical asymptote in Figure 2B, which crosses the horizontal axis at
(R /Nt i

m)cr given by equation 3.13. The reason for the appearance of the
asymptote is the fact that the term in the bracket in equation E.5 can now
change sign. For small R /Nt i

m, the bracket term is positive, whereas for
R /Nt i

m 7! 1, it is negative. This does not happen for the ordered network;
in this case, the bracket term is always positive. When the bracket term
is negative, inequality E.5 is satis�ed for every t i

m /t i
s (recall that this ratio

comes from exp(nR /Nt i
s) term).

Putting the bracket term equal to zero and substituting for n and k values
represented by equations D.7 and D.8 determines the vertical asymptote in
Figure 2B. In the limit R /Nt i

m À f /t i
m À 1 we obtain (R /Nt i

m)cr given by
equation 3.13. Notice that for the ordered network with f D0, our asymptote
shifts to in�nity (that is, it disappears), which corresponds to decreasing the
stability region.

For the triplet con�guration, analysis shows that in the ordered network
case, the condition E.2 cannot be satis�ed for any t i

m /t i
s and R /Nt i

m. In the
disordered network case, we can show that there is some stability region
for R /Nt i

m À 1.
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