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Abstract

Taylor diffusion (or dispersion) refers to a phenomenon discovered experimentally by Taylor in the
1950s where a solute dropped into a pipe with a background shear flow experiences diffusion at a rate
proportional to 1/v, which is much faster than what would be produced by the static fluid if its viscosity
is 0 < v < 1. This phenomenon is analyzed rigorously using the linear PDE governing the evolution
of the solute. It is shown that the solution can be split into two pieces, an approximate solution and
a remainder term. The approximate solution is governed by an infinite-dimensional system of ODEs
that possesses a finite-dimensional center manifold, on which the dynamics correspond to diffusion at a
rate proportional to 1/v. The remainder term is shown to decay at a rate that is much faster than the
leading order behavior of the approximate solution. This is proven using a spectral decomposition in

Fourier space and a hypocoercive estimate to control the intermediate Fourier modes.

1 Introduction

Taylor dispersion is a phenomenon in fluid dynamics that was discovered in the 1950’s by Geoffrey Taylor
[Tay54]. The setting is a three dimensional pipe in which there is a background shear flow advecting
the fluid down the length of the pipe, but where the rate of advection can vary as a function of the cross-
sectional variables. It was observed by Taylor that, if a localized drop of dye was put into the pipe, then
as expected it would be carried down the pipe by the shear flow and also diffuse due to the non-zero fluid
viscosity. However, what was not expected was that the rate of diffusion experienced by the dye was not
that of the fluid, say v, but instead a rate proportional to 1/v, which is much larger if 0 < v < 1. This
phenomenon has been subsequently analyzed by many people, for example [Ari56, [CA85, IMRI0], but most
of the work has been formal, based on asymptotic calculations. Our goal in this work is to rigorously analyze
Taylor dispersion and provide a mathematical mechanism for its occurrence using center manifolds and
Villani’s theory of hypocoercivity [Vil09]. We note there is another rigorous analysis of Taylor dispersion,
[BCZ17], that also uses hypoceorcivity in the proof. We will comment on the relationship between that

and the present work at the end of this section.

The PDE model of fluid flow in a pipe with a background shear flow is given by
up = vAu — V(y, 2)u,, T € R, (y,2) € Q C R

The function v : R x  x R™ — R represents the concentration of the solute, or dye, and the function
V : Q — R is a smooth background shear flow, which depends only on the cross-sectional variables
(y,2) € Q, where Q is compact with smooth boundary. We assume Neumann boundary conditions,
ou
—Joa = 0.
an ’aQ
For simplicity we assume the viscosity is a small, positive constant, 0 < v < 1. To remove any effects of
constant background advection caused by V', we define x via
1
= Viy, z)dydz,
vol(Q) /Q (y:2)dy

and require that y € H?(Q2). Thus, A is the average rate of advection in a cross section, and y therefore

Vi(y,z) = A(1 + x(y,2)),

has zero average advection in a cross section. We can then change variables using x — x + At to obtain

up = vAu — Ax(y, 2)u,. (1.1)



It will be convenient to separate the effects of the cross-stream and longitudinal pipe variables. To that end,
we will expand both v and x in terms of the eigenfunctions of the Laplacian 85 + 02 acting on the compact
domain (2. These eigenfunctions, which we denote by {1,,}°%, form an orthonormal basis for L?({2) with
1o = 1, and we denote their corresponding eigenvalues by {—pu, }22 5, which satisfy 0 = po < p1 < po < ...
[Str08l, §11.3]. It will also be helpful to scale the longitudinal space variable z and the time variable ¢ by

v via
X =vz, T = vt. (1.2)
This transforms (1)) into
ur = viuxx + Ay.u— Ax(y, 2)ux. (1.3)

The main advantage of this change is that it helps us determine the dependence of the solutions on the
viscosity parameter v < 1. This advantage will be made clear in Remarks B3] and Inserting the

expansions

u(X,y,2,T) = > un(X, T (y,2),  X(1:2) = D> xntbn(y, 2), (1.4)
n=0 n=0

where
wn(X,T) = /Q WX,y 2 T (s 2)dydz, X = /Q X 2y, 2)dyd,

into equation (L3]) and noting that xo = 0 since it has zero average in 2, we obtain

o
Orug = V28§<u0 —A Z XmOx U (1.5)
m=1
o0
oru, = V28§<un — fnty — AxnOxug — A Z Xn,mOX Um, n=12..., (1.6)
m=1

where

Xn,m = (n, X¢m>L2(Q)'

In order to use invariant manifolds to study Taylor dispersion, we must deal with the fact that the Laplacian,
83(, on R has continuous spectrum consisting of (—o0,0]; in other words, there is no spectral gap. One

way to overcome this is to use similarity variables,

X
- , — log(T + 1),

which exploit the space/time scaling inherent to the operator [Way97|. (The use of T + 1, rather than T,

in the above definition is just for convenience, so that the change of variables is well-defined at 7" = 0.)

We therefore further define new dependent variables {w, }>2 via

w(X,T) = \/T1—+1w° <\/;(_+1,log(T+ 1)> (1.7)
un (X, T) = T—li—lw" <\/;(_H,log(T+l)>, n=12,.... (1.8)



Plugging this definition into (LH)-([LH), we obtain

Orwy = Lwyg— A Z Xm0 Wi, (1.9)
m=1
1 o
o w, = <£ + 5) w, —e"?A Z Xn,mOcWm — €” (finwy, + AxnOswo), (1.10)
m=1
where ) ) )
L=v20F+ 50e(€) = V2OF + 580 + 3 (1.11)

is the Laplacian 1/283( written in terms of the similarity variables. Note that the reason for the different
powers of (T'+ 1) in front of wy and w, for n > 1 in (7)) is that equation (L9]) above becomes 7—
independent. Continuing, we remark that the operator £ was analyzed in detail in [GW02]. Its properties

are given in §2 below, but for the moment we just note that, on the space

L*(m) = {w € L*(R) : /(1 + )™ |w(€)|?dE < oo} , (1.12)
R
the spectrum of £ is composed of essential and discrete spectrum:
o(L)y={AeC:Re(\) <—-(2m—1)/4}U{A=—k/2:k=0,1,2,... }.

Thus, as the algebraic weight m in the definition of the function space L?(m) increases, the essential
spectrum is pushed further into the left half-plane, revealing more and more isolated eigenvalues at negative
multiples of 1/2. This suggests that we can construct a center-stable manifold (which we often refer to
as a center manifold, for short) corresponding to those isolated eigenvalues, where the dimension of this

manifold can be large if m is sufficiently large.

The utility of such a center manifold can be seen by considering the term —e” (upwy, + AxnOswo) in
(CI0O). As 7 increases this term becomes large, which suggests that w,, should evolve so that ultimately

HnWy + AxnO0cwy = 0. Hence, we expect that, for large times,

Axn
Wy, R — #X Ogwo = Orwo =~ Liquwy,
where ) )
Lia:= (VP + A%|XI7%) OF + 506(&), Iz =>" M—x% (1.13)

is again the Laplacian in similarity variables but now with Taylor diffusion coefficient
v = (V2 + AZx2). (1.14)

Note that the spectrum of the operator does not depend on the viscosity, so o(£) = o(Lsg). Thus, we
expect that {wy}72; will rapidly converge to a manifold defined by w,, = —(Ax,0¢wo)/(jtn), and then for
large times the dynamics of wgy can be described by a center-stable manifold corresponding to the isolated
eigenvalues of the operator L. In terms of the original variables, this suggests that {u,}52; should
become “slaved” to the low mode ug exponentially fast, while the low mode ug should decay diffusively,
but as if its diffusion coefficient is 144 = O(1) (instead of v?), which, if we change back to the original (z,t)

variables, matches the experimental observations of Taylor and the formal calculations in [CA85].



There are several technical difficulties that must be overcome in order to make the above argument rigorous.
First, in analyzing the dynamics of system ([L9)-(II0) using the spectral structure of L4y, it would be
natural to expand each w,, n = 0,1,..., in terms of the eigenfunctions {gpg»d(ﬁ ) ;V:O of L4, where N = N(m)
corresponds to the number of isolated eigenvalues, and hence the dimension of the center-stable manifold.

In other words, we could write
N
Pywn(&,7) =Y ajn(n)@i(€),  wh = (1— Py)w,
j=0

for each n, where w}, is the component of the solution in the strong stable manifold, which we expect to
decay rapidly. Although this is essentially what we will do, it turns out that it will be more convenient to

prove the rapid decay of w} in terms of the (X,T') variables, by using the Fourier transform.

The reason for this is that our center manifold argument will only show that the enhanced diffusion affects
the first N 4 1 terms in the eigenfunction expansion {wy,}. This is sufficient for the physical realization of
the phenomenon because the higher order terms, corresponding to w;,, will be shown to decay like T' —N(@)
where N can be made large by choosing N, and hence also m, to be large, which is faster than the enhanced

algebraic diffusive decay resulting from Taylor diffusion.

To understand what Pyw,, corresponds to in the physical (z,t) variables, consider the following calculation.

The eigenfunctions of L4 are given by

GO = o), el = e . (1.15)
If we assume that
1 X al
’LL(X, T) = (1 T T)ﬁ{w <\/T'——|—1710g(T + 1)> > w(£77) = ]Z:; O‘j(T)(p;'d(g)a

which can represent either wy or w,, n > 1, depending on the choice of v, then

a(k, T) = / X (X, T)dX

2

1 327 ()i 0 X = d (D)
(1+1T) (—ir)? a;(log(T + 1)) [ e"e a@FDdX

41 Vy

.

-
]

(14 T)7/24Y277 (—ik) aj (log(T + 1))6_“2"“(T+1).

I
WE

<.
Il
o

This implies that
w(0,T) = 1+ T)/*Vag(log(T +1)),  9eu(0,T) = (—=i)(1 +T) Vay (log(T + 1)),
which, combined with the Taylor expansion
a(rk, T) = (0, T) 4 9,0(0, Tk + %aﬁa(o, )R>+ ...

means that the behavior of Pyw tells us about the behavior of @(k,T") for k near zero. In other words,

Pyw represents both the behavior of the “low modes” of w(&, 7), where “low modes” refers to the leading



eigenfunctions of L4, and the behavior of the “low modes” of u(x,T), where now “low modes” refers to
values of the Fourier variable x near zero. This relationship between Taylor dispersion, the behavior of

the Fourier transform of the solution at small wave numbers, and the center-manifold theorem was also
discussed by Mercer and Roberts in [MR90).

We will refer to w®* = (1 — Py)w as the remainder, or error, term. In terms of L;; it corresponds to
the behavior due to the essential spectrum and the discrete spectrum that is sufficiently far from the
imaginary axis. To prove that the remainder term decays rapidly, it will be convenient to work in terms
of the Fourier variables associated with physical (X,T) space, rather than system (L9)-(LI0). This will
lead to a linear, nonautonomous equation governing the behavior of the remainder term of the form
Up = B(k)U + F(k,T). We can then consider three regimes: a small wavenumber regime defined by
|k| < Ko, an intermediate one defined by ko < |k| < k1/v, and a large one defined by |k| > ki /v.
In the large regime, the solution decays exponentially due to the usual (non-Taylor) diffusive estimate
e oxT

2,.2 2 . . . . . . . .
v R < =®iT  In the intermediate regime this naive estimate is not quite strong enough,

252 2.2 2.2
V@XTNE—I/HTSN e~ VRG

~ e
because it only implies e T which is quite weak for 0 < v <« 1. To improve
it, we will apply a hypocoercivity argument [Vil09] to show that in this region we also have decay like
e MT for some M > 0. For the low wavenumbers, we will decompose the remainder term into a piece
corresponding to the leading eigenvalue A\g(k) of B(k), which is parabolic with A\g(0) = 0, and a piece
corresponding to the rest of the spectrum of B(k). The latter will decay exponentially fast because B(k)
has a spectral gap for each fixed k. The former will be shown to decay algebraically with the rate T-NW),

because we have already removed the leading order behavior via the term Pnwy,.

Our analysis will be divided into the following steps. In §2] we will more precisely set-up our problem and
carefully state the main results. In §3] we will use the similarity variables and a center-stable manifold to
prove that the low modes, corresponding to Pyw,, experience enhanced Taylor diffusion. Finally, in ]
we will use a spectral decomposition and hypocoercivity to show that the remainder term decays rapidly,

thus allowing for the Taylor diffusion to be physically observable.

Before carrying this out, we comment on other related rigorous work on Taylor diffusion. In [BCW15] we
analyzed a model of system (LO)-([I6]) consisting of only two equations, one corresponding to uy and one
modeling all of the wu, for n > 1, and carried out a similar analysis there. This allowed us to focus on
the main ideas of the argument: that the Taylor diffusion is really only affecting the low modes, with the
remainder term decaying rapidly. However, in that work, because of the simple form of the system, one
could see directly that the remainder term decayed rapidly and the hypocoercivity argument we use here
in §4] was not necessary. Moreover, the center manifold argument, which was used to justify the enhanced
diffusion, was constructed for a finite-dimensional ODE. Here, the center manifold argument in §3] will

need to be carried out for an infinite-dimensional ODE.

Also, in [BCZ1T] an equation very similar to (LI]) was analyzed, also using hypocoercivity. However, there
Villani’s framework was applied directly to the PDE (I.T]), whereas our hypocoercivitiy argument is applied
in Fourier space. This allows us to avoid any assumptions on the critical points of the shear flow x, which
play an important role in the argument in [BCZI17]. Moreover, since X € R, we need to work in Fourier
space with all || > 0. The setting in [BCZ17] is for a bounded X domain, which effectively means |x| > 1.

This changes the nature of the resulting decay and the regions in which the enhanced diffusion is obtained.
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2 Set-up and statement of main results

The main result that we will prove is the following. Theorem [Ii) will be proven in §3 and Theorem [I(ii)
will be proven in §dl In the statement of the Theorem we use the following notation for the space in which

the initial data must lie:
LA(N+1)x LX(9) = {u e L2®x0): [ [ (4 XX g )P aX gz =l sz < oo}-
RJQ

Theorem 1. Given any N > 0, if u(-,0) € L*(N + 1) x L?(2), then there exist constants
Ci = Ci([lu(-, 0)l2(v+1)xr2(@))s J = 1,2, that are independent of v and a decomposition of the correspond-
ing solution of (L3 of the form

WX, Y, 2,T) = Uapp (X, ¥, 2, T) + Urem (X, y, 2, T),
where Uapp (X, y, 2,T) and uwem (X, y,2,T) are defined in (ZI1))-(2ZI2)), that satisfies the following.

(i) There exists an infinite-dimensional system of ordinary differential equations that govern the behavior
of Uapp. Moreover, this system of ODEs possesses a finite dimensional center manifold that is globally
attracting at a rate that is exponential in T, e~ for some 1 independent of v, and on which the

dynamics correspond to enhanced diffusion with viscosity viq, defined in (LI4)). In other words,

2
uapp(Xa Y, z, T) — %6_ 4utd}(<T+1) S uf’ﬁ’
L2(Rx)
where C' is a constant that is independent of v.
(i) The remainder term satisfies
Cs

u Ty T L2 R Q S - N7 -
” rem( )” (Rx€Q) (1—|—T)%+%
If we translate these results back to our original, unscaled time and space variables and choose N > 4, so

that % + 1—12 > %, we see that we obtain immediately:

Corollary 2.1. Given any initial condtion u(-,0) € L?*(N + 1) x L*(Q), there exists constants C; =
Ci(llu(,0)l L2 (N+1)x22(0))s J = 1,2, such that the solution of (L) satisfies

2
Cl L

e At A2l /) (+1/v) &
Var(v + A2[xl,./v)(t + 1/v)

< ———— .
T (14wt

u(‘raya Zat) -

L2(RxQ)



Remark 2.2. Note that the leading order term in the asymptotics identified by this Corollary corresponds
to a solution of the diffusion equation with diffusion coefficient (v + A?||x||./v) which is precisely the
asymptotic behavior derived non-rigorously in [Smi87]. (In particular, see (2.17) for the calculation of the

shear diffusion coefficient.).

Remark 2.3. As we discuss later in Section 3, we actually derive not just the leading order term in the
asymptotics but higher terms as well - in principle, terms of arbitrary order, if the initial condition ug
decays sufficiently rapidly as |x| — oo. The higher order terms in the asymptotics are expressed in terms

of the eigenfunctions of the operator L.

To prove these results, we will use the following facts about the operator L;4, which is just the Laplacian

written in terms of similarity variables. Recall from (LI3]) that

1
Liap = thagzﬁﬁ + 5(%(&0).

We state the following results for viscosity 144, but the results are true with vy replaced by any other
positive number. This operator has been analyzed in [GW02], and in the weighted Hilbert space L?(m)
defined in (LI2)) one finds

U(»Ctd):{AEC:RG(A)S_w}U{_g \ keN} .

Furthermore, the eigenfunctions corresponding to the isolated eigenvalues A\, = —k/2 are given by the

Hermite functions
1 €

td e\ _ - td(e\ _ ok, td
= e td = .
The corresponding adjoint eigenfunctions are given by the Hermite polynomials
okyk 2 o &
Hi(¢) = —kytde““td Ofe ™ . (2.1)

Note that we have the orthogonality relationship

<Hlida‘;0§‘d>L2(R) = 05k =

which can be used to define spectral projections.

Remark 2.4. The expressions in [GWO0Z] for ¢i& and H}* are derived in the case when vyq = 1. The
expressions given here follow easily by the change of variables & — &/\/Viq.

2.1 Preparation of the equations

To emphasize the expected role of the enhanced diffusion, we rewrite (L9)-(LI0) as

Orwy = Lygwo — Dygdfwo — A XimOgt (2.2)
m=1
1 o
orw, = (ﬁtd + §> Wy, — Dtdﬁgwn — ™24 Z Xn,mOcWim — €7 (fnwy + AxpnOcwy), (2.3)
m=1



where
Dyq = A%||X|I%

and L;q is defined in equation (ILI3]). As described above, asymptotically we expect wy, = —(Axn0:wo)/(itn),
which is a perfect derivative. To exploit this, we wish to effectively integrate the w,, equation. Naively, this
could be done by defining {V,,}°2, via 0¢V,, = wy,. In order to obtain decay of V,, as [£| — oo, we would

then need to assume that f wy, = 0. To avoid this additional assumption, we instead define {V,,}5° ; via

wn(€,7) = (7)) + ValE,7),  m(r) = / W€, 7)dE, (2.4)
R

where 4 is the eigenfunction of £y defined in (ILI5]) associated with the zero eigenvalue. Note that this
implies
() = Cwnlr), Hitzz = [ wn(e,m)ae
R

and that 7, (7) is bounded for each 7 such that w, (7) € L*(m), with m > 1/2, because

1

1 . 1/2
il < [ g+ @ nie < ([ i) Il < Ol

Since [ ¢! =1, we see that [V, = 0. Inserting (24) into @3], we find
. 1 1
’Vn(,pgd + aTVn = 5’}/”(706‘1 + <£td + 5) Vi, — Dtd (’}/n(.pg + 8§2Vn) (25)

[e.9]
—™2AN " XnmOe(Ym @ + Vin) — € (1n Vi + AxnOewo) — €™ prn gl

m=1

Integrating over R and using the fact that gozd, wo — 0 as |§] — oo, we find
. -
Tn = 5 — € ln | Vn,

o(7) = Yn(0)eF (), (2.6)

which implies that

With this information, in ([ZX) we can cancel all the terms involving ~,, alone, use the fact that [V, =0
to define v,, via dgv, = V},, and obtain from (22))-(23)

Orwyg = Liqwo — Dtdagwo —A Z Xm@gvm — Aez ptd Z XY (0)eHm €= (2.7)

m=1 m=1

[eS)
87'Un - ﬁtdvn - Dtdagvn - eT/2A Z Xn,maﬁvm - eT(Nnvn + AanO)

m=1

—eT Al Z Xnam Y (0)e ™ #m =D — Dy (0)e2 e Hn(e" =D ptd, (2.8)

m=1



2.2 Separation into low modes and the remainder term

In order to analyze the behavior of solutions to system (Z7)-(2.8]), we define

N
wo(§,7) =D ar(r)pf (&) + wi(é, 7)
k=0
N
va(€,7) =D B ()i (&) + vi(€,7), (2.9)
k=0

where {p!?}Y_ are the first N + 1 eigenfunctions associated with £;q and

ar(r) = (wo(&,7), HI* () 12wy BR(T) = (vn(&,7), HIX () 12wy

are the spectral projections onto those eigenmodes defined via the corresponding adjoint eigenfunctions
Hl?. See [2I). Recalling that depl? = 4,0’,;‘11 and Lgpl? = —(k/2)ple, inserting the above expressions
into (Z7)-(2.8) and taking the inner product of the result with H!? gives the following infinite-dimensional
system of ODEs for the evolution of {ay}i_, and {82}, n > 1:

ap = 0
. 1 z S — e —
G = —gon - Ae? Z_:lxmfym(O)e Hm (e7=1)
v — _E - D — A i B 2<k<N
Qp = 2Oék tdQk—2 —~ XmPE—2 >N >
Bg = _eT(ﬂnﬁg + Axnao) — €A Z Xn,m'ym(o)e_um(ET_l) (2.10)
m=1
. 1 T > m r _ e —
pr = _55? — e (U B7 + Axnay) — ez A Z XnmB3" = Diayn(0)eZe#n (&1
m=1
n k n T n n 5 S m
B = 5B~ (ualBf + Axnar) = Duabf o = €2 A XnmBf 25 k<N

m=1

Note that we have used the following facts. First, <H};d,w8> r2 = 0, which follows by construction. This
implies that (H!, Ligw§) 2 = (—(k/2)H!4, w§) 2 = 0. One can also check that

(k—1)
2

a(OcHE') = — Oty = H, = CpocHy!

for some constant Cj, which implies that (H!<, 852w8> = 0. Similar results hold for v;.

The key aspect of (ZI0) is that, because of the structure of (Z7)-(28), the dynamics of {ay}_, and
{Bg}{f:o do not depend on the remainder terms wj or v;,. Therefore, the behavior of these low modes can
be analyzed without any a priori knowledge of the remainder terms. The structure of the above system
suggests that, with the exception of ag, everything should decay exponentially fast in 7, which corresponds

to algebraic decay in t. Moreover, the leading order behavior will be governed by ayg.

10



2.3 Definition of u,,, and uen

We now relate the decomposition in (2Z.9]) back to the solution u(X,y, z,T') of the original equation (L3]).
We define u,pp in terms of the low modes and uyen, in terms of the functions wg and v;,. To do so we need
to convert back to the (X,T) variables and take into account the decomposition in (L4]) and the change

of variables in §2.I1 In particular, we have

’LL(X, Y,z T) = Z un(X’ T)¢n(y7 Z)

n=0
W(X.T) = ——un(E.7
WX T) = g O +oeen]. nz1
Using (2.9), we find
1 1
u(X,T) = 1+Tzak(7)¢id(f)+\/T:st( ,7)
k=0
o 1 d al n d 1 s
We now define
Yo(y, 2) X
(X T) = DS agfog(r + 1ot () 2.11)
k=0
= ¢n(y, ) td X al n td X
+nZ::1 T+1) Yallog(T + 1)]epy <\/T—+1> +I§5k log(T + 1)]wq (ﬁ
and
ZZ)O(yvz) s

urem(X7y7 Z,T) ,log(T + 1))212)

X Un(y,2) o 4 X
i (st + 1) + 2T+ O (77

The behavior of u,pp, as stated in Theorem [I(i), will be determined in §3, and the behavior of upem, as
stated in Theorem [I(ii), will be determined in §4l

3 Taylor dispersion for the approximate solution via a center manfold

The main goal of this section is to prove Theorem [I[(i). This will essentially be done via Proposition 3.2}

and it will be explained in §3.2] how its proof follows from that Proposition.

3.1 Asymptotic behavior of the low modes via a center-stable manifold

Consider system (2.I0]). To construct its center manifold, we start by performing some changes of variables.

Recall from the formal analysis that, in long time limit, we expect p,wy, + Ax,0:wo = 0. In system (ZI0),

11




this results from the term €7 (i, 8} + Axnoy). Therefore, we will diagonalize the system so that, in terms
of new variables (ax,b}), the set {u, ) + Axnoy} = 0 corresponds to the set {b} = 0}. We define

A
ai = o, K= Br + Xy, (3.1)
mn
and obtain
ag = 0
1 o0
ap = 50T Ae? Z XY (0)e#m (7=
m=1
k: [o¢]
ar = —§ak—AZXm2n—2 2<k<N
m=1
) o0
by = —€Tunby = €TA Y Xnmm ()Y
m=1
. 1 - A
o= - (5 + emﬂ> bY—€ZAY Xum [b? — ao} — Digyn(0)eze (7Y
m=1 m
A - -
BN S X (O)e T
Hn m=1
. K A A N
by = — (5 + eT,un> b — Dia <b2_2 - ﬂakﬂ) - = Z Xmbi~s
Hn " om=1
e A
_eT/2A Z Xn,m < 7kn—1 - MXm ak—l) 2<k<N,
m=1 m

where n > 1. This system is non-autonomous, which makes it difficult to construct a center manifold. To

overcome this, we first undo the change of variables in time using 7 = log(147) and define o = (147)~1/2.
Denoting d/dT = (-)', we obtain
a, = 0
1 o0
a; = —§a2a1 — Ao Z XmYm (0)e#mT
m=1
k o0

CL;c = 0’2 <_§ak — A Z mezn_g) 2 < k < N (32)

m=1

[e.9]
by = bl =AY Xnmym(0)eT
m=1
1 s A B A2 o -
= (5o )8 = A0S v (= 200 ) = D 0T = 220 Sy (0)e T
m=1 m " m=1
k A A? -
b = - (502 +Mn> by — Dyao” < k-2 — X”%-z) ~ LAy > Xmbis
Fn Fn m=1
> A
—oA Z Xnm ( mo— X’”ak_1> 2<k<N
— Hm
m=1
o = —103,
2
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where n > 1. Note that, except for the terms involving ~,(0), which are decaying exponentially fast in T

this system is autonomous (but nonlinear), due to our definition of o.
It is now convenient to define more compact notation. To that end, we write
112 13 S
bk:(bk7bk7bk7"')7 X:(X17X27X3"')7 Y= (717/727737"')7

where Y is a constant, v = y(T) with 7,(T) = 7,(0)e #»T and by = by(T), and n > 1. We also define
operators on £2 via

Throughout the following estimates we will use the following Lemma, which says that ¥ and Y~! are

bounded operators.
Lemma 3.1. The operators X and Y~' are bounded operators on >.

Proof. The bound on T~! follows immediately by noting that [|[Y1Y||Z, = 3°0° | u,2|Y,[* < ,ul_zHYHg2
since (y, > pq for all n > 1. The boundedness of x follows by noting that

()2 * Y)n = Z(¢m X¢m>Ym = <¢m Xy>

m

where V(y,2) = >, Yimtm(z, 2). Thus, (x *Y), is the generalized Fourier coefficient of the function )
and hence, by Parseval’s equality.

SO V)l = V220 < I V2 = I3 ]Y T (3.3)
n
where the last step in this expression again used Parseval’s equality [ |

With this notation, ([B.2]) can be written

a6 = 0
1
all = —50'2@1 - AU<X7’Y>Z2
a, = _gg%k —Ad? (X, bp_s)pe  2<k<N (3.4)
o = —Thy— Ax vy
1 3 1. . 1
M o= <§a2 + T> by — Ao * [by — Aag(Y'X)] — Digoy — A% (X, 7)(Y'%)
k § 1. .
b, = — <§o—2 + T> by — 0 AY * [bp—1 — Aag_1(Y'X)] — 02 Dia [br—2 — Aag_o(T7'X)]
—2 A%(x, b2} (T 1Y) 2<k<N
1
O'/ = —50'3

Intuitively, there are no linear terms in the equations for {ax}i_, (except for the term —Ao(Y,~), which
is decaying exponentially fast) or in the equation for . The equations for {bk}i\;o each contain a linear
term of the form —Ybg, where (Tby,by) > p1|/bgl/?, with pg > 0. Hence, these variables should decay

13



exponentially fast, and there is a spectral gap determined by 1. Therefore, there should exist an invariant
center-stable manifold of dimension N + 2 of the form M = {b; = hi(ag,a1,...,an,0) : k=0,1,... N}.

To see this, we note that 4/ = —Y~v and add this equation to the above system to obtain the autonomous
system
ag = 0
1
a; = —§J2a1 — Ao (X, Y) e
k
a), = —502% — Ao*(X,bp_o)e  2< k<N (3.5)
by = —Yhyg— Ax 7
1 _ 1. . 1.
o= - <502 + T> by — Aoy * [bo — Aag(Y™'X)] — Doy — 0 A*(X,7)(T'X)
k - 1. 1.
b, = — <§a2 + T) by — 0 AY * [bp—1 — Aag_1(Y'X)] — 0*Dia [br—2 — Aag_o(Y7'X)]
—? A% (X, b-a) (YY) 2<k<N
o = —las
2
v o= =Ty

The linear part of this system (although no longer diagonal, due to the term —Ax %~ in the by equation)
now makes the spectral separation clear. One could abstractly justify the existence of a center manifold
of the form (by,...bn,y) = H(ag,...,an,0). However, it turns out we can compute the function H
explicitly, and it has a rather simple form. Moreover, we can show directly that the center manifold is

globally attracting. These results are collected in the following proposition.

Proposition 3.2. For each 1 < k < N, there exist functions hy = hy(ag,...,ax_1,0) of the form
k
hk(a07 A1y s A1, U) = Z Ck]?—fak—foju (36)
=1

where the C’Zj_z are elements of (2 for each k and £, can be computed explicitly, are independent of v, and

such that B0 has an invariant center-stable manifold given by
./\/lN = {(bo, e ,bN,’)/) = (0, hl(ao, 0), ce ,hN(a(], ce ,aN_l,O'),O)}. (37)

Moreover, there exist constants C,n > 0 that are independent of v and such that all solutions to (3.3
satisfy

(b0, - - -, b, Y)(T) = (0, hi(ag,0), ..., hn(ag, ... ,an—1,0),0)| g2)v+z < Ce™, (3.8)
where (ag,...,an—1) and o are solutions of
ay = 0
1
CL/l = —50'2@1
k
a?i‘ = _50-26”6 - AO_2<>V<7 hk_Q((l(], s 7ak—370-)>42 2<k<N
o = _103
2
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Moreover, for all k> 1,
lag(T)| < Ce™, 7 =log(1+T). (3.9)

Remark 3.3. More precise statements of the convergence to the center manifold and decay within the
center manifold are given in Lemmas [3.4] and[30, respectively. Note that the exponential in T convergence
to the center manifold is equivalent to super-exponential in T convergence, e~ = e~ M€ =1 while the
exponential in T decay on the center manifold, implied by B9l), is equivalent to algebraic in T decay,

e = (1+T)"". Furthermore, the v- independence of the constants C’,’j_é follows from the change of

variable (I.23).

Proof. The Proof will be divided into three steps: 1) Justifying (B.6]), the explicit formula for the center
manifold; 2) Proving global convergence to the center manifold and justifying ([B8]); and 3) Justifying
equation (3.9), the decay rate within the center manifold.

Step 1: Explicit formula for the center manifold To justify ([3.6]), we will ultimately use induction,
but we compute the first few terms directly since the equations in (3.5 are different for £ = 0,1. First,
notice that the set (by,~) = (0,0) is invariant for [B.5]). Next, we look for a function of the form

hi(ag,0) = C’éaoa, C’& e 2,

so that the set (bg,b1,v) = (0, h1(ag,0),0) is invariant. Computing (bg, b1,7)" in two different ways and

equating the results, we find that we need

G 3__0_6 3 e R —1
5 007 T +oap [-TCy+ A%+ (YT7'%)] .

Thus, we can take
Ol = 42715« (Y 1y).
Next, we look for a function of the form
ha(ag,a1,0) = Caio + Cgaoa2
so that the set (bg, b1, b2,7) = (0, hy(ag, o), ha(ag, a1,0),0) is invariant. As above, we find
C2= A2Y7'x (T7YY),  C2 = DAY 2% — AT 5+ (¢ * (Y1)

We now assume that (B.6]) holds for 0 < k& < n and prove this implies it is true for k = n + 1 with n > 2.

First, we compute

n+1

/ _ ¢
ntl T 2 : +1 (On+1-00
n+1 1 1
_ § : < 2) gcn—i—l i1 £U£+2 _ §C?+1a10” Cn-i—l n—1
=1
n—2 n— n—~_0—1
’I’L + 1-— 42 ~ —(—1 j
E Cn+1 ZU Ap4+1—¢ — A E Cn+l ZU <X, E Cg_g_l_jo']an—é—l—j .
=1 = j=1

Tl—l—l n+1 n—{—1 _
- > Z Crtl_ o P ans e—AZ Criioeo <x 02:5:%_jafan—e-1-j>. (3.10)
(= J
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Using (B5) and evaluating at by, = hy, by = v = 0, we also have

n+1

n-+1
;1+1 = - [%02 + T} ZC’”JH 0On+1— éO’ — Ax * Z Zan—ZUZ—H
(=1 (=1
n—1
~Dya Yy Chlyan1-0""? + 0 Aan X+ (Y1) + DigAc®an 1 (YY)
=1

—A2 <X’Z 1 /0n—1— gO’Z+2>. (3.11)

We now equate the expressions on the right hand sides of equations BI0)-(@BI1)) to obtain

n— n—_{—1
n+1 -~ n—~_{—1 j
_AE :C +1- e" X5 E : Cn—e—1—j0]an—€—l—j
(= j=1

n+1 n

(42
:_TZ +1 An+1-¢0 _AX*Z Zan—éo- Dtdz 1 pan—1— ZU+
(=1

—l-JAzan)Z*(T_I)Z)+DtdA02an_1(T X) — A2 Ty < Z o 1 pOn—1— o0t >

First, consider the resulting terms involving a,. We need
0=—-YC" a0+ oA%a,x % (T7'Y) = O+l = A2y (Y71y).
The terms involving a,_1 imply
0=—TC" — Ay % C"_; + Dig A(Y71Y) = O™l = DAY 2y — AT L (x x C7_)).
The terms involving a,_o imply
0= =TCn% — AX*Chy — DuCisy — AXTTR(XCsy)
= O =TT [C AR Oy — DuClmy — A(TTR)(% Cis)] -

Finally, for 3 < k < n, the terms involving a,_; imply
—AZ Crtl_ (G Cpi ™) = =YCH ) — Ax+ C_y — DuClamy — (T 0)(X, Coop),
which gives
Oty = AZ Crfi (6 CLmiTh) = AR+ Gl = DiaCrmy = A2 (T (%, )

All of the coefficients appearing in the sums on the RHS of this expression have been computed at previous

stages of the iteration and hence we obtain C’"+k in the form asserted in the Proposition.

Step 2: Proving global convergence to the center manifold and justifying (3.8]): We’ll show that

the exact invariant manifolds previously constructed are globally attracting. First, note that we can solve
33) explicitly to find

W(T) =m0 = y(D)llee < ey (0)lle2 (3.12)
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T
bo(T') = 6‘”50(0)—/0 T Ay (s)ds = (D)l < CIBo(0)llez. [7(O)ll2) (1 +T)e 7,

(3.13)
and )
T) = = ) <1. 3.14
o(T) = o(7)] < (3.14)
Next, define
By, = by — hy(ao, - - ., ax-1,0), k>1, (3.15)

where hy, is defined in (B.0]).
Lemma 3.4. There exists a C > 0, independent of v, such that for all t > 0,

IBy(T)|l. < C(A+T)ze T
IBe(T)ll2 < CO+T)F2emT  2< k<N,

Proof. For k =1, we can compute B} and solve the resulting equation explicitly to find
By (T) _ e—TT—% log(T+1)Bl(0)

B /T e_T(T—s)—%(log(T—l—l)—log(s—l—l)) [LX " bo(S) n Dyq ’7(8) n A2 (T_IX) <>v< ’7(8)> ds.
0 V1+s 1+s 1+s ’

As a result,
IB1(T)lle> < C([BLO)lle2, D0 ()2, [[7(0) |2 ) (1 + T)*/ 2+ (3.16)

Next, for k& > 2, we have

2

k . . 1.
B, = — (70’2 + T) By — 0AX * By_1 — 0* Dy By — 0? A*(x, Br_2) (Y~ 'x),

and so, assuming the result is true for k — 1,

1Br(T)lez < €727 By(0) |2

T 14 k=1 14 k=2
_ I (1+s) "2 I (1+s)" 2
—C(|| Br=1(0)|lg2, || Be—2(0) || g2, [|7(0 mT +
(B O Bz 7 O)e) [ e | o By s B
which implies the result. u

Step 3: Justifying equation (3.9]), the decay rate within the center manifold

The goal of this section is to compute the decay rates of the aj by considering the system ([B.2]) reduced to

its center manifold, which is given by

ay = 0

1
L - 2

CLl — 20 aj
k

a?i‘ = _50-26”6 - AO_2<>V<7 hk_Q((l(], <oy QK—3, O-)>42 2<k<N
1

OJ = __03
2
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Converting back to 7 = log(1 + T'), this becomes

a = 0
. 1
a; = —§a1
k r
ap = —5 0k ~ A(X, hp—2(ag, ..., ax—3,€ 2))p 2<EkE<N.

Using the fact that hg = 0, we see immediately that
1
ap(1) = ap(0), a1(7) = a1(0)e” 27, as(7) = az(0)e™". (3.17)

Lemma 3.5. There exists a C > 0, independent of v, such that if we write k = 3j +n with j € NU {0}
and n € {0,1,2} then, for all T >0,

‘ak(T)‘ < Ce 27, 0<k<N.
Proof. Using the bound for hy in (3.6]), we find
3 to .
las(7)] < e 27|as(0)] + C'/ e 27 9|qg(s)|e"2ds,
0
which implies

las(T)| < Ce 2",

A similar calculation shows
las(7)| < Ce™™,  as(r)| < Ce 2.

Consider now general k, and assume the result holds for a,, with m < k — 1. Using (B.6]), we have

T k—2
lar(7)| < ‘ak(o)le_%T +/ e~ 3(7=) <Z Cak—2—56_55> ds.
0

(=1
Notice that

k—2

_ty 14 s _3g _ k=3 _(k-2)
§ Qf—2—¢€ 2° = ag—3€ 2° +ag—4€ ~ +agp—s€ 2 +---+aje 2 " +ape 2
=1

S

Thus, if k = 3j + n, we find

k—2

Ly _Gin) o GAndd) _ Bj+n=2)
E Qp_9—_yp€ 27 ~e 2 +e 2 +---+e 2 .
(=1

Thus, we find
T (+n) (+n)
i (r)] < lar(0)]e™27 + / e 2TICe s < e T
0
as claimed. [ |
This concludes the proof of Proposition [
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3.2 Proof of Theorem [I(i)

We now show how Theorem [Ii) follows from Proposition Recall the definition of w,pp in (ZI)).
The dynamics of u,p,, are governed by the behavior of {ak}{fzo and {51?}{;[:0’ where n = 1,2,.... Their
dynamics are governed by (Z.I0), which is a system of ODEs on RY x (¢£2(R))". Proposition shows
that, after converting to the variables ay, by, this system has a finite-dimensional globally attracting center
manifold given by ([B.7)), and the rate of convergence to that center manifold is exponential in 7', as given
in (3.8). Finally, recalling that oy, = a, B = b} — (Axn/ltn)ou, and that the only term among ay, b} that
is not decaying in time is ag, one obtains the leading behavior of (2ZI1]). This justifies the statements in

().

4 Decay of the remainder via spectral decomposition and hypocoerciv-
ity

The goal of this section is to prove Theorem [II(ii), which states that the remainder terms decay rapidly. To
that end, insert the expansion (2.9]) into ([2.7))- (28] and project off the first N + 1 eigenfunctions to obtain

O-wy = Liygwy — Dy [OzN_lgD%_,_l + aNcp%_‘_z + ngg}
o0
—AY" Xon | BR_a# 1 + B + OFus| (4.1)
m=1
[ee]
Orvy, = Lgvy — Dyg [ﬁ]n\f—l(p%-‘rl + 5]7\1/90%4-2 + 8521’2] —e2A Z Xn,m [5}@@%-&1 + af”fn]

m=1

—€" [tnvy, + Axmwi)-

N+1
The operator L4, acting on wf and v;, decays like e~ 3 7. In addition, the forcing terms in the above

equation decay like oy, B with k& > N — 1, which, due to Lemmas B4 - BB decay like e~ 0+)7/2 < g=k7/6,

for k = 3j + n. Therefore, we expect w( and v; to decay with the same rate as the forcing terms.

To prove this, we will not work with the above system in the (£, 7) variables, but we will instead work in

the Fourier space associated with the original (X, T') variables. Using the fact that

1 1

s _ S X S = — 98 7X 0}
uy(X,T) = \/T——i—lwo <\/T_+1,log(T+ 1)>, uy (X, T) = (T+1)8§ . <\/T—+171 g(T+1)>(, |
4.2
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we find

oruy = VOxud— A xmOxu,
m=1
Dia td X td X
A - m td X m td X
NEEE mZ::IXm [5N—1(10g(T +1))oNi1 <7T = 1> + B (log(T + 1)) N 12 T
oru, = 1/28§(qu —A Z Xn,mOx Uy, — [tnt;, + AxnOxug)
m=1
o Dtd n td X n td X
(1 +T)2 |:BN—1(log(T+ 1))()0N+2 \/T'——l—l +/8N(10g(T+ 1))90N+3 \/T——l-l
A o X
_ - m(] T 1 td .
(1—|—T>3/2 mEZ:lx , BN(Og( + ))SDN+2 <\/’T—+1>
If we now take the Fourier transform and use the notation
A g (s, T) . N =
U(FL,T) = “ 0 ’ X = {Xn}%o: 5 (X * f)n = Xn,mfma (43)
<{uz<n,T> :11> ' mzzl
we find J
—U = T+ F(k,T 4.4
U = Br)U + F(x,T), (4.4)
where
10 0 x- 0 0
B(k) = —1*k? +ikA - =: k°By + KBy + By (4.5)
0 1 X X* 07
and R
. Fi(k,T
Flem) = (200 (4.6)
2(’{7T)
with
R Dy ®td(k, T
Fi(rT) = —(ffizf)’i,/) v (DA +T)F (=i + an (D)1 +T)F (=in) V2|
ADY (K, T)
S Z o [ BB (D)Q+ T (i)Y 4 BRI (14 1) F (i) 7]
N D, ® ,T n Nt2 , n Nt3 o,
Aty = 2D [or 004150 4 B0+ TV i
Adtd Kk, T > m Nt2 .
WL TR §F>3/3 > X BRI +T) 2 (—im)NF2, (4.7)

m=1

Note that we have written a;(log(T + 1)) = a;(T') and B} (log(T + 1))
direct calculation shows that
@éd(/ﬁ,T) = VT + le vtar?(T+1)

The plan is to analyze the behavior of (44 using Duhamel’s formula,

= ﬁ]f‘(T) for convenience, and a

T
Uk, T) = BT (k,0) —|—/ BET=3) Pk, 5)ds, (4.8)

0
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and show that solutions decay like T-NW) where A can be made large by choosing N large. The precise
relationship between N and N is given in the statement of Proposition We will obtain this decay in

the norm

\Whﬂw=AMWﬂw%mﬁé%wIWM+AM@M$M@M- (4.9)

S in L*(m), and the relationship

Remark 4.1. Recall that we expect decay of the remainder terms wg, vy,

between these variables and g, uy, is given in [@2). Suppose that two functions g and f are related via

gET) = AL+ TY (X, T), €=—2 1 —log(1+T).

Then we have

lo(Z20my = /u+§WW@ﬂ&ﬁ=u+TW“”/u+X%HJWHMﬂXTW¢X

12

(1+T)»"12 i(l +T)7 / X7 (X, T)PdX
j=0

= QTS (14 )AL (T 2.
§=0

The discussion at the beginning of this section suggests we can expect wi(&,7) and v} (&, 7) to decay like

w3 (P 2y + 1V° (7)lle2 | 22y ~ €777,

where n(N) grows with N. Therefore, one could estimate solutions to (L) in terms of the norm

T = A+T)> A+T) 7 0fao(T) |72+ 1+T)*2> (A +T) (1025 [{in(T)}He2) |72 (4.10)
j=0 Jj=0
Although this is possible [Chall|, the calculations are cumbersome. Therefore, we have chosen to carry out

the estimates in terms of the much simpler norm [EQ), which also seems quite natural.

The goal of this section will be to prove the following result.

Proposition 4.2. For any N € N and U(k,0) such that |0°U(-,0)|| < oo for all 0 < £ < N + 1, the
corresponding solution of A8 satisfies

N_ 1
6 12,

UG <00 +T)"
for all T > 0, where C is a constant that is independent of v but depends on ﬁ(O) and its derivatives.

Remark 4.3. Note that the result claimed in Theorem [(ii) follows from the above proposition. To see
this, recall that urem is defined in [212). Using equations [£2), [@3), and Plancherel’s Theorem , we have

e (D)2 < Cy [l (D32 + [ (T} 132]
= Cy [I85(D) 132 + II{as(THE 3]
= ClUMP<CcO+T)7%

5,

where Cy is a constant that depends on the L? norms of the cross-sectional eigenfunctions 1,. Note that
the requirement that ||0LU(-,0)|| < oo for all 0 < £ < N 4 1 in the above proposition holds as long as the
initial data for (LI lies in the algebraically weighted function space: u(-,0) € L*(N + 1) x L?(Q). This is
because af;f € L? if and only if X*f € L?, which means f € L*(().
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We now state a brief result on the decay of the forcing terms in (L.S]).

Lemma 4.4. There exists a constant C > 0, independent of v, such that, for all T >0, kK € R

1Bk, T)] < C(L+T) 7 ~20 || NHleas® 4TIy |e|(1 4 T)?]
1Bk, T e < CO+T) 7 30+ g N+2e=1a® D)1 4 || (14 T)V2 4 (14 T)/2]

where n,j are defined so that N —1 = 35 +n, with n € {0,1,2}.
Proof. This is a direct consequence of the definition of F' in (A7), of Lemmas B4 - B3 and of (31). =

In order to combine Lemma [£.4] with equation ([£8]) and prove a decay result for the remainder terms, we
will need good control of the semigroup generated by B(x). To obtain this, we will first obtain estimates
on the spectrum of B(x). We will then use these spectral estimates to obtain decay estimates on the
semigroup for three different regions: 1) small wavenumber 0 < || < kg; 2) intermediate wavenumber
ko < |k| < kv ™1 and 3) large wavenumber kv~ < |k|, where kg and k1 are positive constants that are

independent of v.

4.1 Spectral decomposition

First, we state a lemma on the spectrum of By 1 2.

Lemma 4.5. On the space Y = C x (2(C) the following hold.

(1) The operator By has only point spectrum, and it is given by o(By) = {0} U {—pn}02 .

(i) The operators By and By are bounded.

Proof.

(i) This follows from the fact that By is diagonal and the only accumulation point of its entries is co.

(ii) This is trivially true for By because it is a scalar multiple of the identity, and for By it follows from

the fact that {1,,}°°, forms an orthonormal basis for L?(Q) and Parseval’s identity.

Next, we analyze the spectrum of B(x) for any fixed xk € R.

Lemma 4.6. Fiz any k € R. The spectrum of B(k) consists only of point spectrum.

Proof. We will show that, for fixed k, B(k) = By + k(B1 + kB2) is a relatively compact perturbation of
By. The result will then follow from Weyl’s theorem [RS78| XIII.4, Corollary 2]. We must show

I{(B1 + 1682)(80 + i)_l
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is a compact operator on C x ¢?(C). By Parseval’s identity, this is equivalent to showing that
R(AX(y, 2) — v2R)(A +i) !

is a compact operator on L*(€2). We let {i,(y,2)} C L*(2) be a bounded sequence: ||ty (y, 2)||12(0) < C
for all n € N. Then, since 4 is in the resolvent set of A and (A +i)~! : L2(Q) — H(Q) is bounded, it
follows that {(A +4)~ 4, } is a bounded sequence in H'(2). Therefore

{k(iAx(y, 2) — V?K)(A + i)~ La,}

is also a bounded sequence in H'(€2). Since H'(€) is compactly embedded in L?(£), this sequence has an
L?(2) convergent subsequence. Therefore x(iAx(y, z) — v2x)(A +14)~! is compact. [

4.1.1 Low wavenumber estimates using the leading eigenvalue

We next prove a result on the spectrum of B(k) for |x| sufficiently small. In particular, we show in this
case that the eigenvalues of B(k) split into two parts: an eigenvalue A\o(k) near 0, and eigenvalues \(k)
satisfying Re(A(k)) < —u1/2. Therefore, we expect Ag(k) to dominate the long-time behavior, and we will
therefore be able to use it to obtain estimates on the low-wavenumber part of our solution. In addition,
we will show that this leading eigenvalue A\g(k) is approximately —vyqx2, so the long-time behavior will

correspond with Taylor dispersion.

o, . . . & 1 1 1 .
Proposition 4.7. Let ky = mm{ 2 AN <1+M%> \/1+(%1)2 } Fiz any k € R such that |k| < ko,

and let 0 < v < 1.

(i) The (point) spectrum of B(k) can be divided into two disjoint sets, o(B(k)) = { o(k)} UX(k), where
Mo (k)| < V2u1/2 and, for any eigenvalue A\(x) € B(k) we have Re(\(k)) < —pu1/2.

(ii) The leading eigenvalue satisfies \o(k) = —vgr? + Ao(k), where Ag(k) = irs® + O(k*) is smooth, and
independent of v. Here v = r(x,{in}r>y) € R is given in equation (L2I]).

The main idea behind this Proposition is the following: recall that B(k) = Bg + kB1 + £2Bo. If |k| is small,
then B(k) is just a small perturbation of By, which has spectrum {0}U{—p, }52 ; and the separation claimed
in (i). Furthermore, we will see that B; is antisymmetric, hence the real part of the spectrum of B(k) is
actually an O(x?) perturbation of that of By. The v-dependence of the spectrum stated in the proposition
can be obtained from the following decomposition: recall that By = —12k2I. Letting C(xk) = By + kB,
we have that B(k) = C(k) — v?k?I. That is, the operators B(x) and C(x) differ by a scalar multiple of the
identity, and, since C(k) is independent of v, all of the v-dependence of B(k) is contained in this scalar.

Therefore we immediately have the following lemma:
Lemma 4.8. Fiz any k € R, let v > 0, and let B(k) and C(k) be defined as above. The following are true:
B(k)T —VzlizTec(li)T.

(i) The semigroups of B(k) and C(k) are related by e =e

(i) The eigenvalues A(k) of B(k) and I'(k) of C(k) are in one-to-one correspondence with one another

via \(k) = I'(k) — v?k2, and corresponding eigenvalues have the same projection operators P(k).
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Remark 4.9. Since the operator C(k) is independent of v, the above lemma tells us exactly what the v-

dependence is in the semigroup BT

, and it tells us exactly what the v-dependence is in the eigenvalues
A(k) in terms of the (v-independent) eigenvalues I'(k) of C(k). Furthermore, since the projections P(k) of
corresponding eigenvalues are the same, and C(k) is independent of v, these projections can be taken to be
independent of v. This relationship between the v- dependence and the structure of the system is a direct

consequence of the change of variable (I.2).

Note that, because B(k) generates an analytic semigroup, the following Corollary follows immediately from
Proposition [L7)i).

i J AL 1 1 1 :
Corollary 4.10. Let kg = mln{ 2 AN <1+u%) \/1‘1’(%)2 } . Fix any k € R such that |k| < kg, and

let 0 < v < 1. Let Qo(k) be the projection complementary to the eigenspace of the eigenvalue \o(k) of
B(k). Then, for all W € C x £?(C) =Y and T > 0, we have

_m
15T Qo)W |y < Ce™ 2 Wiy,
for some constant C' > 0 which is independent of v.

Before proving Proposition .7, we will need to prove the following Lemma.

Lemma 4.11. Let k € R, let kg = min {“2—1, 2A”;”Lm (1 1H%> \/1+t = }, and let A\(k) be an eigenvalue
Q + o
of B(k). Then
(i) Re(\(k)) < —12K2.

(11) If |k| < ko, then |[ImA(k)| < p1/2.

Proof. Recall from ([@3) that B(k) = By + kB + £2Bs with

. .
B=(" ") meai(Y XY, B=_w o).
0 =T X X* 0 1

Note that By and By are diagonal and hence
S(/i) = By + /€2Bg

is symmetric. Also note that

A(k) == kB

is anti-symmetric, due to the following argument. Let V = {V,}>2, € C x ¢*(C) and let v(y,z) =
Vo + > 021 Vabn(y, z). We compute, using Parseval’s identity,

BV, Viexeee) = (Aix(y, 2)v(y, 2),v(y, 2)) 12 (o)
= _<U(y7 Z),AZX(Z/, Z)U(yvz)>L2(Q)
= —(V,B1V)cxer0)-
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Next, we compute a bound on the spectrum of B(k) = S(k) + A(k). Suppose A(k) is an eigenvalue of B(k)
with eigenvector V (k) normalized so that ||V (k)|y = 1. We have

((8(r) + ARV (K), V(K)) = (%)
(S(R)V (), V(r)) + (AR)V(K),V(K)) = (%) (4.11)
(V(r), S(R)V () = (V(K), A(R)V (K)) = A(%),

where the last line is obtained using the symmetry properties of S(k) and A(k). Taking the middle line in
(£I1) and taking the complex conjugate, we have

(V(k),S(k)V (k) + (V(K), A(K)V (k)) = A(K). (4.12)
Finally, adding (£12]) and the last line in ([@IT) yields
Re(A(r)) = (V(r), S(rK)V (K))exex(c)-

Next, we let v(y, z,x) = Vo(x) + 207 Va(k)¥n(y, 2), normalized so that (v(k),v(k))2(q) = 1, and apply
Parseval’s identity to get

Re(A(r)) = (V(k),S(K)V (K))cxe ()
= /Qv(y,z,/f)(A —V2:)0(y, 2, k)dydz
= —/ Vouly, z,k) - Vi(y, z, k)dydz — V2/£2/ lu(y, z, k) |>dydz (4.13)
Q Q

< —V2/€2/ lv(y, 2, K)|*dydz
Q
which proves the first part of Lemma LTIl For the second part of this lemma, let || < kg. We use an

argument similar to that used in the proof of the first part of this lemma to control the imaginary part of
A(k). Subtracting (£12]) and the last line in (I1]) yields an expression for Im(\(k)):

Im(\k)) = —m/Qv(/{,y,z)/-iz'Ax(y,z)v(/i,y, z)dydz,

where v(k,y, z) is the unit eigenvector for A\(k), and we have used Parseval’s identity. Continuing, we get

Im(\(k)) =ikA

1 -
area(m/Q’U(H,y,z)x(y,Z)v(H,y,Z)dydz,
so that

[ImA(k)| <[] Allx]| Lo
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Furthermore, since we assumed |x| < kg, we have that
M1
ImA(R)| < sl Al < 2.
This completes the proof of the Lemma. [ |

We now prove Proposition [4.7]

Proof. First, we prove item (i). Note this separation between the eigenvalues is true for By, since 0 is
an eigenvalue of By and all other eigenvalues satisfy —u, < —uy < 0. Let & satisfy |k| < kg. To establish
this separation for B(k), we will use Kato’s definition of a “gap” between operators [Kat95]. Given two
operators 7" and S and a closed curve I', C C that separates the spectrum of 7" in two parts (one part
inside I', and one part outside I',), if the gap ) (T, S) is sufficiently small, the closed curve I, also separates
the spectrum of S. The definition of §(T, S) is

5(T,S) := max { sup dist(u, G(S)), sup  dist(v, G(T))} , (4.14)
ueG(T),||u]|=1 veG(S),||v||=1

where G(L) = {(u, Lu) : w € D(L)} is the graph of the operator L with domain D(L), with ||u|| being the
graph norm. If §(T, S) satisfies
A 1 1 1
6(T,S) < min , 4.15
(T.5) el 21+ |22 VI+ (T =217 (4.15)

then the closed curve T', also separates the spectrum of S. See [Kat95l ChapterIV, §3.4, Theorem 3.16].
Before we use Kato’s gap, recall from Lemma[4.8| that the eigenvalues (k) of B(k) and eigenvalues I'(k) of

C(k) are in one-to-one correspondence via A\(k) = I'(k) —v?k%. We can therefore apply Kato’s gap and prove
a decomposition for the spectrum of C(k), and get an analogous decomposition using the correspondence
between the eigenvalues of B(k) and C(k). The advantage of doing so is in the relative simplicity of the
operator C(k). Proceeding, we will show that the gap 3(C (k), By) satisfies

. 11 !
0(C(k),Bo) <
(Clx). Bo) < o (21+\zwl+||so—z> 1||2)

where T, is the boundary of the rectangle {z = x + iy : |z, |y| < p1/2}. If this holds, we will have shown
that there is one eigenvalue, which we denote \o(x), that lies inside I'y (and hence near 0), and the rest of

the eigenvalues lie outside I',.

Let’s proceed by computing the gap 6(C(x), Bo). Using the definition {I4)), we first need to bound

sup dist ((V,C(R)V), G(Bo)> :
1Vl o2y H1C0V e g2y =1

Pick a V € C x £2(C) with ||V||lcxez(c) + |IC(K)V|lexez(c) = 1. Then
dist((V,C(k)V),G(Bo)) < ||(V,C(k)V) = (V,BoV)]|
=1|(0,C(x)V — BoV)|
= [|kB1V|cxez(c)

< Ixl (Allxliz) IV llexeoy
< [wlAllx]l g -
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Since this holds for all V' with HVHCXZZ(C) + HC(H)VHCXp(C) =1, it follows that

A sup dist ((V,C(:)V), G(Bo) ) < Inl (Allxlzgs) -
||V||(c><z2((c)+"C(’i)chXﬂ(c)zl

Next, using the definition of the Kato gap (414]), we need to bound

sup dist ((W,B(O)W),G(C(ﬁ))) .
\\VAVH(ngz(@)H\B(O)W\\Cxﬂ(@):l

Pick a W eCx 62(C) with "W"ngz(c) + HBOWHCXZZ(C) = 1. Then
dist (W, BoW), G(C(x)) < [|(W, BoW) — (W, C(x) W)
= [/(0, BoW — C()W)|

= [|eB1W [lexe (o)
< |8l (Allxlce ) W llexexc)
< |&[Allx|lg -

Since this holds for all W € C x ¢2(C) with ||W||cxsz(c) + |1BoW [lexez(cy = 1, it follows that

A sup dist (W, BO)W), G(C(r))) < |sl Xz
||W\\Cxﬂ(c)"‘”B(O)W"Cxﬂ(C):l

Therefore

A

0(C(r), Bo) < |r|Allx|l g - (4.16)

Next, we bound

o1 1 1
min —
z€l, 2 <1 + 1212 /1 +[|(Bo — Z)_1H2>
from below. First notice that, for z € Ty,
2
Bo—2)7 < =.
1(Bo —2)" || < o
This is true since By is self adjoint, and u1/2 is the distance from Iy to o(Bp) [Kat95, Chapter V, §3.5,
(3.16)]. Therefore, for all z € Ty,

1 1 1 1
< =
2 7 2

21+ |22 2
=1+ (2)

1 1
TR VT Bo -2 P

Hence

1 1 1 . 1 1 1
_ < min | = .
zel, 21+|Z|2 1+(l)2 z€ls 21—|—|z|2 \/14-"(80—2)—1”2
K1

Next, we compute
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Therefore, using ([£I6]), we only need k to satisfy
1 1 1

LAl < 3 ( ) —

14+ 5] 1+ ()3

This follows since |k| < kg. Therefore

R 1 1 1
3(C(k), By) < min [ =
(C(x), Bo) ter. (214—|z|2 \/1+H(BO—Z)_1H2>

as desired.

This proves that the rectangle I', separates the eigenvalues of C(x). Now suppose that I'(x) is an eigenvalue
not contained in I', (and hence, by the relationship between the spectra of B(x) and C(k) it corresponds
to an eigenvalue A\(k) € X(k).) Then either

(a) Re(l'(r)) < —p1/2, or
(b) —p1/2 < Re(I'(x)) <0, and [Im(T'(k))[ > p1/2,
because Lemma [L.TT] implies that none of the eigenvalues of C(x) can have positive real part. If case (b)

held, then there would be a corresponding eigenvalue A(x) of B(k) with [Im(A(k))| > p1/2, and this would
violate Lemma [£IT] (ii). Hence case (a) applies and this in turn implies the bound in Proposition 17 (i).

Next, we prove item (ii) in Proposition 71 Note that, because A\g(k) is a perturbation of the simple
eigenvalue 0 of By, both \g(k) and its spectral projection Py(k) perturb smoothly in « [Kat95]. However,
due to Lemma L8 we can instead estimate the leading (v-independent) eigenvalue I'g(x) of C(k), which is

still a perturbation of the simple eigenvalue 0 of By. We expand this eigenvalue
To(k) = To + Ty + Tar? + O(x?) (4.17)

and its corresponding eigenvector

V (k) = Vo + Vik + Var? 4+ O(K%), (4.18)
where .
Vi(k) = (fﬁo(k)> V= <%>
Uk))’ To\oi )

Now the eigenvalue problem reads
C(k)V (k) =D(r)V(k), (4.19)
Plugging (4I7) and (@I8) into ([@I9]), we find
N N N 1
BO‘/O:O"/Oa = FOZOa ‘/0:<>7

Next, we find
BiVo + BoVi = T'1Vj
BiVi + BoVy = ToVo + 1 V4 (4.20)
BiVo + ByVs = I3V + TaV4 + I Vs
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and so on. Solving the first equation, we find

A~ Cl
=0, = ,
! ! (iAT‘BZ)

where the scalar constant c; is undetermined but can be fixed by normalizing the eigenvectors. At O(x?),

we similarly find
A~ (32
'y = — Dy, Vo = .

? i ? <iAc1T_1>2 AT # (Tl;@])
Finally, at O(x%), the first component in the equation implies

I3 = c1(Dw)+iAx- [{Aa Yy — A2 [y« (Y 1Y)]]

= A% X (YY)
In particular, I's is purely imaginary, and therefore
To(k) = —Diar® + irk® + O(k%),

where

rm -y [Rx (0] (421)
Finally, using Lemma .8 we have
Mo(k) = =%+ Dig)r® + Ao(k)
= —l/td/{2 + Ao(li),

where Ag(k) = irx® + O(k?) is independent of v. This completes the proof of item (ii), and of Proposition

41 n

4.1.2 High wavenumber estimates using standard diffusive estimates

Next, we consider the behavior of the spectrum of B(x) for large |x]|.

k1

Corollary 4.12. Given any fived constant k1, for all |k| > £ we have

[EOTW ||y < Ce T |[W |y

Proof. This follows immediately from Lemma [L11] using the fact that B(x) generates an analytic semi-

group. |

4.1.3 Intermediate wavenumber estimates via hypocoercivity

In this subsection, we prove the following Lemma.

iti — i J ML 1 1 1 . .
Proposition 4.13. Let kg = mln{ 2 ATz <1+“%> \/1+(u—21)2 } Then there exist positive constants
k1 and & € (0,%) such that for all ©L > |k| > ko(1 — &) and T > 0, we have

POTW [y < Ce MW |y,

where M and C' are constants that are independent of v.

29



Remark 4.14. This result does not appear to be obvious. A naive estimate, such as that in the proof of
Corollary [£.12, would only give

HEB(R)TW”Y < Ce_lﬁ(’io(l_é))QTHWHy.

For large times T = 1, this does not actually produce decay: e~V (ko(1=0)PT — o=v*(ro(1=-6))* 1, Therefore,
we really do need the stronger result given in Proposition[].13 to conclude that small wavenumbers |k| < ko

really do give the leading order behavior of solutions.

Proof. Let § € (0,1) and fix r € [ko(1 — 8), k1 /v], with any fixed r1 > vro(1 — ). We will study the

decay of solutions to

%U = B(r)U,
with U and B(k) defined in ([@3]) and (LX) using Villani’s theory of hypocoercivity [Vil09]. Writing this
equation in components and writing 4§ = v and 4;, = v, with m = 1,2,... for notational convenience,
we have
(0. ]
oru = —vk%u+ Aik Z XmUm
m=1
o0
orvy, = —(1/2/{2 + )V + Alkxmu + Aik Z Xm,jV;-

=1

Motivated by [Vil09], we consider the functional
O[(u,v)|(T) = uu + Z CmUmUm + 2Re (iu Z O'mZ_Jm>

with (o, (m, and o, to be defined below. We will show that d < —M® for some constant M that is
independent of v and k, as long as k1 /v > |k| > ko(1 — §). We will also chose (g, ¢, and o, so that
there exist constants c¢; 2 independent of v and x so that ¢;||(u,v)|y < ®(u,v) < c2[(w,v)|ly. This will
imply that ||(u,v)(7)|ly < (c2/c1)e™™7T. Undoing the scalings will then imply the decay claimed in the

Proposition.

We compute

b = —2C0y2/42|u|2 — 2Ak(yRe (mZ me)m) -2 Z Cm(l/2/€2 + ,um)|vm|2 4+ 2AkRe (mZ (mxmz_zm>
+2AkRe iz CmUm Z Xm,jVj | — 202 Kk?Re <iu Z vam> — 2AkRe Z X;5Vj Z OmOm
m j=1 m J m
—2Re <IUZ am(u2f<a2 + ,um)vm> + 2AkRe (\u!2 Z Ume)

+2AxRe | u Z Om i Xm,jUj

Next, define
(m = (0 va
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where c¢ is a constant to be determined. Note that this choice of (,, implies

—2Akr(yRe (iu Z me)m> + 2AkRe (iu Z (mxmz_zm> =0
Also,
2AkRe iz CmUm Z Xm,;V; | =0,
m =1

which results from the fact that the x,, ; are real and X, ; = Xjm. This follows from the fact that the

eigenfunctions 1; of the Laplacian on the cross section 2 can be chosen to be real. Therefore, we have

b = —2§0y2/<;2\u]2—2COZ(V2/£2+um)]vm]2+ <IUZ vam)—i-cRe ZX]’UJZ vam
m
c [e.e]
+—Re iuz X—m(V2/€2 + ) U, | — cluﬂxli — cRe UZ Am me,jff)j
A — Kflm . Mm T
J_
2
cv?|K]| c 9 c 9
< | =200k + + —c|x —i——] U
| ag T aapwqg Mkt agg]
2| 1O2]+[2
v’k Q1lX] Q3 Q3
9 2,2 p 2 12 B1v2vI2 | 02,
Co(p1 +v7K%) + 1 +elx|lxlu + 2A|;-;|’X’ + =7 X[z | [0l
= (Lu+11,) [u® + (I, + IL,) [v]?,
where we denote |v| = ||v]|,2 and where
I P ——— 11, = —2c? + S0
= —C - — VK
LTI T oAy Ty T Y AQ3

and

CQ%

cQ? v |k|QF x|}
Iy = =2 + elxlIxln + =2 lalxlZ~ + 2] X% L, = =20k + ——

+ A

Recall that 0 < § < 1/4, |k| > ko(1 — ), where Ky = min {%’ 2A||>2”Lg <1 1#%) \/1+t%)2 } Furthermore,

let

1-96
¢ < min i A?R3(1—0)
|X|2 9 9 2x?2] 0 )
i XX+ X + 3A2K2[X2

12411
X%

We choose {p =1, Q2 = Q3 = m and Q% = % Then

since |k| > ko(1 —6),0<d < 1/4, and ¢ < 12,u1/|x|i. Next, notice that the above choices imply that

IT, = v* (=26 + c|x|}kols]) < —12K%,
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where we have used the facts that |k| > k(1 — ) and ¢ < (|1X_|§ ). Similarly,
m

Iv = _2N1 +c

3A2kG|x 7

Finally,

I, =1? (—252 + A;ﬁghﬂ) < —v2K?
because ¢ < a?kZ(1 — ). Therefore
® < —(u1 + 767 (Juf® + [v]?).

Also, we have that

LS
IN

c C|X|2
1 o 2 1 13 2
(14 g *( +2Aw)‘”‘

M(Juf® + [v]?),

IN

where M =1 + % max{1, |X|z} As a result,
d < -MO,
where M = py/ M. If we now additionally require that

e min A -5, 29020}

2
IxI%

we find

c clx? 1
d>(1- ——— 2 L 2> Z(|ul? 2y,
_< 2Mo(l_é))hw +< 2Am)(l_é)>|v| > 2 (luf* + o)

Therefore,

[w(T)? + [o(T)|* < 20(T) < 2eM72(0) < 4e™ " {[u(0)[* + [0(0)[7],

which completes the proof of the Proposition.

4.2 Splitting of the semigroup

The goal of this subsection is to establish the decay rates on the semigroup by splitting it as

eBR(T—s) _ Enigh (R, T — 8) + Elow (K, T — 5) + Tn(k, T — 5) + Rn(K, T — s),

2 X2
il + e + 22X ] <.

(4.22)

(4.23)

where the components are defined as follows. Both &pgn 0w Will be exponentially decaying pieces that

correspond to high and low wavenumbers, respectively. The terms 7Tx and Ry will both correspond to the

leading order eigenvalue \g(k) = —vyqk? + Ag(k) of B(k), defined in Proposition A7, with Ty arising from

the Taylor diffusion term —vy4x? and Ry arising from the remainder Ag (k).
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To precisely define each term in (£23]), first let (k) be a smooth bump function that equals 1 for || < kg

and 0 for || > 2k, where K is any fixed positive number such that, for example,

< 1 . u1 1 1 1
ko < = min ¢ —,
2 2 240xly \ 14+ 4 1+ (2)?

as motivated by Proposition 4.7l (We will need to adjust the value of xg, below, to make it slightly smaller.)
Furthermore, let Py(k) be the (v-independent) projection onto the eigenspace for the leading eigenvalue
Ao(k) of B(k), defined in Proposition .7 and let Qo(x) = I — Py(k) be its complement. We can then
define

Enign(k, T —5) = (1 —(k))eFWT) (4.24)
Elow(5, T —8) = (r)Qo(k)eBHT=5), (4.25)

We use a Taylor expansion to define the remaining two terms 7Ty, acting on a function G (k,s), and Ry as

Tk, T — 8)G(r,5) = e vear’(T=s) i %af; (¢(R)P0(,@)erW(T—ﬁé(ﬁ, s)) ek’ (4.26)
/=0
Ry(k, T —s) = e " T (1) Py(k) et T=5) _ Ty (s, T — s). (4.27)
With this definition, we have
To(k, T—5)+ Ry (5, T—s) = () Py (1) P T =) = (1) Py (1) BT =) = e =11 (=D (1) Py (1) 0 ()T =),

We now obtain decay estimates on each piece of ([£23)).

4.2.1 Bounds on &,

Before providing bounds on &y, we first state the following lemma.

Lemma 4.15. Recall v,y = v? + D,g, where D;g = AszHi. Let d >0 and T > 0. Then

d_1
274
)

rde a5 gy < C(1+T)"

where the constant C' = C(d) is independent of v.

Proof. This follows from a direct calculation; the r-independence of the constant C' follows from the fact
that
v =+ D)t <D}

We now prove the following lemma, which provides estimates on oy Recall that the norm || - || is defined
in (49).
Lemma 4.16. (i) |0y (- T)V ()| < Ce™ 27|V ()]
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N 1

(ii) || [T Eion (T = $)E (-, s)ds|| < C(1+T)~5 1.

©

Proof. By (£9) and Corollary 10, we have

o (TP = / 0w (5, TYV ()2 s
< / CeMT|V (x) |2 dr = Ce T[T ()|
R

This proves (i). To prove item (ii), note
|| / Eow (T — )E(5)ds| = || / Eow (T — $)E (-, 8)dslly | 2w

< [ 0TI )y myds
Now from Lemma [£4], we know that
1B, s)ly < O(148)" T 3O QN oL Vo214 )2 4 []N52 4 V()12
Next, using Lemma .15 we have that

- N-1_N41_1 _l(iin
HNEC )y lze@ < CA+s) > Ti(l4s) 20t

where the constant C' is independent of . Therefore

T
H/ Eiow(, T = 8)F (-, s)ds|| < Ce™FT=9)(1 4 5)71(1 + 5) 20+ ds
0
< C(1+T) 203

< C(1+T)_ 1z,

where the exponent in the last line follows from the fact that N — 1 = 35 + n, and n € {0, 1, 2}.

4.2.2 Bounds on &g

We prove the following Lemmas.

Lemma 4.17. There exist constants C and My, independent of v, such that

(i) |Enign (- )V ()| < Ce TV ()
(it)
r A 1
||/0 Enign(, T — 8)F (-, 8)ds|| < Cem 1T,

Proof. We can use Proposition B.I3] for ro < |k| < %1 and Corollary BI2 for |x| > =% to find

BT W |y < Cem™TWly
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for all |k| > kg. Therefore, we have
Enign (- T)VOIP = /RHEhigh(HaT)V(R)”%/dH
< [ eI s = ce TV,
R

which proves (i). Item (ii) follows additionally from Lemma 4] and the estimate

T T
|| /0 Enign(+ T — $)F (-, 5)ds]| < /0 CeMT=9[(1 = $() B, 8) |y |2y ds

T
= / Ce™MT=9)(1 4 5) ™5 7"(|(1 = (i) || VD e s AF) 1 4 (] + [6]2) (1 + )2 g2y dis
0

T vy —1—n vy
< [ e MT sup (e HRARI) W) A Ve EEIL (] 4 7)1+ 5)1 2 agayds
0 |K]>2k0

T 1%
§/ Ce M(T=3) gup (e_%d“z(l“))(l +s)_%_%ds
0 |k|>2k0
T

:/ C’e—M(T—S)e—2I/tdlig(1+s)(1+S)_%_%ds
0

T
_ / Ce—M(T—s)e—th/ig(l—i-s)e—utdng(l-i-s)(1 + S)_%_%ds
0

< Ce—MTe(M—utdng)T < Ce—Dtdn(%T.

4.2.3 Bounds on Ry

In this section we prove the following lemma.

Lemma 4.18. Recall that Rx(k,T) is defined in @2T), || - || in @3, and F in @5). Then

5
12

N
6

(i) IR (. TV ()IP < Cly, Po, V)T~

ol

&=

(ii) || [} Rx(-,T — 8)E (-, 8)ds| < C(1+T)~

for all T > 0, where the constant C’(?/),PO,V) depends on the first N + 1 derivatives of 1, Py, and V. In
particular, we need to require that ||0°V || is bounded for all 0 < ¢ < N + 1.

Remark 4.19. We can ensure that the initial condition U(k,0) in @R) has ||0°U(-,0)| bounded for all
0 < ¢ < N + 1 by requiring that the initial condition u(x,y, z,0) to (1) lies in L2((N +1)).

Proof. To estimate Ry, notice that a smooth function minus the first N terms of its Taylor series can be

written
N

f(m)—Z%f(j)(O)/{j:/o /ON/O "o f(y)dydy .. dry.

J=0

Therefore, we can write

~ K KN K1 ~
RN(H,T—S)G(K,T—S):e—wdm/o/0 /0 o)+ [w(y)er@)(T—s)Po(y)G(y,T—s) dydk; ... dky.
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Furthermore, the computation of the expansion of Ag(x) that follows equation (EIT]) implies that
Xo(k) + var?| = |Ao(r)| < C|x|?, for |k| < 2kg

for some constant C' that is independent of v. The y-derivatives in the above integral expression could fall

on any of the terms in the brackets. Thus, we need to bound terms of the form
1@ () (02 T (O Po () OV (k)| ma +ma +mg +my = N+ 1.
Using the form of Ag(k), we have
ome eMo(R)T (sz)pl(nT)” (T)P3(T)P* - - - (T)Pm2 er(H)T7

where p; + 2py + -+ + mapm, = me and p; € {0,1,...,my} for all i. Thus, the p; term corresponds to ¢
derivatives falling on Ag(x). Therefore,

e Vi’ T / " / T / " oyt [¢(y)eA°(y>TPo(y)V(y)] dydks ... dry
R 0 0 0
(O 6(s)) (O Po(s) OV ()|

2

dk
Y

IRNG,T)V()]? <

< g sup
mi+ma+mg+ma=N-+1 KIS2k0

K PEN K1
X / <e_l/tdK/2T/ / [P /
|k|<2kKo 0 JO 0

=C(¥, P, V) / e 2t
|k|<2kK0

L

_ 2 3
C(, Py, V)T 4 +pm2)/ e~ 2™ T 2CIRI°T |1 2@p1p2 b N+D) .
|r|<2k0

2
8;”2 eAO(y)T‘ dydky ... d/iN> dr

2
(y>T)PL (yT)P2 (TP (T)m---(T)ﬂmzeAfJ(y)T‘dydm...dfw> dr

(Om14(k)) (75 Py (k) (874 V (6 H The function

K

The constant C(1), Py, V) is determined by SUD)|| <250
and the projection Py are smooth, bounded, and independent of v, so we need not worry about derivatives
that fall on them. Notice that, for z = kT, we have

_ 2 3 _(p+1) _ 2 3
/ e—2vtar?T 2C| k| T‘H,’pd,‘i - or% / ‘Z’pe gz e2CT|z/\/T\ dz
|k|<2ko |2|<2k0VT

(p+1) _.2 2C|z|
< T " / |z|pe_”td226 : ( VT >dz
|2|<2k0VT

(p+1)

< COT7 =,

Note that we have used the fact that |z| < 2kgV/T with kg = O(1). Therefore, after possibly making g

2C|z|
Nei > (0. As a result

smaller if necessary,

[RNC DIV O < O, Po, V)T oma=d=dBorsonen s,

Notice that

11 1 3 N
praccdpme =7 = 5@t N+ = Sptptpitpm—7-5
1 3 N
< (o224 mapm,) = 5 = 5

N 5

< == —

N 6 12
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In addition,
201 +2p2+2p3+3ps+ -+ (Mo — 1)pmy, < 2mg < 2(N +1).
Therefore, we obtain

N
6

IRNC,T)V )| < 4, Po, V)T~ 512,

Sler

which proves (i). To prove (ii), Lemma [L4] implies
| (s, 9)lly < ClaN 1+ ) 5 e @ 0114 (Ja] + [5])(1 + )"/
Similarly,
|07 F(k, 5)lly < ClaN 17 (1 4 5) 75 (9f2e ™ 0F )10 1+ (Ja] + [5) (1 + )/,
where 1 4+ 79 + r3 = my4. Moreover,

(@pe e 050y = 37 O(vian(l+ )" (~vra(l + 5))e e 0,
q1+2q2=r2

As a result,
”RN(aT - S)F(’a S)”2 <
K KN K1 ~
¢~ vian(T=5) /0 /0 /0 N [T Po(y) F(y, )] dydrn ... diey

< 3 sup [(921 () (9% Po()) |7 v

mi+mo+ms+ma=N+1 K| <2k0

Spa e L

C(, Py), q1+qz)(T )(p1+ +pm2)(1+8) U 1 2(g1+q2)

2

dk
Y

2
amz Ao(y)(T— 5)8m4F(y, )Hydydﬁl...d/ﬂv> dk

> / e—2zxtd/~z2(T—s)e—2ytdn2(1+s)e2C|ﬁ\3(T—s) |/{|2(2p1 +p2+N+1) |K/|2(N+1—r1 +q1)d/{
|k|<2k0

2(N 1)

C(4, P ) q1+q2)(T )(p1+ +pm2)(1+8) +2(q1+g2)

< min {(T _ S)—(2N+2+2p1+p2—7“1+q1)—%7 (1 + S)—(2N+2+2p1+p2—r1+q1)—%} .

As a result,

T A
/0 IRN(.T — $)E(, 5)[ds <

T/2 _
C (4, P )Vtgﬁqz) /0 (T — S)(p1+---+pm2)(1 +5) (Ng 1) )(T _ 3)—(N+1+p1+p2/2—r1/2+q1/2)—%ds

T _
C('l/}, )Vt(gl""p) L/z(T _ S)(P1+~~~+Pm2)(1 + S) (N3 1)

N
6

+(q1+q2)(1 + S)—(N+1+P1+P2/2—T1/2+q1/2)—ids

N_ L
6 12,

<C(¢7P0) Q1+QZ)(1+T)— _%S (QZJ,P(),A,X)( +T)_
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Note that we have used the fact that

N-—1
(73)-l-((h+Q2)—(N+1+pl+92/2—7"1/2+<h/2

_ (P2 yﬁﬁ_l @
—<2+p3+...pm2 3 12+2+2+Q2

2N 7 1
(p1+2p2 + -+ Mapmy) — = = g5 + 5 (r +72)
1 2N 7

M2t T T

(p1 4+ pmy) +

IN - IA

IN
N = W — W[
)

4.2.4 Bounds on Ty

In this section we show that the Taylor polynomial terms are actually zero.

Lemma 4.20. Let Tx(k, T — )G (k, s) be defined as in @E26). If s = 0 and G(k,0) is an initial condition
for @R), or if G(k,s) = F(k,s), where F is defined in @8), then Tx(k, T — s)G(k,s) =0 for all k.
Proof. Recall that

N
Tl T~ )00, 5) = 3 7k ()M OT Py ()G, 5)) econ” (4.28)
=0

In this expression, some derivatives fall on G(H, s), but the order of these derivatives does not exceed N.

First consider the case where G/(k,0) is an initial condition for (8. This implies that
. ug(k, 0
G(k,0) = | | ol )Oo :
{an(r, 0) 52y
The functions 42, for n = 0,1,... are defined via the projections in ([Z3]), the similarity variables in (2],
and the Fourier transform. Equation (2.9]) defines w{ and v; as the projections off of the first N + 1

eigenfunctions of the operator £;4. The projections onto those eigenfunctions are defined in terms of the

Hermite polynomials, which implies that

[ guisterae = [ euiie.mae=o
forall 7> 0and j =0,...,N. Since when 7 = 0 we have £ = X, we therefore find
O (1, 0) oy — éf—l[agag(.,O)](X)dX _ C/RXjug(X, 0)dX = C/RijS(X, 0)dX =0, j=0,.. N,
where we have used F~! to denote the inverse Fourier transform and C is some constant that can be
explicitly determined. Similarly,
115, (K, 0)] w—o = C’/RXjqu(X,O)dX = O/RXJ'aXv;(X,o)dX = —jC/RXj—lvg(X,o)dX =0, j=1,...N.
When j = 0, the result holds because [ d¢vs(€,0)d¢ = [ V,,(€,0)dE = 0, where V}, is defined in (2.4).

Next, consider the case where G = F. Note that F(k,s) = &Nt H(k,s), where H(x,s) is a smooth,
bounded function in x and s. This fact can be seen from equation 7). Therefore Gk, s)|x—o = 0 for
0</?¢<N. ]
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4.3 Proof of Proposition 4.2, and hence Theorem [II(ii)

Recall that the goal of this chapter is to prove Proposition .2, which by Remark [£3] implies Theorem

[(ii). Hence, we want to establish the estimate

N_ 1
6 12,

IO 1) <c+1)"

Recall from (48] that

T
Uk, T) = BT (k,0) +/ BENT=3) [(k, 5)ds.
0

Using the splitting of the semigroup in ([£23]) and Lemmas 16 ETT, I8 E20, we have

_N
6

0@ < ¢l BT+ e+ 1 +T)7F | 0]

+C [(1 + )70 e MT 4 (14 T)—%—%] 7

which proves the result.
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