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Abstract

Inhibition in oscillatory networks of neurons can have apparently paradoxical e�ects,
sometimes creating dispersion of phases, sometimes fostering synchrony in the network. We
analyze a pair of biophysically modeled neurons and show how the rates of onset and decay
of inhibition interact with the time scales of the intrinsic oscillators to determine when
stable synchrony is possible. We show that there are two di�erent regimes in parameter
space in which di�erent combinations of the time constants and other parameters regulate
whether the synchronous state is stable. We also discuss the construction and stability
of non-synchronous solutions, and the implications of the analysis for larger networks.
The analysis uses geometric techniques of singular perturbation theory that allow one to
combine estimates from slow ows and fast jumps.
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1. Introduction.

Synchronous activity in networks of inhibitory neurons has been observed in thalamic
[22 ] and hippocampal [32] networks. Such activity has been the subject of a large number
of simulation studies [1, 2, 6, 7, 8, 10, 15, 25, 27, 28, 29, 30, 33]. For coupled neural
oscillators, a traditional view is that excitatory coupling leads to synchronous behavior,
while inhibitory coupling leads to asynchronous behavior. Though this has been supported
by many modeling studies [4, 11, 18, 19, 20], there has recently been a variety of studies
whose conclusion is the opposite [3, 4, 27, 28, 29]. Several of these papers emphasize the
importance to the network behavior of the rates at which the synapses activate or deac-
tivate. Some simple analytical models focus on the role of the rise time of the inhibition,
and conclude that this rate must be su�ciently slow to obtain synchrony [3, 5, 26]. Others
[28, 29], give simulations of coupled inhibitory neurons with a more biophysical basis, and
obtain synchronous solutions when the inhibition decays at a rate slower than the rate at
which the neurons recover in their refractory period.

The aim of this paper is to analyze a pair of biophysically modeled neurons, to un-
derstand how the rates of onset and decay of inhibition interact with the time scales of
the intrinsic oscillators to determine when synchrony is possible. We show that there are
two di�erent regimes in parameter space in which di�erent combinations of the time con-
stants regulate whether the synchronous state is stable. Thus, a change of parameter that
moves the system from one regime to the other changes which combination of parameters
determines stability; this can be done by changing parameters such as synaptic reversal
potential or maximal conductance, which do not directly change timing parameters.

The neurons that we analyze are relaxation oscillations, modeling either the envelope of
activity of bursting neurons or neurons whose action potential is relatively broad (based
on a calcium current rather than a sodium current). Without any coupling, each oscillator
typically lies in either a silent or active phase, with rapid transitions between these that
take place on a faster time scale. The synaptic coupling is modeled in a way similar to
that in [28, 30]. We focus on the cases in which the synapse activates and/or deactivates
at a rate comparable to the rate at which the oscillator evolves in its silent or active phase.
From the analysis, we can determine which combinations of time scales govern stability in
di�erent parameter regimes. Furthermore, we show why, and in what circumstances, the
mutual interactions can lead to solutions that are more complicated than synchronous or
antiphase [29]. These include suppressed solutions, in which one of the neurons oscillates
while the other remains in its silent state, or solutions in which one oscillator may �re
several times before the other does.

In other treatments of mutually inhibitory neurons [20, 28], the concepts of \release"
and \escape" have been useful in dissecting di�erent mechanisms by which oscillations can
occur in a network of two mutually inhibitory neurons. (See Discussion.) As shown in
[20], the fast activation and deactivation of the synapse is critical to the above distinc-
tion. This paper shows that, even when the synapses have time scales comparable to the
slow processes of the uncoupled neurons, the geometric techniques used to investigate the
consequences of \escape" and \release" still work, though in higher dimensions and with
potentially more complications. Thus, the analysis can be seen as placing the ideas of
\release" and \escape" in a larger context, which includes slow synapses.
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The techniques of this paper are based on a geometric approach to singular perturbation
problems. This approach allows us to dissect the entire ow into \fast" and \slow" pieces;
these correspond to when the solution is in either its silent phase, active phase, or making
a transition between these two phases. For each piece, we derive a reduced, lower order,
system of equations. The reduced equations are analyzed to determine when we have
expansion or compression over that piece. Combining these estimates then allows us to
compute and analyze a \singular Poincare map", for which the limiting periodic orbit
corresponds to a �xed point. For stability, we do not compute eigenvalues, but directly
show that perturbations to the �xed point decay in time. All of our estimates are derived
for when the singular perturbation parameter � is formally set equal to zero; however,
results found in [16], for example, show that our results also hold for � su�ciently small.

In some previous studies (see [14, 24]), the slow manifolds were one dimensional, and
one could naturally de�ne a metric between the two cells. The metric could either be a
`time-metric' which measures the time it takes for the `trailing cell' to reach the position
of the `leading cell' or a `space-metric' which measures the Euclidean distance between the
two cells on the slow manifold. In the current paper the dimensions of the slow manifolds
may be larger than one; this is the case when both cells are in their silent phase. There is
no such natural metric when a slow manifold is higher dimensional. We will, in fact, need
to de�ne di�erent metrics for di�erent cases corresponding to di�erent combinations of the
parameters. Related techniques have been used by Terman and Lee [23] for slow synapses
and by LoFaro and Kopell [14] for additional slow currents.

The outline of the paper is as follows: In Section 2, we give the equations for the
full system, and the simpli�ed equations that hold in each slow regime. We also give
equations for a \direct" synapse, which is fast acting and an \indirect" synapse which
has a delay to onset of inhibition. Those equations are used in Section 3, whose topic
is the existence and stability of synchronous solutions. We show that the synchronous
solution exists whenever the cells are oscillators, and can also exist if the cells are excitable
(not oscillatory) provided that the inhibition decays slowly enough. We then address the
question of what circumstances allow the synchronous solution to be asymptotically stable.
We show that if the synapses between the cells are direct, then the synchronous solution
is unstable - i.e. a delay in onset is necessary for the stability (also see [3, 5, 26]). For
an indirect synapse, the answers are subtle. We show analytically that there are at least
two combinations of parameters that a�ect the stability; these parameters include times
that the cells are active and inactive, decay time of the synapse, and strength and reversal
potential of the synapse. In di�erent parameter regimes, only one or the other of the
combinations is relevant to stability. We also show that the synchronizing e�ects of slowly
decaying inhibition can phaselock heterogeneous cells not coupled to one another or to the
cell providing the inhibition.

Even if the synchronous solution is stable, it may not be the only stable solution.
The slow onset (or delay) in the inhibition provides a \window of opportunity" whose
length partially determines the amount of di�erence in initial conditions that will decay
toward synchrony. For a larger di�erence in initial conditions, the system displays di�erent
solutions. These include antiphase solutions, solutions in which one cell oscillates while
the other is silent, and more exotic solutions in which one oscillates several times while the
other is suppressed, and then the other �res. It is also possible that the network \crashes"
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and both become silent. In Section 4, we give simulations showing these other solutions
and give heuristic explanations of how the parameters listed above interact to determine
which solutions will be manifested.

The discussion in Section 5 includes a comparison of our results to those in related work.
We also discuss potential implications of the analysis for larger networks. In particular,
we give insights into the phenomenon of \clustering", in which subsets of cells synchronize
and remain out of phase with other synchronized sets.

2. The Model.

2A. The single neuron.

We model each individual neuron (or neural circuit), without any coupling, as the
relaxation oscillator

v0 = f(v; w)

w0 = �g(v; w)(2:1)

Here � is assumed to be small. We assume that the v�nullcline f(v; w) = 0 de�nes a
cubic-shaped curve as shown in Fig. 1, and the w�nullcline g(v; w) = 0 is an increasing
graph in the v; w plane that intersects f = 0 at a unique point p0 (Fig. 1). We also
assume that f > 0 (f < 0) below (above) the v�nullcline, and g > 0 (g < 0) below
(above) the w�nullcline.

The analytical framework we develop applies for very general nonlinear functions f and
g. However, it will often be easier to interpret our results if we consider special forms for
these nonlinear functions. The forms we choose are motivated by widely used models for
neural systems. We sometimes assume that f has the form

f(v; w) = f1(v)� gcw(v � vR)(2:2)

where gc > 0 and vR represent a maximal conductance and reversal potential, respectively.
This includes the well-known Morris-Lecar equations [17]. (These equations are often used
to describe the envelope of bursting neurons or the activity of a spiking neuron if the spikes
have signi�cant width.) In the Morris-Lecar equations, (2.2) gives the rate of change of
cross-membrane potential as a sum of ionic currents and w represents activation for a
potassium current with gc = gK and vR = vK .

We will sometimes assume that g(v; w) has the form

g(v; w) = (w1(v)� w) =�(v)(2:3)

where w1(v) is nondecreasing in v and �(v) is positive. In (2.3), we are assuming that
w1(v) = 0 on the left branch of the oscillator, and w1(v) = 1 on the right branch. We
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also assume that �(v) is independent of v on each of the two branches, so �(v) = �� on
the left branch and �(v) = �+ on the right one.

If the intersection p0 of the nullclines lies on the left or the right branch of f = 0;
then p0 corresponds to a stable �xed point of (2.1), providing that � is small enough.
If p0 is on the left branch, we say that (2.1) is excitable. p0 on the right hand branch
corresponds to tonic �ring for the unconnected neuron when the model is being used to
describe the envelope of a neuron which is continually in the active phase. If p0 lies on
the middle branch of f = 0; then (2.1) is oscillatory; there is a stable limit cycle, again
if � is su�ciently small. In the limit �! 0; the periodic solution lies close to the singular
periodic orbit shown in Fig. 1.

This singular orbit consists of four pieces, two slow and two rapid transitions between
the slow pieces. We will refer to the parts of the trajectory on the left and right branches
as the silent and active phases. These phases end when the trajectory reaches either the
left knee or the right knee of f = 0, initiating a rapid jump up to the active phase or jump
down to the silent phase.

In the Morris-Lecar equations, w represents the activation of a potassium current. In
other models (including that considered in [28]), w represents the inactivation of a calcium
current, while gc and vR correspond to the maximal conductance and reversal potential of
that current. The techniques developed in this paper apply to these other models. The
precise stability conditions, however, depend on the particular form of the equations. This
will be discussed further in Remark 11.

2B. Coupling.

We model the pair of mutually inhibitory neurons by the following system of di�erential
equations

v01 = f(v1; w1)� s1gsyn(v1 � vsyn)

w0
1 = �g(v1; w1)

v02 = f(v2; w2)� s2gsyn(v2 � vsyn)(2:4)

w0
2 = �g(v2; w2)

Here (v1; w1) and (v2; w2) correspond to the two oscillators, and gsyn is positive. The
reversal potential vsyn is chosen so that if (v; w) is on a singular solution, then v > vsyn;
thus the synapse is hyperpolarizing (inhibitory). If f(v; w) is given by (2.2), then it is also
natural to assume that vR � vsyn.

The terms si; i = 1; 2; measure how the postsynaptic conductance depends on the
presynaptic potentials vj ; j 6= i: For a \direct" synapse we assume that each si satis�es
a �rst order equation of the form

s0i = �(1� si)H(vj � �syn) � �Ksi(2:5)
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where j 6= i. Here � and K are positive constants which do not depend on �, and �syn
is the threshold above which one oscillator can inuence another. Note that the synapse
activates quickly (but not instantly), and deactivates slowly. This form of synaptic coupling
has been considered in other neuronal models. See, for example, [28].

Synapses may be very complicated, involving, for example, secondary processes such as
G-proteins. We shall refer to these as indirect synapses. Following [8], we model these by
introducing new dependent variables x1 and x2, which satisfy �rst order equations. Each
xi and si satis�es the equations

x0i = ��(1� xi)H(vj � �v)� ��xi

s0i = �(1� si)H(xi � �syn)� �Ksi(2:6)

Here, j 6= i. The constants � and � are assumed to be independent of �. The e�ect of
the indirect synapses is to introduce a delay from the time one oscillator jumps up until
the time the other oscillator feels the inhibition. For example, if the �rst oscillator jumps
up, the secondary process is turned on when v1 crosses the threshold �v. The inhibition
s2 does not turn on until x2 crosses �syn; this takes a �nite amount of (slow) time since
x2 evolves on the slow time scale, like wi.

We will have to impose some technical assumptions on the parameters � and �. For
example, if vj > �v, then xi will approach the �xed point �=(�+ �). We need to assume
�=(� + �) > �syn so that xi can cross the threshold in order to turn on the inhibition.
We assume this to be the case throughout the remainder of the paper. For our result
concerning the stability of the synchronous solution, it will also be necessary to assume
that � and � are su�ciently large. Once again, this is necessary to guarantee that each
cell's inhibition is able to turn on and turn o� during each cycle.

2C. Fast and slow equations.

For the coupled system, as for the uncoupled one, the slow regimes are those between
the fast transitions, and in a slow regime each oscillator is either in a silent phase or an
active one. To get the equations for any such slow regime, we rewrite the equations in
terms of the slow time scale variable � = �t, and then set � = 0 in the resulting equations.
The reduced systems for the rapid transitions between silent and active phases are obtained
(for the coupled or uncoupled system) simply by putting � = 0 in (2.4) and (2.5) or (2.6).
The notation _w means dw

d�
.

We now give the equations for the slow regimes.

i) Both oscillators in silent phase: If the synapse is direct, then the slow variables of
this regime are wi and si; i = 1; 2. When both cells are in the silent phase, vi < �syn and
so the �rst term in the _si equations is zero. Thus, in the limit � = 0, the equations (2.4),
(2.5) become:
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0 = f(vi; wi)� sigsyn(vi � vsyn)

_wi = g(vi; wi)(2:7)

_si = �Ksi

where i = 1; 2: For an indirect synapse, each xi is also a slow variable, and we have the
additional slow equation

_xi = ��xi(2:8)

We can reduce the above system to equations for just the slow variables as follows. The
�rst equation of (2.7) represents a cubic surface which we write as v = hL(w; s); in the
silent phase, points lie on the left branch of this surface. Replacing the vi in the second
equation of (2.7) by hL(wi; si) and setting GL(w; s) � g(hL(w; s); w); one obtains the
following equations for the slow variables

_wi = GL(wi; si)

_si = �Ksi(2:9)

For indirect synapses one has the additional equations (2.8). Here we are assuming that
xi < �syn. Otherwise, we replace the second equation in (2.9) with si � 1. In the simpli�ed
case of (2.3), (2.9) become

_wi = �wi=�
�

_s = �Ksi(2:10)

Note that in (2.7) or (2.9), the equations for the two cells are uncoupled; the coupling is
through the positions when one or the other cell jumps. See [21].

The jump to a regime involving at least one of the cells excited happens when a trajec-
tory of (2.9) hits a point at which one or both of the elements are at the up-jump curve.
This curve, w = wL(s), is the s�dependent value of the point at which the \cubic"

0 = f(v; w)� gsyns(v � vsyn)(2:11)

has a local minimum. We show later that dwL(s)=ds < 0. (See Remark 4 below.) This
implies that the higher the value of the inhibition, the lower the value to which w must
decrease to jump. Fig. 2 shows sketches of the phase plane of (2.9) with the curve



8

w = wL(s). In Fig. 2A, a single cell (as given by (2.1)) is oscillatory. There are then no
�xed points of (2.9), and every trajectory arrives at the curve w = wL(s) in �nite time.
In Fig. 2B, a single cell is excitable with the �xed point p0 lying on the left branch of the
nullcline f = 0. In this case, some of the solutions of (2.9) go to a stable critical point, and
the system remains in the silent state. From (2.9), one can see that the rate of synaptic
decay K, the rate of recovery g(v; w) and the amount of inhibition all interact to determine
the time and position of the jump to another process, or even if the system leaves the state
in which both elements are silent. (See [23].) This will be discussed explicitly in Section 3.

ii) Both in active phase: First consider the direct synapse. When an element is in its
active phase, it is producing the maximal amount of inhibition; the rise to s = 1 happens
on a fast time scale that is instantaneous for the slow equations. Thus, in the slow regime
with both elements in active phase, both si are set to 1. There are then only two slow
variables, wi. Equations (2.7) become

0 = f(vi; wi)� gsyn(vi � vsyn)

_wi = g(vi; wi)(2:12)

si = 1

i = 1; 2. As before, we can express this system as equations for just the slow variables wi.
If we denote the right branch of the cubic surface de�ned by (2.11) as v = hR(w; s) and
let GR(w; s) � g(hR(w; s); w), then each wi satis�es

_w = GR(w; 1)(2:13)

In the simple case of (2.3), (2.13) is

_w = (1� wi)=�
+(2:14)

For indirect synapses, the xi are also slow variables. Each of these satis�es the equation

_xi = �(1� xi)H(vj � �v)� �xi = (�+ �)

�
�

�+ �
� xi

�
(2:15)

Then (2.12) holds for xi > �syn. Otherwise, we replace the last equation in (2.12) by
s0i = �Ksi.

A trajectory leaves this slow regime when one of the cells reaches the threshold for
jumping down. Since si is held at one, this threshold (the local maximum of the �rst
equation of (2.12)) is a number wR(1), rather than a function of s. We assume that the
nullcline g(v; w) = 0 does not intersect any of the right branches of (2.11) for 0 � s � 1.
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This implies that a trajectory that jumps up to the active phase for both cells must
eventually leave that slow regime.

For an indirect synapse, there is an extra slow regime corresponding to the rise of
the x�variable. Assuming that each oscillator is active (vi > �v), then as long as xi <
�syn; (vi; wi; si) satisfy (2.7). The di�erence between this and the equations of the silent
phase is that (vi; wi) now lies on the right branch of the cubic surface; hence, wi now
satis�es

_wi = GR(wi; si)(2:16)

For xi > �syn, the equations for vi; wi and si switches to (2.12).

iii) One cell active and one silent: This case arises when we consider antiphase solu-
tions, for example. The derivation of the slow equations for each cell is very similar to the
derivations already discussed. For this reason, we do not give the details.

3. Main Results.

3A. When is there a synchronous solution ?

We �rst construct the singular synchronous solution in the case of direct synapses. Such
a solution must pass through the point at which both elements are on the edge of the upper
plateau, whose w�component is wR(1). It is from this point that the cells jump down from
the active to the silent phase. Provided that the trajectory can leave the process in which
both are silent, the trajectory eventually jumps to the process in which both are active
and returns to the starting point. The issue of existence of a synchronous solution thus
reduces to the question of whether the jump to the active state is possible.

If the neurons are oscillatory, then the synchronous trajectory must reach the jump-
up curve w = wL(s). This is true because dw=dt < 0 if s = 0 (uncoupled case) and
because s decreases. By continuity, dw=dt < 0 for s su�ciently small; since s decreases,
the trajectory is eventually in a region where w must decrease until it hits wL(s).

If both cells are excitable, the existence of a synchronous solution depends on the rate
K of decay of the inhibition. If K is large, the decay is fast; for K large enough, the system
behaves in this slow regime like the system with s = 0, in which the critical point of the
silent regime prevents the trajectory from leaving this regime. Hence, no periodic solution
is possible.

The surprising case is K su�ciently small, provided that the cells are oscillatory for
some �xed values of s. We note that this is indeed possible for the Morris-Lecar type
models given in the Appendix. One might think of such a system as a 2-D caricature of
larger systems that have additional currents, such as the Ih [12]. The following argument
shows that the synchronous trajectory does leave the \both silent" regime, and hence there
is a periodic solution. Fig. 3A shows the (w; s) phase plane for (2.9) for K = 0. The curves
intersecting w = wL(s) are the critical points of (2.9) at K = 0, i.e., the equilibrium points
for w when s is frozen. In this example, there are two such curves; these are labeled as
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w+
c and w�

c in Fig. 3. Note that there is an interval of values of s between these curves
for which the trajectory is not cut o� from the threshold by a critical point, so oscillations
can occur, even when K = 0.

For K > 0, trajectories start in the silent regime with s = 1, and both w and s begin
to decrease, as shown in Fig. 3B. If K is su�ciently small, then (w; s) must reach the
upper curve w+

c of critical points of the K = 0 system. For K > 0, this curve represents
the w�nullcline of (2.9). Hence, w begins to increase after (w; s) crosses this curve. Since
s continues to decrease, and (w; s) can never cross this curve again, it follows that (w; s)
must eventually leave the slow regime along a point on wL(s).

The construction of the synchronous solution for the case of indirect synapses is very
similar to that for direct synapses except we must now be concerned with the additional
slow variables x1 and x2. We may start this solution with each (vi; wi; si) at the same
jump-down point; however we must also choose the initial value x1(0) = x2(0) so that after
one complete cycle, each xi(t) returns to this value. As we shall see, this is equivalent to
showing that a certain return map possesses a �xed point. The return map is formally
de�ned in Section 3D; it is shown in Section 4 that the map is well de�ned and gives
rise to a �xed point as long as the synchronous trajectory is able to leave the process in
which both cells are silent. This is precisely the condition needed for the existence of the
synchronous solution for the case of direct synapses. Hence, as before, the synchronous
solution exists if the neurons are oscillatory, or if K is small and the cells are oscillatory
for some �xed values of s.

3B. Instability of the synchronous solution for direct synapses.

We show in this section that the synchronous solution is not stable when the synapse
is direct. In the next section, we state results which show that the synchronous solution
may be stable if the synapses are indirect. The stability depends on whether certain
relationships between the parameters in (2.4), (2.6) are satis�ed.

Suppose that the synapse is direct. We start with both oscillators in the silent phase,
and assume that cell 1 reaches the jump-up curve wL(s) �rst. When cell 1 jumps, the
other begins to feel inhibition as v1 crosses �syn. For the direct synapse, this inhibitory
conductance, s2, jumps instantly (in the slow time scale) to s2 = 1. The e�ect of this on
the v2; w2 equations is to instantly move the second cell away from its threshold. This
is shown in Fig. 4, where the two cells are denoted by C1 and C2. The amount that
it is removed from the threshold stays bounded away from zero no matter how close the
second cell was originally to the �rst one. Thus, in�nitesimally small perturbations get
magni�ed at this stage of the dynamics to �nite size. Though the points can get somewhat
closer as they transverse the rest of the cycle, they remain a �nite distance apart over
the cycle. This shows that small perturbations are expanded by the dynamics, and hence
the synchronous solution is not stable to in�nitesimal perturbations. (Technically, this
argument shows that the synchronous solution is unstable under the � = 0 ow. If � > 0,
the argument shows that, if the synchronous solution is stable at all, its domain of stability
goes to zero as �! 0.)

3C. Stability of the synchronous solution for indirect synapses.

We now consider indirect synapses, and show that the synchronous solution can be stable
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in some parameter ranges. We shall show that there are two combinations of parameters
that govern the stability. Furthermore, only one of those two combinations matters to the
stability.

In this section, we give a precise statement of the stability result. For this result, it is
necessary to make some further assumptions on the nonlinearities and parameters in (2.4),
(2.6). It will be necessary to assume that

fw < 0; gv > 0; and gw < 0(3:1)

near the v�nullcline. For the main Theorem, we also assume that f(v; w) is given by
(2.2) with vR � vsyn. However, the analytical framework we develop also applies to more
general nonlinearities which satisfy (3.1). This will be discussed further in Remark 11.
Some technical assumptions are also required on the nonlinear function g(v; w). We need
to assume that gv is not too large near the right branches of the cubics de�ned by (2.11)
for s 2 [0; 1]: In order to simplify the analysis that follows, we assume that gv = 0 near
these right branches. The analysis in Section 3D will clearly demonstrate that the stability
result remains valid if gv is su�ciently small, and, in fact, instabilities may arise if gv is
too large near the right branches.

We assume that the parameters � and � satisfy the conditions stated in Section 2B;
that is, � and � are su�ciently large, and �

�+� > �syn: Precise conditions on how large

� and � must be are derived in the proof of the main Theorem. This is discussed further
in Remark 12.

In order to state the main result, we need to introduce some notation. Let a� be de�ned
as the minimum of �@g=@w over the synchronous solution in the silent phase. Note from
(3.1) that a� > 0: Let (w�; s�) = (wL(s

�); s�) be the point where the synchronous solution
meets the jump-up curve, and let � = w0

L(s
�) be the reciprocal slope of the jump-up curve

at this point. Finally, let a+ denote the value of g(v; w) evaluated on the right hand
branch at the point where the synchronous solution jumps up. The main result is then the
following. It holds for � su�ciently small.

Theorem: Assume that the nonlinear functions and parameters in (2.4) and (2.6) satisfy
the assumptions stated above. If K < a� and Ks� < a+=j�j; then the synchronous
solution is asymptotically stable.

Remark 1: The �rst condition in the Theorem is consistent with the numerical simulations
of [28], who obtained synchronized solutions when the synapses recover at a rate slower
than the rate at which the neurons recover in their refractory period.

Remark 2: In order to interpret the second condition in the Theorem, note that Ks� is
the rate of change of s at the point at which the synchronous solution jumps. a+ is the
rate of change of w on the right hand branch right after the jump. Since � = dwL=ds,
multiplication by 1=j�j transforms changes in w to changes to s. Thus, the second
condition is analogous to the compression condition that produces synchrony between
relaxation oscillators coupled by fast excitation (see [21]). j�j may be thought of as giving



12

a relationship between the time constants of inhibitory decay and recovery of the individual
cells; a larger j�j (corresponding to a atter curve) means that a �xed increment of decay
of inhibition (�s) has a larger e�ect on the amount of recovery that a cell must undergo
before reaching its (inhibition-dependent) threshold for activation.

Remark 3: The two conditions needed in the statement of the Theorem correspond to
two separate cases considered in the proof of the Theorem. These two cases correspond
to whether the two cells preserve their orientation (Case 1) or reverse their orientation
(Case 2) on the right branch of the s = 1 cubic after one cycle. The Theorem says
that, whatever case the synchronous trajectory falls into, if both conditions hold, then the
synchronous solution is stable. Note, however, that the di�erent cases require di�erent
conditions. Case 1 requires K < a� and Case 2 requires Ks� < a+=j�j. Thus, by changing
a parameter that switches the system between Case 1 and Case 2, one can change which
combinations of time scales and other parameters control the stability of the synchronous
solution. In particular, the system can be changed between stable and unstable without
changing any time constants. See Remark 5 below.

To see this more concretely, we note that if j�j is small, then the system will tend to be
in Case 1, while if j�j is large, then the system will tend to be in Case 2. This will follow
from analysis in the next section where we show that a necessary condition to be in Case
1 is that the �rst cell to jump down is the �rst to reach the jump-up curve. Since the
leading cell lies above and to the left of the trailing cell, one expects that a more vertical
jump-up curve favors the leading cell to cross this curve �rst. A vertical jump-up curve
corresponds to small j�j; therefore, we expect that small j�j favors Case 1. If the jump-up
curve is more horizontal, then the trailing cell is more likely to reach the curve �rst. The
analysis in the next section demonstrates that this must correspond to Case 2.

Now suppose, for de�niteness, that the system is in Case 2 and has a stable synchronous
solution. Then the value of a� is irrelevant and can be chosen so thatK=a� is large enough
for synchrony to fail if the system were in Case 1. By lowering j�j, the system is switched to
Case 1, where the dependence on K=a� becomes important. Similarly, if the system is in
Case 1 and has a stable synchronous solution, increasing j�j can put it into Case 2, where
the speed on the right hand branch, formerly irrelevant to stability, is now important.

Remark 4: One can give an explicit expression for � in terms of the conductances and
reversal potentials in (2.4). In order to compute this expression, let �(v; w; s) � f(v; w)�
gsyns(v � vsyn) be the right hand side of (2.11). Plugging v = hL(w; s) into (2.11), and
di�erentiating with respect to both w and s, we �nd that

@hL
@w

= �
�w

�v

and
@hL
@s

= �
�s

�v

(3:2)

Since @hL
@w

becomes unbounded at the left knees, we conclude that �v = 0 along the
jump-up curve.

We denote the left knees by (vL(s); wL(s)), plug this into (2.11), and then di�erentiate
with respect to s to �nd that

0 = �vv
0
L(s) + �ww

0
L(s) + �s = �ww

0
L(s) + �s
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Hence,

� = w0
L(s

�) = �
�s

�w

=
gsyn(vL(s

�)� vsyn)

fw
(3:3)

If f(v; w) is given by (2.2), then (3.3) becomes

� = �
gsyn(vL(s

�)� vsyn)

gc(vL(s�)� vR)
(3:3a)

Together with the previous remark, this expression shows that changes in reversal poten-
tials or conductances can a�ect stability by changing the slope of the curve of knees.

Note that � < 0. This follows from (3.3), and the assumptions that fw < 0 and vsyn < v
along the synchronous solution.

Remark 5: For a concrete example, we numerically solved the system given in the Ap-
pendix. We �xed all of the parameters except for ; gsyn; and K. The values of the other
parameters are � = :003; �1 = :72; �2 = 2; �3 = �:18; �4 = 0; �5 = 1; � = :3; vsyn =
�:72; �� = :01; �� = :02; �v = �:01 and �syn = :05

We start with the system in Case 1 and the synchronous solution is stable. For this,
we let  = 2; gsyn = :3 and �K = :005: We then raise j�j by increasing gsyn to 1:0.
The system then goes into Case 2 and the synchronous solution becomes unstable. We
then increase a+ by increasing the parameter  to 4:0. The synchronous solution becomes
stable, as predicted by the Theorem. If we start with the original parameter values (where
the system is in Case 1 and the synchronous solution is stable), then we can desynchronize
the synchronous solution by increasing K so that �K = :03.

Note that, in this case, increasing gsyn destabilizes the system. However, the e�ect of
increasing gsyn is context dependent: if the system starts in Case 2 and synchrony is stable
then lowering gsyn may cause the system to go to Case 1, where the parameters may be
such that the synchronous solution is unstable. In this case, increasing gsyn helps, rather
than hurts, the synchronization.
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4. Proof of the main theorem.

4A. The return map.

The Theorem is proved by analyzing a return map which is de�ned as follows. We
begin both cells in the active phase with one of the cells, say cell 1, at the jump-down
point. The remaining slow variables are w2; x1 and x2; suppose that their initial positions
are w2(0); x1(0) and x2(0). For now, we simply assume that each xi(0) > �syn and
w2(0) < w1(0) with w1(0) � w2(0) su�ciently small. Further restrictions on the initial
data are given later; see (4.2). We then follow the solution around in phase space until
one of the cells returns to the jump-down point. Suppose that this happens when the slow
time variable � = T0. The return map is then de�ned as

�(w2(0); x1(0); x2(0)) = (wi(T0); x1(T0); x2(T0))

where i = 2 if cell 1 is the �rst to reach the jump-down point, and i = 1 if cell 2 is the �rst
to reach the jump-down point.

Of course, the return map is only well de�ned if the cells are able to leave their silent
phase. As pointed out at the end of Section 2B, we must also assume that � and � are
su�ciently large with �=(� + �) > �syn. This guarantees that each cell's inhibition will
turn o� and then turn on during each cycle.

Here we describe in more detail the sequence of events from the moment cell 1 jumps
down. This will allow us to introduce some notation which will be used throughout the
proof of the Theorem. Throughout this analysis, we consider the slow time variable � .

After cell j jumps down to the silent phase, cell i 6= j remains maximally inhibited until
xi reaches �syn. Choose ti so that xi = �syn. We assume that, at the start, the cells are
su�ciently close so that the lagging cell can jump to the silent state before the inhibition
on this cell starts to decrease. (That there is such an interval follows from (2.6), which
implies that the value si of the inhibition a�ecting cell i stays at the maximum value s = 1
for a �nite amount of (slow) time after the other cell j 6= i jumps downward. This is
because si does not start to decay until xi decays to �syn, which happens slowly.) After ti,
cell i lies in the silent phase with its inhibition decreasing until its trajectory reaches the
curve of knees wL(s). Let Ti be the time at which the trajectory of cell i reaches the curve
of knees. Cell i then jumps to the active phase. We assume that the cells are su�ciently
close that the second cell that jumps up does so before inhibition from the �rst is turned
on. Note that it is possible for either cell to jump up �rst and the cells may also reverse
their order in the active phase.

We assume throughout that the cells satisfy the initial conditions needed for the de�-
nition of �. In particular, (without loss of generality) cell 1 is at the edge wR(1) of the
upper plateau, and cell 2 is behind it. Since cell 2 is maximally inhibited (s = 1), the
trajectory (v2; w2) moves on a 1-dimensional path according to (2.13). We let � denote
the time it takes w2 to get to wR(1) from its initial position, and let �x = jx1(0)� x2(0)j.
We assume throughout that � and �x are su�ciently small. Finally, we suppose that one
complete cycle corresponds to the slow time � = T0.

We prove the Theorem by showing that if the parameters satisfy the assumptions of
the Theorem, then the map � is a contraction. One key idea of the analysis is to separate
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the contraction into two steps. In the �rst, it is shown that the domain of � contracts
under the action of � uniformly onto the set of solutions with synchronous initial data
in which w2(0) = w1(0) � wR(1) and x1(0) = x2(0). This is a one-dimensional subset,
parameterized by x1(0). In the second step, we show that �, restricted to that subset, is
also a uniform contraction. The two steps together give stability and the uniqueness of
the synchronous solutions.

The proof is divided into cases, depending on the orders of the cells at key points in the
cycle. Most of the proof describes the geometry that occurs if t2 < t1, i.e. the cell that
reaches the jump-down point �rst (cell 1) is the �rst to start releasing the other cell from
inhibition. (Recall that xi depends on vj ; j 6= i.) The inequality t2 < t1 is satis�ed if the
cells have jx1 � x2j su�ciently close at the start of the orbit. The modi�cation for t2 > t1
are given at the end of the proof.

Within the case t2 < t1, there is a further distinction depending on the order at the
jump-up point. In Case 1, the �rst cell to jump down is the �rst to reach the jump-up curve,
and remains ahead after both cells jump up. Case 2 contains all the other possibilities.
Hence, a necessary but not su�cient condition to be in Case 1 is that T1 < T2. As we shall
see, Case 1 corresponds to the cells preserving their orientation after one cycle, while Case
2 corresponds to the cells reversing their orientation. These subcases are only for the �rst
contraction in the two-step scheme described above for showing that � is a contraction.

Before the contraction estimates, we give some preliminary results in Section 4B about
the �rst part of the cycle. Sections 4C and 4D contain the estimates for Cases 1 and 2
for the �rst step of the two-step contraction proof. The estimates here are only for the
w-variable. Section 4E contains the further estimates for the x-variable for Cases 1 and 2.
It also contains the second step of the contraction proof. Section 4F gives the modi�cation
for t2 > t1, and Section 4G contains some concluding remarks.

4B. Estimates relating to the jump down.

The main result of this section is Prop 4.1, which estimates jt2 � t1 � �j in terms of �
and �x. A preliminary lemma estimates how far x1 moves during the initial time interval
of �.

Lemma 4.1: jx1(�)� x1(0)j < �.

Proof: We shall show that x01(�) < 1 for 0 < � < �, which implies the result. If 0 < � < �,
both cells satisfy vj > �v. Using (2.15), we have

x1(�) =
�

�+ �
�

�
�

�+ �
� x1(0)

�
e�(�+�)�

Hence

0 < x01(�) = (�+ �)

�
�

�+ �
� x1(0)

�
e�(�+�)�(4:1)

It is now necessary to assume that if xi(0) is in the domain of �, then for any 0 < m <
T0 � T1, we have ����xi(0)� �

�+ �

���� < e�(�+�)m(4:2)
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This is justi�ed below. It then follows from (4.1) that x01(�) < 1 if � + � is su�ciently
large.

To see why (4.2) is justi�ed, we use (2.15) again to get

xi(�) =
�

�+ �
�

�
�

�+ �
� xi(Tj)

�
e�(�+�)(��Tj ) for Tj < � < T0(4:3)

Note that xi(Tj) < �syn <
�

�+� : Hence, j �
�+� � xi(Tj)j < 1, and (4.3) implies that

����xi(T0)� �

�+ �

���� <

���� �

�+ �
� xi(Tj)

���� e�(�+�)m < e�(�+�)m

Thus, after one cycle, the estimate (4.2) always holds, so we may assume it to begin with.
�

Lemma 4.2: jt1 � t2 � �j < 2
��syn

(�x + �).

Proof: Since v1 jumps down when � = 0 and v2 jumps down when � = �, it follows from
(2.8) that

x2(�) = x2(0)e
��� for 0 < � < T1(4:4a)

and

x1(�) = x1(�)e
��(���) for � < � < T2(4:4b)

Hence,

t1 =
1

�
ln
x1(�)

�syn
+ � and t2 =

1

�
ln
x2(0)

�syn
(4:5)

>From (4.5), and the preceding Lemma,

jt1 � t2 � �j =

���� 1� ln
x1(�)

x2(0)

����

=

���� 1� ln
�
1 +

(x1(�)� x1(0)) + (x1(0)� x2(0))

x2(0)

�����
<

2

�

(� + �x)

x2(0)

if � and �x are su�ciently small. The result now follows since we are assuming that
xi(0) > �syn. �

4C. Case 1.

We assume throughout this subsection that t2 < t1. We factor the complete cycle into
two maps: The �rst part consists of the time until cell 1 reaches the jump-up curve; that
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is, � < T1. We will need to estimate the time T2�T1 until cell 2 reaches this curve. Then
we consider the second half, from the jump-up of cell 1 to the time cell 1 reaches the right
knee at w = wR(1). The hypothesis K < a� is used only in the �rst half; the estimates
for the second half follow with no further hypotheses.

The next result shows that, if the inhibitory decay is slow enough, the inhibition acts
over the �rst half of the cycle to synchronize nearby orbits. For a special class of equations
(including those given by (2.2),(2.3)) this synchronizing e�ect occurs no matter what the
time scale of the inhibitory decay, but only for Case 1.

Proposition 4.1: If K < a�; then T2 � T1 < �1maxf�; �xg for some �1 2 (0; 1):
(That is, there is compression in the �rst half of the cycle.) In the case of (2.3), in which
(2.10) is valid, there is always time compression in Case 1 in this part of the cycle.

Remark 6: The last statement is relatively easy to prove, and gives an insight into how
the inhibition and recovery interact in deciding stability. For the special case of (2.10),
we de�ne the w�metric between the two cells as the time it takes for the trailing cell 2
to reach the w�coordinate of the leading cell 1. This metric remains invariant along a
solution because, when (2.10) holds, the w�component evolves independently of s. Since
the w�metric is precisely � at the moment when cell 2 has just jumped downward, it follows
that the w�metric remains � throughout the silent phase. Now consider the moment when
cell 1 reaches the curve wL(s). Cell 2 must lie to the right (since we are in Case 1) and
below (since cell 1 jumped down �rst) cell 1. Since wL(s) has negative slope, and the
w�metric between the cells is �, it easily follows that the time it takes cell 2 to reach the
curve of knees is less than �. This gives the desired compression.

The above proof uses heavily the fact that the w�coordinate is independent of s. In the
more general (2.9), the w�coordinate is dependent on s; it then takes careful reasoning
and estimates to show that the decay of the inhibition implies time compression; it also
takes the further condition given in the hypothesis of Prop. 1.

Proof of Prop. 1: We begin by introducing some notation. Consider the image of the
jump-up curve under the backward ow of (2.9) owed until the curve reaches the position
of cell 1 at time � = t1. Let t3 denote the time at which the point whose position is that
of cell 2 at � = t2 hits this translated curve under the forward ow. See Fig. 5. Note that
T2�T1 = t3�t1: Hence, to show compression we need to show that t3�t1 < �1maxf�; �xg
for some �1 2 (0; 1).

Let ŵ1(�) � w1(� � �): Note that ŵ1(�) agrees with w2(�) at the jump-down time of
cell 2. That is, ŵ1(�) = w1(0) = w2(�): Moreover, ŵ1 and w2 both satisfy (2.9) with
s = 1 for � < � < t2. Hence, ŵ1(t2) = w2(t2).

Let �1 equal the (reciprocal) slope of the translated curve at cell 1. Then (to lowest
order) �1 � �W=�S, where

�W = w2(t3)� w1(t1) = w2(t3)� ŵ1(t1 + �)

�S = s2(t3)� s1(t1) = s2(t3)� 1
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Hence,

��1 =

�
w2(t3)� ŵ1(t1 + �)

1� s2(t3)

�

=

�
w2(t3)� ŵ1(t3)

1� s2(t3)

�
+

�
ŵ1(t3)� ŵ1(t1 + �)

1� s2(t3)

�
(4:6)

The decomposition of �1 in (4.6) corresponds to the two competing e�ects on the positions
of w, and hence on the slope. The �rst bracket on the right hand side of (4.6) is the
di�erence in w at the �xed time t3 due to the fact that cells 1 and 2 follow di�erent paths
in the (w; s) plane; since the w�coordinate depends on s as well as w; w2(t3) di�ers from
ŵ1(t3), even though these function agree when � = t2. The second term corresponds to
the di�erence in w�coordinates due to the di�erence between t3 and t1 + �.

The proof of the proposition is now broken up into three lemmas. After stating the
lemmas, we demonstrate how they are used to complete the proof of the proposition. We
then present the proofs of the lemmas.

Lemma 4.3: �1 < 0:

Lemma 4.4: t3 � t2 < 2jt2 � t1 � �j.

Lemma 4.5: If t3 � t2 is O(�) then w2(t3)� ŵ1(t3) is O(�2).

Assuming the Lemmas 4.3 to 4.5 we may now prove Prop. 4.1. The argument is
di�erent, depending on the relative sizes of the initial di�erences � and �x. Hence, we have
one argument for �x < M� for some M and �x > M�. The M is arbitrary, providing it is
large enough, and we pick M = 5 for de�niteness.

We must show that there is some 0 < � < 1 such that t3 � t1 < �maxf�; �xg. First
assume that �x < 5�. Lemmas 4.2 and 4.4 then demonstrate that t3� t2 is O(�). >From
Lemma 4.5, the �rst term on the right hand side of (4.6) is higher order in �, so we ignore
it. Then, using Lemma 4.3, (4.6) implies that

ŵ1(t3) � ŵ1(t1 + �) � � (1� s2(t3))�1 > 0(4:7)

Linearizing (4.7), we get ŵ0
1(t1 + �)(t3 � t1 � �) � �(1� s2(t3))�1 > 0 or

t3 � t1 � � �
�(1� s2(t3))�1

ŵ0
1(t1 + �)

� �c(4:8)

Here c > 0 since ŵ1 is monotone decreasing. For � small enough, 0 < �0 < 1 can be chosen
so that � � c < �0�. It then follows from (4.8) that t3 � t1 < �0� � �0maxf�; �xg.

Now assume �x > 5�. Since t1 > t2, we have t3 � t1 < t3 � t2. By Lemma 4.4,
jt3� t1j < 2jt2� t1� �j. To use Lemma 4.2, we now write jt2� t1� �j < jt1� t2� �j+2�,
to conclude that

jt3 � t1j < 4� +
4(�x + �)

��syn
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With � < 1
5�x, we have

jt3 � t1j <

�
4

5
+

5

��syn

�
�x

For � su�ciently large, we can choose (45 +
5

��syn
) < �x < 1. Now choose �1 to be the

larger of �0 and �x. �

It now remains to prove the lemmas.

Proof of Lemma 4.3: We prove this lemma by showing that the slope of the curve
of knees along the synchronous solution remains negative as it is followed backwards by
the ow de�ned by (2.9). For this we use the variational equations associated with (2.9).
These equations are

_Wi = �aWi � bSi
_Si = �KSi(4:9)

where a � �@GL=@w and b � �@GL=@s are de�ned along the synchronous solution.

The evolution of this slope is governed by howm � W=S changes under the variational
ow (4.9). This slope is governed by the equations

_m = �b+ (K � a)m

m(0) = �(4:10)

We need to prove that m(�) remains negative for � < 0: We will show that

�b + (K � a)� > 0(4:11)

along the synchronous solution. This will complete the proof of the lemma, since it imme-
diately implies that m(�) < � < 0 for all � < 0.

We prove (4.11) by computing explicit expressions for each term on its left hand side.
Since a = �@GL

@w
= �gv

@hL
@w

� gw and b = �@GL

@s
= �gv

@hL
@s

; it follows that

�b+ (K � a)� = �

�
�
b

�
+K � a

�

= �

�
gv

�
@hL
@w

+
1

�

@hL
@s

�
+ K + gw

�

Now, � < 0; gv > 0; and we are assuming that K < �gw: Hence, (4.11) follows once
we show that

@hL
@w

+
1

�

@hL
@s

� 0(4:12)
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along the synchronous solution.

We computed explicit formulas for @hL
@w

; @hL
@s

; and � in Remark 4. Let v� = vL(s
�) and

p� = (v�; w�; s�): Then, from (3.2) and (3.3),

@hL
@w

+
1

�

@hL
@s

= �
�w

�v

+
�s

�v

�w(p
�)

�s(p�)

If f(v; w) is given by (2.2), then, after a little computation,

@hL
@w

+
1

�

@hL
@s

=
gc(vsyn � vR)(v

� � v)

�v(v� � vsyn)
(4:13)

Inequality (4.12) now follows, because we are assuming that vR � vsyn < v�; and, on the
left branch, �v < 0 and vsyn < v < v�. �

Remark 7: The simple condition, K < a�; for compression over the �rst half of the
cycle depends on our assumption that f(v; w) is of the form given in (2.2); in particular f
is linear in the variable w. For more general nonlinearities, (4.11) still serves as a su�cient
condition for compression over the �rst half of the cycle. The analysis above demonstrates
that each term in (4.11) { that is, a; b; and � { can be expressed in terms of the parameters
and nonlinear functions in the model. This will be discussed further in Remark 11 when
we consider other models for inhibitory cells.

Proof of Lemma 4.4: Because of Lemma 4.3, we may conclude that w2(t3) > w1(t1):
(See Fig. 5.) Hence,

0 < w2(t2)� w2(t3) < w2(t2)� w1(t1)

= w1(t2 � �)� w1(t1)(4:14)

Choose m1 and m2, both positive, so that m1 < jw0
2j and jw0

1j < m2 near the jump-down
point. Together with (4.14), it follows that

jt2 � t3j <
m2

m1
jt2 � t1 � �j(4:15)

Note that we can assume that m1 and m2 are as close to each other as we please by
assuming that � and �x are su�ciently small. We may, therefore, assume that m1

m2
< 2.

�

Proof of Lemma 4.5: For t2 < t < t3; ŵ1 satis�es the �rst equation in (2.9) with s = 1,
while w2; s2 satisfy both equations in (2.9). Hence,

ŵ1(t3) = ŵ1(t2) +

Z t3

t2

G(ŵ1(�); 1) d�
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and

w2(t3) = w2(t2) +

Z t3

t2

G(w2(�); s2(�)) d�

We subtract these equations, use the mean value theorem, and recall that ŵ1(t2) = w2(t2)
to �nd that

w2(t3) � ŵ1(t3) =

Z t3

t2

�
@G

@w
(w2(�)� ŵ1(�)) +

@G

@s
(s2(�)� 1)

�
d�(4:16)

The partial derivatives are evaluated at some points along the synchronous solution.
Choose a0 and b0 so that j@G

@w
j < a0 and j@G

@s
j < b0: (The bounds exist because only a

compact region of the w�s phase space is relevant.) Finally, note that s2(�) = e�K(��t2):
Plugging this all into (4.16), we �nd that

jw2(t3)� ŵ1(t3)j �
b0K

2
(t3 � t2)

2 + a0

Z t3

t2

jw2(�)� ŵ1(�)jd�

The result now follows from Gronwall's inequality. �

Remark 8: Prop. 4.1 shows that K < a� � minfj @g
@w
jg is a su�cient condition for time

compression over the �rst half of the cycle; it is not a necessary condition. In Remark 5,
we discussed the results of numerical simulations which demonstrate that the synchronous
solution may be unstable if the condition K < a� is not satis�ed.

To complete Case 1, we now consider the behavior in the second part of the cycle. This
consists of the period when the cells jump up, and the period when both cells lie in the
active phase. We note that unlike the case of direct synapses, it is now possible for both
cells to jump up during this �rst cycle. This is because once cell 1 jumps up, there is a
delay (due to the x�variable) on the slow time scale before the inhibition s2 jumps to
s2 = 1. This gives cell 2 a \window of opportunity" to reach the jump-up curve. The size
of this window is determined by �+ �, the rate at which x2 activates. (See (2.15).)

Proposition 4.2: When cell 1 reaches the original starting point wR(1), the time between
the cells is less than �1maxf�; �xg.

Proof: While in the active phase, each cell lies on the right branch of the cubic determined
by either s = 0 or s = 1: The value of s switches, on the fast time scale, from 0 to
1 when the corresponding x�variable crosses its threshold �syn. Hence, each wi evolves
according to (2.16) with either s = 0 or s = 1: Eventually, both cells lie on the s = 1
right branch (if �+� is su�ciently large). Recall that we are assuming that gv = 0 near
the right branches of the cubics. Since @GR

@s
= gv

@hR
@s

; this implies that GR(w; s) does
not depend on the variable s. Hence, the rate at which a cell evolves in the active phase
does not depend on which right branch it lies, and we can de�ne the distance between
the cells as the time for the trailing cell to reach the w�coordinate of the leading cell. In
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particular, the time between two points in the active phase remains invariant. Thus, to
get the time distance at the end of the right hand branch, it su�ces to compute the time
di�erence right after the jump.

For T1 < t < T2, cell 1 moves up the right branch, while cell 2 still lies in the silent
phase. For Case 1, we are assuming that w1(T2) > w2(T2), so that the ordering of the cells
on the right branch is preserved. See Fig. 6. Since w1(T1) < w2(T2) < w1(T2); the time
from w2(T2) to w1(T2) is less than the time from w1(T1) to w1(T2). This latter time is
T2�T1 < �1maxf�; �1g: Hence, the time from w2(T2) to w1(T2) is less than �1maxf�; �1g,
which is what we needed to show. �

Remark 9: A surprising aspect of the preceding analysis is that it did not use the fact
that the cells are directly coupled to each other. For the compression in the �rst part of
the cycle, it is only necessary that the cells received slowly decaying inhibition. During the
second part of the cycle, the compression arose during the jump-up to the active phase.
For this, it was only needed that the curve of knees has negative slope. Hence, the same
analysis applies for other networks in which the cells are not directly coupled, but receive
common inhibition, which turns o� su�ciently slowly.

Remark 10: We have, so far, assumed that the cells are identical. However, the compres-
sion obtained over the �rst part of the cycle due to the slowly decaying inhibition will also
help stabilize nonidentical cells, if the heterogeneity is not too large. This is illustrated in
Fig. 7. In this simulation, the cells have no interactions with each other, but are provided
with common inhibitory input. There is a 50% heterogeneity in the parameter �5 (see the
Appendix). We compare the behavior of the cells with slowly decaying inhibition (Fig. 7A)
to that with constant inhibition (Fig. 7B). Because of the heterogeneity, the population
getting common inhibition starts to desynchronize. Decaying inhibition, however, acts to
overcome the heterogeneity and keep the cells more synchronized, at least for a number of
cycles until the inhibition wears o�.

4D. Case 2.

In Case 2, either cell 1 jumps up �rst but is behind cell 2 after it jumps up (Case 2A),
or cell 2 jumps up �rst (Case 2B). We will show that for both of these subcases, it is cell 2
that reaches the right branch at w = wR(1) �rst. There are interesting di�erences between
Case 1 and Case 2. In both Case 2A and 2B, a di�erent set of parameters and time scales
than those for Case 1 become relevant to stability. Moreover, we saw that for Case 1 a
rather complicated argument was needed to obtain compression during the silent phase.
The compression due to the jump-up was straightforward. (It only required that the curve
of knees has negative slope.) For Case 2, we will use a di�erent metric during the silent
phase; this will be invariant with respect to (2.9). The more delicate analysis comes into
understanding the compression due to the jump-up.

Proposition 4.3: Suppose that

Ks� < a+=j�j(4:17)

Then the time between the cells when cell 2 reaches wR(1) is less than �2� for some
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�2 2 (0; 1).

Proof of Proposition 4.3: Let T1 and T2 be, as in Case 1, the times at which the
cells jump up. For Case 2A, we have that T1 < T2 (cell 1 jumps up before cells 2)
and w1(T2) < w2(T2) (the ordering of the cells on the right branch is reversed). This is
illustrated in Fig. 8. Let �1 be the (time) distance on the right branch from w1(T2) to
w2(T2). Recall that this metric does not depend on which right branch the cells lie. We
need to show that �1 < �2� for some �2 2 (0; 1). Since we are computing the stability of
the synchronized solution, we may assume that w1(T1) and w2(T2) are arbitrarily close.
This enables us to linearize the calculation around the quantities associated with the
synchronized solution. We use the notation � to mean that higher order terms in a
Taylor expansion have been omitted.

We start with a characterization of � in terms of spatial quantities. � is �W=�S for
two nearby points in the curve wL(s) : (w1(T1); s1(T1)) and (w2(T2); s2(T2)). Thus,

� �
w2(T2)� w1(T1)

s2(T2)� s1(T1)
=

(w2(T2)� w1(T2)) + (w1(T2)� w1(T1))

(s2(T2)� s2(T1)) + (s2(T1))� s1(T1))
(4:18)

We next express each term on the right hand side of (4.11) as a time quantity. The time
on the right branch from w1(T2) to w2(T2) is, by de�nition, �1, and the time from w1(T1)
to w1(T2) is T2 � T1: Since the rate on the right branch is approximately a+,

(w2(T2)� w1(T2)) + (w1(T2)� w1(T1)) � a+(�1 + T2 � T1)(4:19a)

The time in the silent phase from s2(T1) to s2(T2) is T2 � T1. Since each si evolves at
approximately the rate �Ks�,

s2(T1)� s2(T2) � Ks�(T2 � T1)(4:19b)

It remains to express s1(T1) � s2(T1) as a time quantity. Note that the di�erential
equation for each si does not depend on wi. Hence, the time it takes s to go from its
value at cell 1 to its value at cell 2 remains invariant during the silent phase, and does
not depend on the particular value of w. We denote this time as the s�metric between
the two cells. Note that when � = t1, the s�metric between the cells is precisely t1 � t2.
Moreover, the rate at which s evolves when t = T1 is approximately �Ks�. Hence,

s1(T1)� s2(T1) � Ks�(t1 � t2)(4:19c)

Combining (4.18) and (4.19a,b,c) we �nd that

�� �
a+(�1 + T2 � T1)

Ks�((t1 � t2) + T2 � T1)
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or

�1 �
j�jKs�

a+
(t1 � t2) +

�
j�jKs�

a+
� 1

�
(T2 � T1)

�
j�jKs�

a+
(t1 � t2)

if j�jKs�

a+
< 1. Now Lemma 4.2 implies that

�1 �
j�jKs�

a+
� +

j�jKs�

a+

2

��syn
(� + �x)

� �2maxf�; �xg

for some �2 2 (0; 1) if j�jKs�

a+
< 1 and � is su�ciently large.

Finally, consider Case 2B, in which cell 2 jumps before cell 1; that is, T2 < T1. For
T2 < � < T1, cell 2 moves up the right branch, while cell 1 still lies in the silent phase. See
Fig. 9. Moreover, for T2 < � < T1; w1(T1) < w2(T2) < w2(�); that is, the cells can not
reverse their ordering after they jump up. We need to prove that if �2 is the time on the
right branch from w1(T1) to w2(T1), then �2 < �2�.

The proof is very similar to that for Case 2A. We begin by writing � in terms of spatial
quantities; however, since T2 is now less than T1, we break up � somewhat di�erently:

� =
w2(T2)� w1(T1)

s2(T2)� s1(T1)
=

(w2(T1)� w1(T1)) � (w2(T1)� w2(T2))

(s2(T2)� s1(T2)) � (s1(T1)� s1(T2))
(4:20)

We next express each of these terms as a time quantity. As before,

(w2(T1)� w1(T1)) � (w2(T1)� w2(T2)) � a+(�2 � (T2 � T1))(4:21a)

Moreover,

s1(T2)� s1(T1) � Ks�(T2 � T1)(4:21b)

and, using that the s�metric is invariant,

s2(T2)� s1(T2) � Ks�(t1 � t2)(4:21c)

Combining (4.20) with (4.21a,b,c) yields

�� �
a+(�2 � (T2 � T1))

Ks�((t1 � t2)� (T2 � T1))

The proof now proceeds as before. �
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4E. Contraction of the x-variables.

To produce a contraction of the open set of initial conditions onto a one-dimensional
subset parameterized by x1(0), it remains to show that jx1(T0)� x2(T0)j < maxf�; �xg=2.
This is done in two steps. First we estimate jx1(T1) � x2(T2)j: For this estimate, note
that jT1 � T2j < 2maxf�; �xg. For Case 1, this was proved in Proposition 1 and this
Proposition also applies for Case 2A. For Case 2B, we use that the s�metric is invariant
under the ow in the silent phase. This implies that the time it takes s to ow from
s1(T2) to s2(T2) is precisely the time it takes s to ow from s1(t1) to s2(t1), which is
t1 � t2. Now, in Case 2B, cell 1 reaches the curve of knees before s1 reaches s2(T2); that
is, s1(T1) > s2(T2). It follows that 0 < T1 � T2 < t1 � t2. This, together with Lemma 4.2,
implies that jT1 � T2j < 2maxf�; �xg if the parameter � is su�ciently large.

It follows from (4.4) that x1(T1) = x1(�)e
��(T1��) and x2(T2) = x2(0)e

��T2 .
Together with the mean value theorem and Lemma 4.1, this implies that

jx1(T1)� x2(T2)j < x2(0)je
��(T1��) � e��T2 j + jx1(�)� x2(0)je

��(T1��)(4:22)

< 2�x2(0)e
��T2 jT2 � T1 � �j + (� + �x)e

��(T1��)

<
1

2
maxf�; �xg

if � is su�ciently large.

The analysis for the second part of the cycle is quite similar. We use (4.3) and the mean
value theorem to conclude that if �+ � is su�ciently large, then

jx1(T0)� x2(T0)j <

�
�

�+ �
� x1(T1)

� ���e�(�+�)(T0�T1) � e(�+�)(T0�T2)
���(4:23)

+ jx1(T1)� x2(T2)je
�(�+�)(T0�T2)

< 2

�
�

�+ �
� x1(T1)

�
(�+ �)e�(�+�)(T0�T1)jT1 � T2j

+ 2maxf�; �xge
�(�+�)(T0�T2)

< maxf�; �xg=2

To show that the one-dimensional subset parameterized by x1(0) itself contracts down
to a unique orbit, we use a small modi�cation of the above estimates. We are now assuming
that cells 1 and 2 start with identical conditions, so � = �x = 0. We consider two pairs
of cells x1; x2 and x1; x2 with x1 = x2 and x1 = x2. Let T0 and T 0 be the times when
these cells complete one cycle. We show that jx1(T0)�x1(T 0)j < �jx1(0)�x1(0)j for some
0 < � < 1.
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The �rst inequality of (4.22) is as before, with x2 replaced by x1 and T2 by T 1, where
T 1 is the time for the pair x1; x2 to reach the jump-up curve. One �nds that

jx1(T1)� x1(T 1)j � x1(0)je
��(T 1�T1) � e��T 1 j+ jx1(0)� x1(0)je

��T1

� 2�x1(0)e
��T 1 jT 1 � T1j+ jx1(0)� x1(0)je

��T1(4:24)

It is now necessary to estimate jT 1 � T1j in terms of jx1(0)� x1(0)j. An argument almost
identical to that given above shows that jT 1 � T1j < 2jx1(0)� x1(0)j. Plugging this into
(4.24) and assuming that � is su�ciently large, we get

jx1(T1)� x1(T 1)j <
1

2
jx1(0)� x1(0)j:

Using this with the analogue of (4.23), we get the desired contraction.

4F. t1 < t2.

Now assume that t1 < t2. Then in the silent phase, cell 1 leaves the curve s = 1 of
maximal inhibition before cell 2 does. Once again there are two cases to consider and these
correspond to the two cases considered in the previous section. It will be more convenient,
however, to describe these cases somewhat di�erently than before. Our description will be
in terms of whether t2 � t1 � � or t2 � t1 > �: We begin with the following Lemma
which relates � and �x.

Lemma 4.6: If t1 < t2, then � < 2
��syn�2�x.

Proof: It follows from (4.5) and a calculation which is given in the proof of Lemma 4.2
that if t1 < t2, then

� <

���� 1� ln
x1(�)

x2(0)

���� <
2

�

(� + �x)

�syn

We then solve for � and the proof is complete. �

Now assume that t2 � t1 � � . Then w1(t1) � w2(t2); see Figure 10A. This is because
for � < � < t2, each w

0
i(�) < 0 and w2(�) = w1(���). Hence, if t2� t1 � �, then w2(t2) =

w1(t2� �) � w1(t1). It follows that while in the silent phase, the trajectory corresponding
to cell 2 must remain to the `right' (larger w�values) of the trajectory corresponding
to cell 1. Hence, the points at which these cells jump up satisfy w1(T1) < w2(T2) and
s1(T1) > s2(T2). The assumption t1 < t2 implies that s1(t2) < 1 = s2(t2). Since s1 and s2
both satisfy the same equation, it follows that s1(�) < s2(�) for all � 2 (t2; T1). We may
now conclude that T1 < T2.

We next show that T2 � T1 < �x=2. This is proved in a way very similar to that of
Proposition 1 in the previous section. We consider the image of the jump-up curve under
the backward ow of (2.9) owed until the curve reaches the position of cell 1 at time
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� = t1. Let t3 denote the time at which the point whose position is that of cell 2 at � = t2
hits this translated curve under the forward ow. Note that

T2 � T1 = t3 � t1 = (t3 � t2) + (t2 � t1)

Lemma 4.6 implies that t2 � t1 � � < �x=4 if � is su�ciently large. We estimate t3 � t2
exactly as we did in Lemma 4.4. The inequality (4.15), together with Lemmas 4.2 and
4.6, implies that jt3 � t2j < �x=4 if � is su�ciently large. We have therefore shown that
T2 � T1 < �x=2.

We next estimate jw1(T0)�w2(T0)j. If cell 1 is ahead of cell 2 after they jump up, then
just as in the proof of Proposition 2, we have that the time on the right branch from cell
2 to cell 1 is less than T2�T1 < �x=2. Now suppose that cell 1 is behind cell 2 after they
both jump up. This is very similar to Case 2A in the previous section. Proceeding exactly
as before, we write � as in (4.18) and then express each term in (4.18) as a time quantity.
If �1 is the time on the right branch from w2(T2) to w1(T2), then the conclusion of this
computation is that if Ks� < a+=j�j, then �1 < t2 � t1. We are assuming that t2 � t1 < �
and Lemma 4.6 implies that � < �x=4. Hence, the time on the right branch between the
cells must be less than �x=2:

It remains to consider the case t2� t1 > �: Then during the silent phase, the trajectory
corresponding to cell 2 lies to the `left' of that corresponding to cell 1. See Figure 10B.
Hence, the points at which the cells jump up satisfy w2(T2) < w1(T1) and s2(T2) > s1(T1).
We claim that T1 < T2. To prove this, we consider the image of the jump-up curve under
the backward ow (2.9) until this curve reaches the position of cell 1 at time � = t2.

Lemma 4.3 implies that if �̂ is the slope of this translated curve, then �̂ < 0 as shown in
Figure 10B. We next show that cell 2 lies above this translated line segment at time t2.
We start by noting that w1(t1) � w2(t1), since cell 1 falls down �rst. Since �̂ < 0, to have
cell 2 be above the translated line, we must have

w1(t2)� w2(t2) � �̂ (s1(t2)� s2(t2))(4:25)

(See Fig. 10B.) Thus the worst initial conditions at t1 are w1(t1) = w2(t1). For such initial
conditions, estimates similar to those of Lemma 4.5 imply that w2(t2)� w1(t2) is order

(t2 � t1)
2: Furthermore, s2(t2)� s1(t2) = s1(t1)� s1(t2) is order (t2 � t1): Since �̂ is

order one, (4.25) is satis�ed. It now follows that cell 1 reaches the jump-up curve before
cell 2; i.e., T1 < T2.

We then proceed exactly as in Case 2B in the previous section. That is, we express
� as in (4.20) and then write each term as a time quantity. Once again, we conclude
that if Ks� < a+=j�j, then the time on the right branch between the cells is less than
t2 � t1 < �x=2.

We must also verify that jx1(T0) � x2(T0)j < �x=2. There is, however, no di�erence
between the arguments needed here and the corresponding ones given in Section 4E. �

4G. Concluding Remarks.

Remark 11: The techniques used to prove the Theorem apply to other models besides
those which satisfy its speci�c hypothesis. For example, w may represent the concentration
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of a calcium current instead of the activation of a potassium current [28]. In [28] each cell
is modeled by an equation of the form (2.1); however, the left and right branches are
increasing functions and the w�nullcline is a decreasing function. Moreover instead of
(3.1), f and g satisfy fw < 0; gv < 0; and gw < 0. If f(v; w) is of the form given by (2.2),
then the Theorem applies directly to these other models. The proof is basically the same;
there are still two cases to consider. The only minor di�erence is that during the silent
phase w increases to a curve of knees with positive slope, while before w decreased to a
curve of knees with negative slope.

If f(v; w) is not given by (2.2), then the techniques used to prove the Theorem still
apply; however the precise stability conditions may change. The precise form of f was
used only in Case 1, where we used that f(v; w), as given by (2.2), is linear in w. If
f is not linear in w, then (4.4) still gives a su�cient condition for compression in the
silent phase. Each quantity in (4.4) { that is, a; b and � { can be written in terms of the
nonlinear functions f and g as was done in the paragraph following (4.4). This then leads
to a su�cient condition for stability in terms of the nonlinear functions in the model.

Remark 12: Recall that the synchronous solution can be stable only when the model
includes indirect synapses. The x�variable provides a delay on the slow time scale from
when one cell jumps up until inhibition can prevent the other cell from �ring. The size of
this \window of opportunity" is determined by � + �, the rate at which the x�variable
activates; if �+ � is large, then the window is small. This result is consistent with those
of [5] and [26] who obtain stable synchronous solutions for integrate and �re type models.
They demonstrate that for those models, the synchronous solution is stable if the rate at
which the inhibition turns on is su�ciently slow. This rate corresponds to � + � in our
model.

In our analysis, however, we need to assume that � and � are not too small. This
is because if they are too small, then the inhibition will not turn on or turn o� during
each cycle. For this we also need that �

�+� > �syn. (See the discussion in Section 2B.)

These last conditions are not consistent with those in [3] and [26]. This inconsistency
can be understood by considering the di�erences in the way the coupling between cells is
modeled. In the integrate and �re models, the inhibition to a cell is automatically turned
on whenever the other cell crosses threshold. In our model, however, the inhibition to a
cell (say j) is turned on only if the variable xj crosses threshold. xj is able to cross the
threshold only if the other cell remains in its active phase for a su�ciently long period of
time. This time can be made arbitrarily small if the rate �+ � at which xj activates is
su�ciently large.

5. Nonsynchronous solutions.

The network of two mutually inhibitory cells can display other behaviors. We will not
give rigorous conditions for the existence and stability of these other solutions; instead, we
give simulations of the other solutions, and a general description of the parameter ranges
in which they are expected. The heuristic explanations we give are based on the techniques
developed in the previous section. For all of the examples, we consider direct synapses,
although the analysis for indirect synapses is very similar. In the numerical simulations,
we consider the system given in the Appendix. Unless stated otherwise, parameters values
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common to each of these examples are: � = :002; �1 = :47; �2 = 1; �3 = �:19; �4 =
�:4; �5 = 1:;  = 1; �syn = �:01 and � = 1:

We start with the antiphase solution. Such a solution is shown in Fig. 11B. The
antiphase solution is the most well-known solution for a pair of mutually inhibitory os-
cillators, expected when the inhibition decays at a rate faster than the recovery of the
oscillator (K=a� large). (See, for example, [20, 23, 28].) Such a solution can exist even
if the cells are excitable, rather than oscillatory, via the mechanism of \post-inhibitory
rebound" [4]. (We note that this does not require any special pacemaker currents, such as
hyperpolarization activated inward currents.) Though K=a� small favors stability of the
synchronous solution and K=a� large favors the existence of a stable antiphase solution,
there is a parameter range in which both solutions are stable. For Fig. 11B, K = 5.

One can describe the evolution of the antiphase solution in phase space in a way similar
to the description of the synchronous solution given earlier. In Fig. 12, we illustrate the
projection of an antiphase solution onto the w, s plane. We choose the initial (slow) time
to be when both cells lie in the silent phase, and cell 1 has just jumped down from the
active phase. This implies that s2(0) = 1. Both cells then evolve in the silent phase until
cell 2 reaches the jump-up curve. We denote this time to be � = �1. At this time, s1 jumps
up to the line s � 1. Cell 2 then evolves in the active phase; we illustrate the projection
of cell 2's trajectory during the active phase with a dotted curve in Fig. 12. Note that
s2(�) still satis�es s

0
2 = �Ks2; hence, it keeps decreasing while cell 2 is active. During

this time, cell 1 lies in the silent phase with s1 = 1. This continues until cell 2 reaches
the jump-down curve wR(s). We denote this time as �2. Cell 2 then jumps down and this
completes one-half of a complete cycle. For this to be an antiphase solution, we must have
that w1(�2) = w2(0) and s2(�2) = s1(0). Rigorous results related to the existence and
stability of antiphase solutions for systems with slow inhibitory coupling are given in [23].

Another kind of nonsynchronous solution obtained in this system was referred to in the
introduction as \suppressed solutions", and is shown in Fig. 11A. These are ones in which
one cell remains quiet while the other oscillates. They occur in the same parameter range
as the stable synchronous solutions, i.e. K=a� small. The behavior of these solutions is
easy to understand: if the inhibition decays slowly enough, the leading cell can recover
and burst again before the inhibition from its previous burst wears o� enough to allow
the other cell to �re. This type of solution cannot exist if the cells are excitable rather
than oscillatory, since there is no input from the quiet cell to drive the active one. On the
other hand, the cells must also be excitable for some �xed levels of inhibition; i.e. some
s 2 (0; 1]. If this is not the case, then the w�coordinate of the suppressed cell must keep
decreasing until that cell eventually reaches the jump-up curve and �res. For Fig. 11A,
�3 = �:15 and K = :5.

If the synaptic inhibition decays at a rate comparable to the recovery of the cell, complex
hybrid solutions can occur, in which one cell is suppressed for several cycles, while the other
�res, and then �res while the other is suppressed. Examples of these are shown in Figures
13 and 14. In Fig. 13, cell 1 �res three times, while cell 2 is suppressed, and then cell
2 �res three times, while cell 1 is suppressed. In Fig. 14, cell 1 �res twice keeping cell 2
suppressed, and then cell 2 �res only once. In both of these examples, each cell, without
any input, is excitable, but is oscillatory for some intermediate levels of inhibition. Hence,
if K=a� is su�ciently small, a cell can �re a number of times while the other cell is
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suppressed. The inhibition of the spiking cell must eventually wear o�, so that cell can no
longer �re. This then allows the inhibition of the suppressed cell to wear o� to the point
where it can now �re. The roles of the two cells are then reversed. The rapid, subthreshold
oscillations shown in Fig. 13 arise because the stable �xed point of the full system has
complex eigenvalues. For both Fig. 13 and Fig. 14, K = :3. For Fig. 14, � = :01.

The synchronous solution exists stably in parameter regimes in which one or more of
the above nonsynchronous solutions is also stable. Thus the choice of solution depends on
the initial condition. The basin of attraction of the synchronous solution depends mainly
on the delay of the onset of the inhibition. In order for a trajectory to be in the domain
of attraction of the synchronous solution, the lagging cell must be activated before the
inhibition from the leading cell delays it. As the onset time of inhibition decreases, the
domain of stability of the synchronous state vanishes, but the nonsynchronous solutions
remain.

6. Discussion.

6A. Related Work.

Related papers that deal with two or more oscillators coupled only through inhibition
are [1-8, 15, 18, 19, 20, 25-30, 33]. In [5, 26, 28], it is shown that slow inhibition can
lead to synchrony of oscillators. The analytical results of van Vreeswijk, et al. [26] are
for integrate and �re models of neurons, and synapses having the \alpha function" form
g�2te��t. Gerstner, et al. [5] also use model neurons with a very short spiking time. The
analytical results presented here use a more biophysically based neuronal model with more
degrees of freedom, and a model of a synapse that allows one to sort out the di�erent
e�ects of slow onset and slow o�set (more in the spirit of the simulations of the biophysical
models in [28]). The current work shows that the slow onset acts to provide a window of
opportunity for the �ring of the other oscillator right after one has �red, and hence a�ects
mainly the domain of attraction of the synchronous solution (see Remark 12). The slow
o�set has a more subtle a�ect. For Case 1, it pulls trajectories closer to one another during
the silent phase. For Case 2, it prevents instabilities from arising during the jump up to
the active phase.

The work of van Vreeswijk, et al. [26] and Gerstner, et al. [5] shows both similarities and
di�erences with ours. Using synapses with instantaneous onset, [26] obtains instabilities.
This is consistent with our result that the time of onset provides a window of opportunity
for synchrony. Their analytical work using alpha function synapses comes to conclusions
di�erent in detail from ours. They conclude that synchrony is always stable; for slow
synapses, this is the only stable solution and for larger alpha, the antiphase state is also
stable. Similarly, the work of Gerstner, et al. [5] shows that the conditions for stability
of the completely synchronous solution holds except for extreme cases, in which inhibition
sets in very slowly. Thus, as in [26], the decay time of inhibition does not play a central
role in the stability of the synchronized solution. Furthermore, though the rise time of
the inhibition is not zero in our models, it can be considerably shorter than the width
of a burst (or broad action potential), and still allow synchrony. (See [26] for discussion
suggesting the opposite.)

Recently Chow and Ritt [34] have performed a stability analysis on the synchronous
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solution for an integrate and �re neuron but using synapses with a double exponential
time course e��t � e��t or with an exponential with delay e��(t��): In this work,
synchrony is stable provided that the delay is not zero or the rise time is not in�nitely fast.
For a short �nite rise time (delay) both the synchronous and anti-synchronous solutions
are stable. As in the current work, the rise time controls the domain of attraction of the
respective �xed points. For rise times longer than a critical time, the anti-synchronous
solution can vanish if the decay time also exceeds a critical value. As in [5,26], there is no
condition that the inhibitory decay time be large enough.

In our model (as in [28]), synchrony can be unstable if the decay time of the inhibitory
synapse is too short. We note that our conditions K < a�, that the inhibitory decay time
be adequately long relative to the cell recovery time, is not needed when using the simple
equation (2.3), for which the equations in the silent phase are the linear equations (2.10).
The integrate and �re equation of [26,34] is also linear between spikes. We conjecture that
a condition analogous to K < a� will be found for more general spiking models, possibly
with a dependence of the voltage threshold on the level of inhibition.

Our analysis also shows that other parameters not in the integrate and �re model, such
as the time on the excited branch and the relative size of the synaptic conductance and
the potassium conductance, can a�ect the outcome. (This was also seen in the simulations
of [8, 28]). Indeed, the analysis shows that the parameters interact in subtle ways. For
example, increasing the strength of the synapse pushes the trajectory from Case 1 (in
which the oscillator �rst to jump down is also the �rst to jump up) to Case 2B (with
the opposite ordering). In Case 2 (but not Case 1), parameters such as the length of the
activated portion of the cycle are relevant; thus the length of the activated state might or
might not play a role in the stability depending on whether the synapse is strong enough.
This helps to explain, for example, why, in the presence of slow decay of inhibition, making
the fast inhibition shunting (i.e. making vsyn less negative, so (v � vsyn) is smaller) can
cause the synchronous solution to be stable (see [8]). Suppose we choose parameters so
that Case 2 is relevant, and a+ is su�ciently small so that the synchronous solution is
unstable. Making vsyn less negative has the e�ect of decreasing j�j; this can ensure that
Case 1 becomes the relevant one. If a� (which was irrelevant before) is su�ciently large,
then the synchronous solution will become stable.

The analytical results presented here are for variations of the Morris-Lecar oscillator,
but the geometric techniques from which the results are derived are applicable to general
oscillators having di�erent time scales, including the ones used by Wang and Rinzel [28]
(see Remark 11). The heuristic explanations given in [28] are in terms of the properties
of speci�c channels. Our work shows how similar phenomena can occur in a more general
setting that does not make use of the special currents IT or Ih. In particular, our work
reinforces the conclusion of [28] that the decay time of the inhibition is important to the
synchrony, and shows that this does not require the post-inhibitory rebound associated
with the currents Ih and IT .

For a pair of cells, Wang and Rinzel [28] varied the synaptic decay time and the reversal
potential for the synapse, and obtained stable synchrony, antiphase, no activity and asym-
metric steady states. They did not observe the solutions with one suppressed permanently
or transiently, as we did. For larger networks, they did observe dynamics in which some
cells suppressed others. The current work shows that it does not require large networks
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to get that e�ect. These more \exotic" solutions can be constructed by similar geometric
means, but this is outside the scope of this paper.

6B. Locus of Control.

Previous work on mutually inhibitory neurons emphasized the distinction between \re-
lease" and \escape" in producing antiphase solutions. The distinction identi�es which of
the cells controls the timing of the rapid switches between the active and inactive states.
\Release" refers to the case in which the active cell controls the switch, ending its own ac-
tive state, and thereby releasing the other cell from inhibition at the same time. \Escape"
refers to the situation in which the dynamics of the inactive cell allows it to �re in spite
of being inhibited; when it becomes active, it shuts o� the other cell.

When there are slow synapses, this distinction can no longer be made in general, even
when there are antiphase solutions. The inhibition remains after the active cell stops �ring,
so the \release" mechanism is not relevant. The inhibition decays with a rate having the
same order of magnitude as some intrinsic slow processes; when enough inhibition is gone,
the intrinsic dynamics, with the remaining amount of inhibition, is oscillatory, and the
silent cell can escape. The position at which this happens (if it happens at all) depends
on the interaction of all the slow processes.

The analysis of this network illustrates the general theme that when there are several
interacting slow processes, either within individual cells [14] or in cells and synapses [28],
the network behavior is not apt to be controlled by dynamics of a single cell, but by
combinations of processes within and between cells [9, 31]. Furthermore, this \locus of
control", or which subset of processes is most important, can change with changes in
parameters.

6C. Larger networks.

In another paper, we shall discuss the dynamics of networks of many neurons with
inhibitory coupling. Here we just point out some of the consequences of our work on two
cells for larger networks of homogeneous cells. It is known from simulations [8, 12] that
such inhibitory networks, or networks with both excitatory and inhibitory coupling (see [23,
24]), can display partially synchronized solutions in which \clusters" of cells synchronize,
and the clusters remain out of phase with one another. The techniques developed in this
paper can be very useful in determining under what conditions the cells within a cluster
synchronize and how instabilities within a cluster may arise as parameters are varied.

We note that the clustered solution can appear robustly even when the fully synchro-
nized solution is stable, but has a small domain of stability. Then cells which are not
initially su�ciently close get separated, but the cells that are close enough to �re before
the onset of inhibition get brought closer together. Within a cluster, the cells both in-
teract with one another and receive input from the rest of population; both e�ects have
been shown to be synchronizing for slowly decaying inhibition. Here we need to assume
that the synapses are slowly decaying and indirect; stable clusters cannot form with slowly
decaying direct synapses for the same reason why, in this paper, the synchronous solution
must be unstable with direct synapses. Stable clusters can form in networks with only fast
synapses (because of post inhibitory rebound); however, the synchronous solution cannot
be stable in such networks.
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The precise nature of the clustered solution depends on many factors. These include
the strength and threshold of the inhibitory coupling, the ratio of the times a single cell
spends in the silent and active phase, and the architecture of the network. Some of these
issues are discussed in [6, 7, 8, 23, 24]. Analysis similar to that given for Case 1 in this
paper shows how compression or expansion of the cells within a cluster during the silent
phase depends on the rate of decay of the synapses and the rate at which individual cells
recover in their silent phase. Larger networks may also display a wide assortment of exotic
solutions similar to those discussed in Section 4. For example, some of the cells may break
up into clusters which take turns �ring, while other cells always remain suppressed. There
may also be solutions in which the membership of each cluster changes in time. A detailed
description of how the emergent behavior of the network depends on all of the parameters
is beyond the scope of this paper.

Appendix.

For the numerics described in Remark 5, Remark 10, and Section 4, we used a system
of equations of the form given by (2.4). This system is similar to the model of Morris and
Lecar [17]. We let

f(v; w) = :5(v + :5)� 3w(v + �1)� �2m1(v)(v � �5) + :2

g(v; w) = ( w1(v)� w)=�(v)

Here,

m1(v) = :5 (1 + tanh((v + :01)=:15))

w1(v) = :5 (1 + tanh((v � �3)=:002))

�(v) = 1=cosh((v � �4)=:29)

For direct synapses, we used an equation of the form (2.5), except we replaced the
Heaviside function by s1(v) = f1+exp(�(vj��syn)=:001)g

�1: For indirect synapses, we
used equations of the form given in (2.6), except we replaced H(vj��v) by x1(v) = f1+
exp(�(vj � �v)=:001)g

�1 and we replaced H(xi � �syn) by s1(v) = f1 + exp(�(xi �
�syn)=:001)g

�1:
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Figure Captions

Figure 1: Nullclines of (2.1). The singular periodic orbit is shown with a bold curve.

Figure 2. The slow phase space. Each trajectory corresponds to a solution of (2.9). (A)
If a single cell is oscillatory, then every trajectory must leave the silent phase along the
curve of knees w = wL(s) and then jump up to the active phase (denoted by the *). (B)
If a single cell is excitable, then some trajectories must approach the stable �xed point
along the line s = 0. Other trajectories, such as that denoted with a dashed curve, may
still leave the silent phase.

Figure 3. The slow phase space when K is small. (A) Here K = 0, and a single cell
is excitable. The critical points of (2.9) consist of the two curves w+

c and w�
c . In this

example, there are levels of inhibition (values of s between the curves) for which the cells
are oscillatory. (B) If K is su�ciently small, then the synchronous solution will exist
although the single cell is excitable. The synchronous solution will cross w+

c and leave the
silent phase through the curve of knees wL(s).

Figure 4. The synchronous solution is unstable for direct synapses. Here the two cells
begin close to each other in the silent phase. Cell 1 reaches the curve of knees �rst and
jumps up. This immediately (on the slow time scale) resets the inhibition of cell 2 to s = 1.

Figure 5. Geometric illustration of the proof of Proposition 1. Each cell's inhibition
begins to decrease when � = ti and the cell leaves the silent phase when � = Ti. The
dashed curve is a time translate of the curve of knees.

Figure 6. Geometric illustration of the jump up for Case 1. Here cell 1 jumps up before
cell 2 (T1 < T2) and cell 1 is `ahead' of cell 2 on the right branch after both cells have
jumped up (w2(T2) < w1(T2)).

Figure 7. Common inhibitory input can help synchronize unconnected cells if the inhi-
bition decays at appropriate rates. The two cells have di�erent (but similar) frequencies,
start synchronously and were allowed to run with A) common decaying inhibition and B)
common constant inhibition. Note that the decaying inhibition keeps the two cells more
synchronous.

Figure 8. Geometric illustration of the jump up for Case 2A. Here cell 1 jumps up before
cell 2 (T1 < T2) and cell 1 is `behind' cell 2 on the right branch after both cells have jumped
up (w1(T2) < w2(T2)).

Figure 9. Geometric illustration of the jump up for Case 2B. Here cell 1 jumps up after
cell 2 (T1 > T2).
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Figure 10. Geometric illustrations for the case t1 < t2. Then cell 1's inhibition begins to
decrease before that of cell 2. The dashed curves are time translates of the curve of knees.
(A) If t2 � t1 < �, then cell 2 lies to the `right' of cell 1. (B) If t2 � t1 > �, then cell 1 lies
to the `right' of cell 2.

Figure 11. (A) Suppressed and (B) antiphase solutions of the network. Time is measured
in ms.

Figure 12. The projection of the antiphase solution onto the slow phase space. One half
of a complete cycle is shown. Cell 1 always lies in the silent phase and is illustrated with
a solid curve. Cell 2 begins in the silent phase and jumps up at time �1. Its trajectory
during the silent phase is illustrated with a dashed curve and during the active phase it is
illustrated with a dotted curve.

Figure 13. An exotic solution of (2.1). One cell �res three time while the other is silent,
and then the roles of the cells are reversed.

Figure 14. Another exotic solution of (2.1). One cell �res twice for every one time the
other cell �res.


