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Abstract

Taylor diffusion (or dispersion) refers to a phenomenon discovered experimentally by Taylor in the

1950s where a solute dropped into a pipe with a background shear flow experiences diffusion at a rate

proportional to 1/ν, which is much faster than what would be produced by the static fluid if its viscosity

is 0 < ν ≪ 1. This phenomenon is analyzed rigorously using the linear PDE governing the evolution

of the solute. It is shown that the solution can be split into two pieces, an approximate solution and

a remainder term. The approximate solution is governed by an infinite-dimensional system of ODEs

that possesses a finite-dimensional center manifold, on which the dynamics correspond to diffusion at a

rate proportional to 1/ν. The remainder term is shown to decay at a rate that is much faster than the

leading order behavior of the approximate solution. This is proven using a spectral decomposition in

Fourier space and a hypocoercive estimate to control the intermediate Fourier modes.

1 Introduction

Taylor dispersion is a phenomenon in fluid dynamics that was discovered in the 1950’s by Geoffrey Taylor

[Tay53, Tay54]. The setting is a three dimensional pipe in which there is a background shear flow advecting

the fluid down the length of the pipe, but where the rate of advection can vary as a function of the cross-

sectional variables. It was observed by Taylor that, if a localized drop of dye was put into the pipe, then

as expected it would be carried down the pipe by the shear flow and also diffuse due to the non-zero fluid

viscosity. However, what was not expected was that the rate of diffusion experienced by the dye was not

that of the fluid, say ν, but instead a rate proportional to 1/ν, which is much larger if 0 < ν ≪ 1. This

phenomenon has been subsequently analyzed by many people, for example [Ari56, CA85, MR90], but most

of the work has been formal, based on asymptotic calculations. Our goal in this work is to rigorously analyze

Taylor dispersion and provide a mathematical mechanism for its occurrence using center manifolds and

Villani’s theory of hypocoercivity [Vil09]. We note there is another rigorous analysis of Taylor dispersion,

[BCZ17], that also uses hypoceorcivity in the proof. We will comment on the relationship between that

and the present work at the end of this section.

The PDE model of fluid flow in a pipe with a background shear flow is given by

ut = ν∆u− V (y, z)ux, x ∈ R, (y, z) ∈ Ω ⊂ R
2.

The function u : R × Ω × R
+ → R represents the concentration of the solute, or dye, and the function

V : Ω → R is a smooth background shear flow, which depends only on the cross-sectional variables

(y, z) ∈ Ω, where Ω is compact with smooth boundary. We assume Neumann boundary conditions,

∂u

∂n
|∂Ω = 0.

For simplicity we assume the viscosity is a small, positive constant, 0 < ν ≪ 1. To remove any effects of

constant background advection caused by V , we define χ via

V (y, z) = A(1 + χ(y, z)), A =
1

vol(Ω)

∫

Ω
V (y, z)dydz,

and require that χ ∈ H2(Ω). Thus, A is the average rate of advection in a cross section, and χ therefore

has zero average advection in a cross section. We can then change variables using x→ x+At to obtain

ut = ν∆u−Aχ(y, z)ux. (1.1)
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It will be convenient to separate the effects of the cross-stream and longitudinal pipe variables. To that end,

we will expand both u and χ in terms of the eigenfunctions of the Laplacian ∂2y +∂
2
z acting on the compact

domain Ω. These eigenfunctions, which we denote by {ψn}∞n=0, form an orthonormal basis for L2(Ω) with

ψ0 ≡ 1, and we denote their corresponding eigenvalues by {−µn}∞n=0, which satisfy 0 = µ0 < µ1 ≤ µ2 ≤ . . .

[Str08, §11.3]. It will also be helpful to scale the longitudinal space variable x and the time variable t by

ν via

X = νx, T = νt. (1.2)

This transforms (1.1) into

uT = ν2uXX +∆y,zu−Aχ(y, z)uX . (1.3)

The main advantage of this change is that it helps us determine the dependence of the solutions on the

viscosity parameter ν ≪ 1. This advantage will be made clear in Remarks 3.3 and 4.9. Inserting the

expansions

u(X, y, z, T ) =
∞
∑

n=0

un(X,T )ψn(y, z), χ(y, z) =
∞
∑

n=0

χnψn(y, z), (1.4)

where

un(X,T ) =

∫

Ω
u(X, y, z, T )ψn(y, z)dydz, χn =

∫

Ω
χ(y, z)ψn(y, z)dydz,

into equation (1.3) and noting that χ0 = 0 since it has zero average in Ω, we obtain

∂Tu0 = ν2∂2Xu0 −A

∞
∑

m=1

χm∂Xum (1.5)

∂Tun = ν2∂2Xun − µnun −Aχn∂Xu0 −A
∞
∑

m=1

χn,m∂Xum, n = 1, 2, . . . , (1.6)

where

χn,m = 〈ψn, χψm〉L2(Ω).

In order to use invariant manifolds to study Taylor dispersion, we must deal with the fact that the Laplacian,

∂2X , on R has continuous spectrum consisting of (−∞, 0]; in other words, there is no spectral gap. One

way to overcome this is to use similarity variables,

ξ =
X√
T + 1

, τ = log(T + 1),

which exploit the space/time scaling inherent to the operator [Way97]. (The use of T + 1, rather than T ,

in the above definition is just for convenience, so that the change of variables is well-defined at T = 0.)

We therefore further define new dependent variables {wn}∞n=0 via

u0(X,T ) =
1√
T + 1

w0

(

X√
T + 1

, log(T + 1)

)

(1.7)

un(X,T ) =
1

T + 1
wn

(

X√
T + 1

, log(T + 1)

)

, n = 1, 2, . . . . (1.8)
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Plugging this definition into (1.5)-(1.6), we obtain

∂τw0 = Lw0 −A
∞
∑

m=1

χm∂ξwm (1.9)

∂τwn =

(

L+
1

2

)

wn − eτ/2A

∞
∑

m=1

χn,m∂ξwm − eτ (µnwn +Aχn∂ξw0), (1.10)

where

L = ν2∂2ξ +
1

2
∂ξ(ξ·) = ν2∂2ξ +

1

2
ξ∂ξ +

1

2
(1.11)

is the Laplacian ν2∂2X written in terms of the similarity variables. Note that the reason for the different

powers of (T + 1) in front of w0 and wn for n ≥ 1 in (1.7) is that equation (1.9) above becomes τ−
independent. Continuing, we remark that the operator L was analyzed in detail in [GW02]. Its properties

are given in §2 below, but for the moment we just note that, on the space

L2(m) =

{

w ∈ L2(R) :

∫

R

(1 + ξ2)m|w(ξ)|2dξ <∞
}

, (1.12)

the spectrum of L is composed of essential and discrete spectrum:

σ(L) = {λ ∈ C : Re(λ) ≤ −(2m− 1)/4} ∪ {λ = −k/2 : k = 0, 1, 2, . . . }.

Thus, as the algebraic weight m in the definition of the function space L2(m) increases, the essential

spectrum is pushed further into the left half-plane, revealing more and more isolated eigenvalues at negative

multiples of 1/2. This suggests that we can construct a center-stable manifold (which we often refer to

as a center manifold, for short) corresponding to those isolated eigenvalues, where the dimension of this

manifold can be large if m is sufficiently large.

The utility of such a center manifold can be seen by considering the term −eτ (µnwn + Aχn∂ξw0) in

(1.10). As τ increases this term becomes large, which suggests that wn should evolve so that ultimately

µnwn +Aχn∂ξw0 = 0. Hence, we expect that, for large times,

wn ≈ −Aχn
µn

∂ξw0 ⇒ ∂τw0 ≈ Ltdw0,

where

Ltd :=
(

ν2 +A2‖χ‖2µ
)

∂2ξ +
1

2
∂ξ(ξ·), ‖χ‖2µ =

∑

m

1

µm
χ2
m (1.13)

is again the Laplacian in similarity variables but now with Taylor diffusion coefficient

νtd :=
(

ν2 +A2‖χ‖2µ
)

. (1.14)

Note that the spectrum of the operator does not depend on the viscosity, so σ(L) = σ(Ltd). Thus, we

expect that {wn}∞n=1 will rapidly converge to a manifold defined by wn = −(Aχn∂ξw0)/(µn), and then for

large times the dynamics of w0 can be described by a center-stable manifold corresponding to the isolated

eigenvalues of the operator Ltd. In terms of the original variables, this suggests that {un}∞n=1 should

become “slaved” to the low mode u0 exponentially fast, while the low mode u0 should decay diffusively,

but as if its diffusion coefficient is νtd = O(1) (instead of ν2), which, if we change back to the original (x, t)

variables, matches the experimental observations of Taylor and the formal calculations in [CA85].
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There are several technical difficulties that must be overcome in order to make the above argument rigorous.

First, in analyzing the dynamics of system (1.9)-(1.10) using the spectral structure of Ltd, it would be

natural to expand each wn, n = 0, 1, . . . , in terms of the eigenfunctions {ϕtdj (ξ)}Nj=0 of Ltd, whereN = N(m)

corresponds to the number of isolated eigenvalues, and hence the dimension of the center-stable manifold.

In other words, we could write

PNwn(ξ, τ) =

N
∑

j=0

αj,n(τ)ϕ
td
j (ξ), ws

n = (1− PN )wn

for each n, where ws
n is the component of the solution in the strong stable manifold, which we expect to

decay rapidly. Although this is essentially what we will do, it turns out that it will be more convenient to

prove the rapid decay of ws
n in terms of the (X,T ) variables, by using the Fourier transform.

The reason for this is that our center manifold argument will only show that the enhanced diffusion affects

the first N +1 terms in the eigenfunction expansion {wn}. This is sufficient for the physical realization of

the phenomenon because the higher order terms, corresponding to wsn, will be shown to decay like T−N (N)

where N can be made large by choosing N , and hence alsom, to be large, which is faster than the enhanced

algebraic diffusive decay resulting from Taylor diffusion.

To understand what PNwn corresponds to in the physical (x, t) variables, consider the following calculation.

The eigenfunctions of Ltd are given by

ϕtdj (ξ) = ∂jξϕ
td
0 (ξ), ϕtd0 (ξ) =

1√
4πνtd

e
− ξ2

4νtd . (1.15)

If we assume that

u(X,T ) =
1

(1 + T )γ
w

(

X√
T + 1

, log(T + 1)

)

, w(ξ, τ) =

N
∑

j=0

αj(τ)ϕ
td
j (ξ),

which can represent either w0 or wn, n ≥ 1, depending on the choice of γ, then

û(κ, T ) =

∫

eiκXu(X,T )dX

=
N
∑

j=0

1√
4πνtd

(1 + T )j/2−γ(−iκ)jαj(log(T + 1))

∫

eiκXe
− X2

4νtd(T+1)dX

=

N
∑

j=0

(1 + T )j/2+1/2−γ(−iκ)jαj(log(T + 1))e−κ
2νtd(T+1).

This implies that

û(0, T ) = (1 + T )1/2−γα0(log(T + 1)), ∂̂κu(0, T ) = (−i)(1 + T )1−γα1(log(T + 1)), . . .

which, combined with the Taylor expansion

û(κ, T ) = û(0, T ) + ∂κû(0, T )κ +
1

2
∂2κû(0, T )κ

2 + . . .

means that the behavior of PNw tells us about the behavior of û(κ, T ) for κ near zero. In other words,

PNw represents both the behavior of the “low modes” of w(ξ, τ), where “low modes” refers to the leading
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eigenfunctions of Ltd, and the behavior of the “low modes” of û(κ, T ), where now “low modes” refers to

values of the Fourier variable κ near zero. This relationship between Taylor dispersion, the behavior of

the Fourier transform of the solution at small wave numbers, and the center-manifold theorem was also

discussed by Mercer and Roberts in [MR90].

We will refer to ws = (1 − PN )w as the remainder, or error, term. In terms of Ltd it corresponds to

the behavior due to the essential spectrum and the discrete spectrum that is sufficiently far from the

imaginary axis. To prove that the remainder term decays rapidly, it will be convenient to work in terms

of the Fourier variables associated with physical (X,T ) space, rather than system (1.9)-(1.10). This will

lead to a linear, nonautonomous equation governing the behavior of the remainder term of the form

ÛT = B(κ)Û + F̂ (κ, T ). We can then consider three regimes: a small wavenumber regime defined by

|κ| ≤ κ0, an intermediate one defined by κ0 ≤ |κ| ≤ κ1/ν, and a large one defined by |κ| ≥ κ1/ν.

In the large regime, the solution decays exponentially due to the usual (non-Taylor) diffusive estimate

eν
2∂2XT ∼ e−ν

2κ2T ≤ e−κ
2
1T . In the intermediate regime this naive estimate is not quite strong enough,

because it only implies eν
2∂2XT ∼ e−ν

2κ2T ≤∼ e−ν
2κ20T , which is quite weak for 0 < ν ≪ 1. To improve

it, we will apply a hypocoercivity argument [Vil09] to show that in this region we also have decay like

e−MT for some M > 0. For the low wavenumbers, we will decompose the remainder term into a piece

corresponding to the leading eigenvalue λ0(κ) of B(κ), which is parabolic with λ0(0) = 0, and a piece

corresponding to the rest of the spectrum of B(κ). The latter will decay exponentially fast because B(k)
has a spectral gap for each fixed k. The former will be shown to decay algebraically with the rate T−N (N),

because we have already removed the leading order behavior via the term PNwn.

Our analysis will be divided into the following steps. In §2 we will more precisely set-up our problem and

carefully state the main results. In §3 we will use the similarity variables and a center-stable manifold to

prove that the low modes, corresponding to PNwn, experience enhanced Taylor diffusion. Finally, in §4
we will use a spectral decomposition and hypocoercivity to show that the remainder term decays rapidly,

thus allowing for the Taylor diffusion to be physically observable.

Before carrying this out, we comment on other related rigorous work on Taylor diffusion. In [BCW15] we

analyzed a model of system (1.5)-(1.6) consisting of only two equations, one corresponding to u0 and one

modeling all of the un for n ≥ 1, and carried out a similar analysis there. This allowed us to focus on

the main ideas of the argument: that the Taylor diffusion is really only affecting the low modes, with the

remainder term decaying rapidly. However, in that work, because of the simple form of the system, one

could see directly that the remainder term decayed rapidly and the hypocoercivity argument we use here

in §4 was not necessary. Moreover, the center manifold argument, which was used to justify the enhanced

diffusion, was constructed for a finite-dimensional ODE. Here, the center manifold argument in §3 will

need to be carried out for an infinite-dimensional ODE.

Also, in [BCZ17] an equation very similar to (1.1) was analyzed, also using hypocoercivity. However, there

Villani’s framework was applied directly to the PDE (1.1), whereas our hypocoercivitiy argument is applied

in Fourier space. This allows us to avoid any assumptions on the critical points of the shear flow χ, which

play an important role in the argument in [BCZ17]. Moreover, since X ∈ R, we need to work in Fourier

space with all |κ| ≥ 0. The setting in [BCZ17] is for a bounded X domain, which effectively means |κ| ≥ 1.

This changes the nature of the resulting decay and the regions in which the enhanced diffusion is obtained.
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2 Set-up and statement of main results

The main result that we will prove is the following. Theorem 1(i) will be proven in §3 and Theorem 1(ii)

will be proven in §4. In the statement of the Theorem we use the following notation for the space in which

the initial data must lie:

L2(N+1)×L2(Ω) =

{

u ∈ L2(R× Ω) :

∫

R

∫

Ω
(1 +X2)N+1|u(X, y, z)|2dXdydz =: ‖u‖2L2(N+1)×L2(Ω) <∞

}

.

Theorem 1. Given any N > 0, if u(·, 0) ∈ L2(N + 1)× L2(Ω), then there exist constants

Cj = Cj(‖u(·, 0)‖L2(N+1)×L2(Ω)), j = 1, 2, that are independent of ν and a decomposition of the correspond-

ing solution of (1.3) of the form

u(X, y, z, T ) = uapp(X, y, z, T ) + urem(X, y, z, T ),

where uapp(X, y, z, T ) and urem(X, y, z, T ) are defined in (2.11)-(2.12), that satisfies the following.

(i) There exists an infinite-dimensional system of ordinary differential equations that govern the behavior

of uapp. Moreover, this system of ODEs possesses a finite dimensional center manifold that is globally

attracting at a rate that is exponential in T , e−ηT for some η independent of ν, and on which the

dynamics correspond to enhanced diffusion with viscosity νtd, defined in (1.14). In other words,

∥

∥

∥

∥

∥

uapp(X, y, z, T ) −
C1

√

4πνtd(T + 1)
e
− X2

4νtd(T+1)

∥

∥

∥

∥

∥

L2(R×Ω)

≤ C2

(1 + T )3/4
,

where C is a constant that is independent of ν.

(ii) The remainder term satisfies

‖urem(·, T )‖L2(R×Ω) ≤
C2

(1 + T )
N
6
+ 1

12

.

If we translate these results back to our original, unscaled time and space variables and choose N ≥ 4, so

that N
6 + 1

12 ≥ 3
4 , we see that we obtain immediately:

Corollary 2.1. Given any initial condtion u(·, 0) ∈ L2(N + 1) × L2(Ω), there exists constants Cj =

Cj(‖u(·, 0)‖L2(N+1)×L2(Ω)), j = 1, 2, such that the solution of (1.1) satisfies

∥

∥

∥

∥

∥

u(x, y, z, t) − C1
√

4π(ν +A2‖χ‖µ/ν)(t+ 1/ν)
e
− x2

4(ν+A2‖χ‖µ/ν)(t+1/ν)

∥

∥

∥

∥

∥

L2(R×Ω)

≤ C2

(1 + νt)3/4
.
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Remark 2.2. Note that the leading order term in the asymptotics identified by this Corollary corresponds

to a solution of the diffusion equation with diffusion coefficient (ν + A2‖χ‖µ/ν) which is precisely the

asymptotic behavior derived non-rigorously in [Smi87]. (In particular, see (2.17) for the calculation of the

shear diffusion coefficient.).

Remark 2.3. As we discuss later in Section 3, we actually derive not just the leading order term in the

asymptotics but higher terms as well - in principle, terms of arbitrary order, if the initial condition u0

decays sufficiently rapidly as |x| → ∞. The higher order terms in the asymptotics are expressed in terms

of the eigenfunctions of the operator Ltd.

To prove these results, we will use the following facts about the operator Ltd, which is just the Laplacian

written in terms of similarity variables. Recall from (1.13) that

Ltdϕ = νtd∂
2
ξϕ+

1

2
∂ξ(ξϕ).

We state the following results for viscosity νtd, but the results are true with νtd replaced by any other

positive number. This operator has been analyzed in [GW02], and in the weighted Hilbert space L2(m)

defined in (1.12) one finds

σ(Ltd) =
{

λ ∈ C : Re(λ) ≤ −(2m− 1)

4

}

∪
{

−k
2
| k ∈ N

}

.

Furthermore, the eigenfunctions corresponding to the isolated eigenvalues λk = −k/2 are given by the

Hermite functions

ϕtd0 (ξ) =
1√
4πνtd

e
− ξ2

4νtd , ϕtdk (ξ) = ∂kξϕ
td
0 (ξ).

The corresponding adjoint eigenfunctions are given by the Hermite polynomials

Htd
k (ξ) =

2kνktd
k!

e
ξ2

4νtd ∂kξ e
− ξ2

4νtd . (2.1)

Note that we have the orthogonality relationship

〈Htd
k , ϕ

td
j 〉L2(R) = δjk =







1 if j = k

0 if j 6= k,

which can be used to define spectral projections.

Remark 2.4. The expressions in [GW02] for ϕtdk and Htd
k are derived in the case when νtd = 1. The

expressions given here follow easily by the change of variables ξ → ξ/
√
νtd.

2.1 Preparation of the equations

To emphasize the expected role of the enhanced diffusion, we rewrite (1.9)-(1.10) as

∂τw0 = Ltdw0 −Dtd∂
2
ξw0 −A

∞
∑

m=1

χm∂ξwm (2.2)

∂τwn =

(

Ltd +
1

2

)

wn −Dtd∂
2
ξwn − eτ/2A

∞
∑

m=1

χn,m∂ξwm − eτ (µnwn +Aχn∂ξw0), (2.3)
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where

Dtd := A2‖χ‖2µ
and Ltd is defined in equation (1.13). As described above, asymptotically we expect wn = −(Aχn∂ξw0)/(µn),

which is a perfect derivative. To exploit this, we wish to effectively integrate the wn equation. Naively, this

could be done by defining {Vn}∞n=1 via ∂ξVn = wn. In order to obtain decay of Vn as |ξ| → ∞, we would

then need to assume that
∫

wn = 0. To avoid this additional assumption, we instead define {Vn}∞n=1 via

wn(ξ, τ) = γn(τ)ϕ
td
0 (ξ) + Vn(ξ, τ), γn(τ) =

∫

R

wn(ξ, τ)dξ, (2.4)

where ϕtd0 is the eigenfunction of Ltd defined in (1.15) associated with the zero eigenvalue. Note that this

implies

γn(τ) = 〈wn(τ),Htd
0 〉L2 =

∫

R

wn(ξ, τ)dξ

and that γn(τ) is bounded for each τ such that wn(τ) ∈ L2(m), with m > 1/2, because

|γn(τ)| ≤
∫

R

1

(1 + ξ2)
m
2

(1 + ξ2)
m
2 |w(ξ, τ)|dξ ≤

(
∫

R

1

(1 + ξ2)m
dξ

)1/2

‖wn(τ)‖L2(m) ≤ C(m)‖wn(τ)‖L2(m).

Since
∫

ϕtd0 = 1, we see that
∫

Vn = 0. Inserting (2.4) into (2.3), we find

γ̇nϕ
td
0 + ∂τVn =

1

2
γnϕ

td
0 +

(

Ltd +
1

2

)

Vn −Dtd

(

γnϕ
T
2 + ∂2ξVn

)

(2.5)

−eτ/2A
∞
∑

m=1

χn,m∂ξ(γmϕ
td
0 + Vm)− eτ (µnVn +Aχn∂ξw0)− eτµnγnϕ

td
0 .

Integrating over R and using the fact that ϕtdk , w0 → 0 as |ξ| → ∞, we find

γ̇n =

(

1

2
− eτµn

)

γn,

which implies that

γn(τ) = γn(0)e
τ
2
−µn(eτ−1). (2.6)

With this information, in (2.5) we can cancel all the terms involving γn alone, use the fact that
∫

Vn = 0

to define vn via ∂ξvn = Vn, and obtain from (2.2)-(2.3)

∂τw0 = Ltdw0 −Dtd∂
2
ξw0 −A

∞
∑

m=1

χm∂
2
ξ vm −Ae

τ
2ϕtd1

∞
∑

m=1

χmγm(0)e
−µm(eτ−1) (2.7)

∂τvn = Ltdvn −Dtd∂
2
ξ vn − eτ/2A

∞
∑

m=1

χn,m∂ξvm − eτ (µnvn +Aχnw0)

−eτAϕtd0
∞
∑

m=1

χn,mγm(0)e
−µm(eτ−1) −Dtdγn(0)e

τ
2 e−µn(e

τ−1)ϕtd1 . (2.8)
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2.2 Separation into low modes and the remainder term

In order to analyze the behavior of solutions to system (2.7)-(2.8), we define

w0(ξ, τ) =

N
∑

k=0

αk(τ)ϕ
td
k (ξ) + ws0(ξ, τ)

vn(ξ, τ) =

N
∑

k=0

βnk (τ)ϕ
td
k (ξ) + vsn(ξ, τ), (2.9)

where {ϕtdk }Nk=0 are the first N + 1 eigenfunctions associated with Ltd and

αk(τ) = 〈w0(ξ, τ),H
td
k (ξ)〉L2(R), βnk (τ) = 〈vn(ξ, τ),Htd

k (ξ)〉L2(R),

are the spectral projections onto those eigenmodes defined via the corresponding adjoint eigenfunctions

Htd
k . See (2.1). Recalling that ∂ξϕ

td
k = ϕtdk+1 and Ltdϕtdk = −(k/2)ϕtdk , inserting the above expressions

into (2.7)-(2.8) and taking the inner product of the result with Htd
k gives the following infinite-dimensional

system of ODEs for the evolution of {αk}Nk=0 and {βnk }Nk=0, n ≥ 1:

α̇0 = 0

α̇1 = −1

2
α1 −Ae

τ
2

∞
∑

m=1

χmγm(0)e
−µm(eτ−1)

α̇k = −k
2
αk −Dtdαk−2 −A

∞
∑

m=1

χmβ
m
k−2 2 ≤ k ≤ N

β̇n0 = −eτ (µnβn0 +Aχnα0)− eτA
∞
∑

m=1

χn,mγm(0)e
−µm(eτ−1) (2.10)

β̇n1 = −1

2
βn1 − eτ (µnβ

n
1 +Aχnα1)− e

τ
2A

∞
∑

m=1

χn,mβ
m
0 −Dtdγn(0)e

τ
2 e−µn(e

τ−1)

β̇nk = −k
2
βnk − eτ (µnβ

n
k +Aχnαk)−Dtdβ

n
k−2 − e

τ
2A

∞
∑

m=1

χn,mβ
m
k−1 2 ≤ k ≤ N.

Note that we have used the following facts. First, 〈Htd
k , w

s
0〉L2 = 0, which follows by construction. This

implies that 〈Htd
k ,Ltdws0〉L2 = 〈−(k/2)Htd

k , w
s
0〉L2 = 0. One can also check that

L∗
td(∂ξH

td
k ) = −(k − 1)

2
∂ξH

td
k ⇒ Htd

k−1 = Ck∂ξH
td
k

for some constant Ck, which implies that 〈Htd
k , ∂

2
ξw

s
0〉 = 0. Similar results hold for vsn.

The key aspect of (2.10) is that, because of the structure of (2.7)-(2.8), the dynamics of {αk}Nk=0 and

{βnk }Nk=0 do not depend on the remainder terms ws
0 or vsn. Therefore, the behavior of these low modes can

be analyzed without any a priori knowledge of the remainder terms. The structure of the above system

suggests that, with the exception of α0, everything should decay exponentially fast in τ , which corresponds

to algebraic decay in t. Moreover, the leading order behavior will be governed by α0.
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2.3 Definition of uapp and urem

We now relate the decomposition in (2.9) back to the solution u(X, y, z, T ) of the original equation (1.3).

We define uapp in terms of the low modes and urem in terms of the functions ws0 and vsn. To do so we need

to convert back to the (X,T ) variables and take into account the decomposition in (1.4) and the change

of variables in §2.1. In particular, we have

u(X, y, z, T ) =

∞
∑

n=0

un(X,T )ψn(y, z)

u0(X,T ) =
1√

1 + T
w0(ξ, τ)

un(X,T ) =
1

(T + 1)

[

γn(τ)ϕ
td
0 (ξ) + ∂ξvn(ξ, τ)

]

, n ≥ 1.

Using (2.9), we find

u0(X,T ) =
1√

1 + T

N
∑

k=0

αk(τ)ϕ
td
k (ξ) +

1√
T + 1

ws0(ξ, τ)

un(X,T ) =
1

(T + 1)

[

γn(τ)ϕ
td
0 (ξ) +

N
∑

k=0

βnk (τ)ϕ
td
k+1(ξ)

]

+
1

(T + 1)
∂ξv

s
n(ξ, τ).

We now define

uapp(X, y, z, T ) =
ψ0(y, z)√
1 + T

N
∑

k=0

αk[log(T + 1)]ϕtdk

(

X√
T + 1

)

(2.11)

+

∞
∑

n=1

ψn(y, z)

(T + 1)

[

γn[log(T + 1)]ϕtd0

(

X√
T + 1

)

+

N
∑

k=0

βnk [log(T + 1)]ϕtdk+1

(

X√
T + 1

)

]

,

and

urem(X, y, z, T ) =
ψ0(y, z)√
1 + T

ws0

(

X√
T + 1

, log(T + 1)

)

+

∞
∑

k=1

ψn(y, z)

(T + 1)
∂ξv

s
n

(

X√
T + 1

, log(T + 1)

)

.(2.12)

The behavior of uapp, as stated in Theorem 1(i), will be determined in §3, and the behavior of urem, as

stated in Theorem 1(ii), will be determined in §4.

3 Taylor dispersion for the approximate solution via a center manfold

The main goal of this section is to prove Theorem 1(i). This will essentially be done via Proposition 3.2,

and it will be explained in §3.2 how its proof follows from that Proposition.

3.1 Asymptotic behavior of the low modes via a center-stable manifold

Consider system (2.10). To construct its center manifold, we start by performing some changes of variables.

Recall from the formal analysis that, in long time limit, we expect µnwn+Aχn∂ξw0 = 0. In system (2.10),
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this results from the term eτ (µnβ
n
k +Aχnαk). Therefore, we will diagonalize the system so that, in terms

of new variables (ak, b
n
k ), the set {µnβnk +Aχnαk} = 0 corresponds to the set {bnk = 0}. We define

ak = αk, bnk = βnk +
Aχn
µn

αk (3.1)

and obtain

ȧ0 = 0

ȧ1 = −1

2
a1 −Ae

τ
2

∞
∑

m=1

χmγm(0)e
−µm(eτ−1)

ȧk = −k
2
ak −A

∞
∑

m=1

χmb
m
k−2 2 ≤ k ≤ N

ḃn0 = −eτµnbn0 − eτA
∞
∑

m=1

χn,mγm(0)e
−µm(eτ−1)

ḃn1 = −
(

1

2
+ eτµn

)

bn1 − e
τ
2A

∞
∑

m=1

χn,m

[

bm0 − Aχm
µm

a0

]

−Dtdγn(0)e
τ
2 e−µn(e

τ−1)

−A
2χn
µn

e
τ
2

∞
∑

m=1

χmγm(0)e
−µm(eτ−1)

ḃnk = −
(

k

2
+ eτµn

)

bnk −Dtd

(

bnk−2 −
Aχn
µn

ak−2

)

− A2χn
µn

∞
∑

m=1

χmb
m
k−2

−eτ/2A
∞
∑

m=1

χn,m

(

bmk−1 −
Aχm
µm

ak−1

)

2 ≤ k ≤ N,

where n ≥ 1. This system is non-autonomous, which makes it difficult to construct a center manifold. To

overcome this, we first undo the change of variables in time using τ = log(1+T ) and define σ = (1+T )−1/2.

Denoting d/dT = (·)′, we obtain

a′0 = 0

a′1 = −1

2
σ2a1 −Aσ

∞
∑

m=1

χmγm(0)e
−µmT

a′k = σ2

(

−k
2
ak −A

∞
∑

m=1

χmb
m
k−2

)

2 ≤ k ≤ N (3.2)

bn0
′ = −µnbn0 −A

∞
∑

m=1

χn,mγm(0)e
−µmT

bn1
′ = −

(

1

2
σ2 + µn

)

bn1 −Aσ

∞
∑

m=1

χn,m

(

bm0 − Aχm
µm

a0

)

−Dtdσγn(0)e
−µnT − σ

A2χn
µn

∞
∑

m=1

χmγm(0)e
−µmT

bnk
′ = −

(

k

2
σ2 + µn

)

bnk −Dtdσ
2

(

bnk−2 −
Aχn
µn

ak−2

)

− A2χn
µn

σ2
∞
∑

m=1

χmb
m
k−2

−σA
∞
∑

m=1

χn,m

(

bmk−1 −
Aχm
µm

ak−1

)

2 ≤ k ≤ N

σ′ = −1

2
σ3,
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where n ≥ 1. Note that, except for the terms involving γn(0), which are decaying exponentially fast in T ,

this system is autonomous (but nonlinear), due to our definition of σ.

It is now convenient to define more compact notation. To that end, we write

bk = (b1k, b
2
k, b

3
k, . . .), χ̌ = (χ1, χ2, χ3 . . .), γ = (γ1, γ2, γ3, . . . ),

where χ̌ is a constant, γ = γ(T ) with γn(T ) = γn(0)e
−µnT , and bk = bk(T ), and n ≥ 1. We also define

operators on ℓ2 via

(χ̃ ∗ Y )n =
∑

m

χn,mYm, (ΥY )n = µnYn.

Throughout the following estimates we will use the following Lemma, which says that χ̃ and Υ−1 are

bounded operators.

Lemma 3.1. The operators χ̃ and Υ−1 are bounded operators on ℓ2.

Proof. The bound on Υ−1 follows immediately by noting that ‖Υ−1Y ‖2ℓ2 =
∑∞

n=1 µ
−2
n |Yn|2 ≤ µ−2

1 ‖Y ‖2ℓ2
since µn ≥ µ1 for all n ≥ 1. The boundedness of χ̃ follows by noting that

(χ̃ ∗ Y )n =
∑

m

〈ψn, χψm〉Ym = 〈ψn, χY〉

where Y(y, z) =∑m Ymψm(z, z). Thus, (χ̃ ∗ Y )n is the generalized Fourier coefficient of the function χY
and hence, by Parseval’s equality.

∑

n

|(χ̃ ∗ Y )n|2 = ‖χY‖2L2(Ω) ≤ ‖χ‖2L∞‖Y‖2L2(Ω) = ‖χ‖2L∞‖Y ‖ℓ2 , (3.3)

where the last step in this expression again used Parseval’s equality

With this notation, (3.2) can be written

a′0 = 0

a′1 = −1

2
σ2a1 −Aσ〈χ̌, γ〉ℓ2

a′k = −k
2
σ2ak −Aσ2〈χ̌, bk−2〉ℓ2 2 ≤ k ≤ N (3.4)

b′0 = −Υb0 −Aχ̃ ∗ γ

b′1 = −
(

1

2
σ2 +Υ

)

b1 −Aσχ̃ ∗
[

b0 −Aa0(Υ
−1χ̌)

]

−Dtdσγ − σA2〈χ̌, γ〉(Υ−1χ̌)

b′k = −
(

k

2
σ2 +Υ

)

bk − σAχ̃ ∗
[

bk−1 −Aak−1(Υ
−1χ̌)

]

− σ2Dtd

[

bk−2 −Aak−2(Υ
−1χ̌)

]

−σ2A2〈χ̌, bk−2〉(Υ−1χ̌) 2 ≤ k ≤ N

σ′ = −1

2
σ3

Intuitively, there are no linear terms in the equations for {ak}Nk=0 (except for the term −Aσ〈χ̌, γ〉, which
is decaying exponentially fast) or in the equation for σ. The equations for {bk}Nk=0 each contain a linear

term of the form −Υbk, where 〈Υbk, bk〉 ≥ µ1‖bk‖2, with µ1 > 0. Hence, these variables should decay
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exponentially fast, and there is a spectral gap determined by µ1. Therefore, there should exist an invariant

center-stable manifold of dimension N + 2 of the form M = {bk = hk(a0, a1, . . . , aN , σ) : k = 0, 1, . . . N}.
To see this, we note that γ′ = −Υγ and add this equation to the above system to obtain the autonomous

system

a′0 = 0

a′1 = −1

2
σ2a1 −Aσ〈χ̌, γ〉ℓ2

a′k = −k
2
σ2ak −Aσ2〈χ̌, bk−2〉ℓ2 2 ≤ k ≤ N (3.5)

b′0 = −Υb0 −Aχ̃ ∗ γ

b′1 = −
(

1

2
σ2 +Υ

)

b1 −Aσχ̃ ∗
[

b0 −Aa0(Υ
−1χ̌)

]

−Dtdσγ − σA2〈χ̌, γ〉(Υ−1χ̌)

b′k = −
(

k

2
σ2 +Υ

)

bk − σAχ̃ ∗
[

bk−1 −Aak−1(Υ
−1χ̌)

]

− σ2Dtd

[

bk−2 −Aak−2(Υ
−1χ̌)

]

−σ2A2〈χ̌, bk−2〉(Υ−1χ̌) 2 ≤ k ≤ N

σ′ = −1

2
σ3

γ′ = −Υγ.

The linear part of this system (although no longer diagonal, due to the term −Aχ̃ ∗ γ in the b0 equation)

now makes the spectral separation clear. One could abstractly justify the existence of a center manifold

of the form (b0, . . . bN , γ) = H(a0, . . . , aN , σ). However, it turns out we can compute the function H

explicitly, and it has a rather simple form. Moreover, we can show directly that the center manifold is

globally attracting. These results are collected in the following proposition.

Proposition 3.2. For each 1 ≤ k ≤ N , there exist functions hk = hk(a0, . . . , ak−1, σ) of the form

hk(a0, a1, . . . , ak−1, σ) =

k
∑

ℓ=1

Ckk−ℓak−ℓσ
ℓ, (3.6)

where the Ckk−ℓ are elements of ℓ2 for each k and ℓ, can be computed explicitly, are independent of ν, and

such that (3.5) has an invariant center-stable manifold given by

MN = {(b0, . . . , bN , γ) = (0, h1(a0, σ), . . . , hN (a0, . . . , aN−1, σ), 0)}. (3.7)

Moreover, there exist constants C, η > 0 that are independent of ν and such that all solutions to (3.5)

satisfy

‖(b0, . . . , bN , γ)(T ) − (0, h1(a0, σ), . . . , hN (a0, . . . , aN−1, σ), 0)‖(ℓ2)N+2 ≤ Ce−ηT , (3.8)

where (a0, . . . , aN−1) and σ are solutions of

a′0 = 0

a′1 = −1

2
σ2a1

a′k = −k
2
σ2ak −Aσ2〈χ̌, hk−2(a0, . . . , ak−3, σ)〉ℓ2 2 ≤ k ≤ N

σ′ = −1

2
σ3.
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Moreover, for all k ≥ 1,

|ak(τ)| ≤ Ce−ητ , τ = log(1 + T ). (3.9)

Remark 3.3. More precise statements of the convergence to the center manifold and decay within the

center manifold are given in Lemmas 3.4 and 3.5, respectively. Note that the exponential in T convergence

to the center manifold is equivalent to super-exponential in τ convergence, e−ηT = e−η(e
τ−1), while the

exponential in τ decay on the center manifold, implied by (3.9), is equivalent to algebraic in T decay,

e−ητ = (1 + T )−η. Furthermore, the ν- independence of the constants Ckk−ℓ follows from the change of

variable (1.2).

Proof. The Proof will be divided into three steps: 1) Justifying (3.6), the explicit formula for the center

manifold; 2) Proving global convergence to the center manifold and justifying (3.8); and 3) Justifying

equation (3.9), the decay rate within the center manifold.

Step 1: Explicit formula for the center manifold To justify (3.6), we will ultimately use induction,

but we compute the first few terms directly since the equations in (3.5) are different for k = 0, 1. First,

notice that the set (b0, γ) = (0, 0) is invariant for (3.5). Next, we look for a function of the form

h1(a0, σ) = C1
0a0σ, C1

0 ∈ ℓ2,

so that the set (b0, b1, γ) = (0, h1(a0, σ), 0) is invariant. Computing (b0, b1, γ)
′ in two different ways and

equating the results, we find that we need

−C
1
0

2
a0σ

3 = −C
1
0

2
a0σ

3 + σa0
[

−ΥC1
0 +A2χ̃ ∗ (Υ−1χ̌)

]

.

Thus, we can take

C1
0 = A2Υ−1χ̃ ∗ (Υ−1χ̌).

Next, we look for a function of the form

h2(a0, a1, σ) = C2
1a1σ + C2

0a0σ
2

so that the set (b0, b1, b2, γ) = (0, h1(a0, σ), h2(a0, a1, σ), 0) is invariant. As above, we find

C2
1 = A2Υ−1χ̃ ∗ (Υ−1χ̌), C2

0 = DtdAΥ
−2χ̌−A3Υ−1[χ̃ ∗ (χ̃ ∗ (Υ−1χ̌))].

We now assume that (3.6) holds for 0 ≤ k ≤ n and prove this implies it is true for k = n + 1 with n ≥ 2.

First, we compute

b′n+1 =
d

dt

n+1
∑

ℓ=1

Cn+1
n+1−ℓan+1−ℓσ

ℓ

=

n+1
∑

ℓ=1

(

−1

2

)

ℓCn+1
n+1−ℓan+1−ℓσ

ℓ+2 − 1

2
Cn+1
1 a1σ

n+2 − σ2Cn+1
2 a2σ

n−1

−
n−2
∑

ℓ=1

(n+ 1− ℓ)

2
Cn+1
n+1−ℓσ

ℓ+2an+1−ℓ −A
n−2
∑

ℓ=1

Cn+1
n+1−ℓσ

ℓ+2

〈

χ̌,
n−ℓ−1
∑

j=1

Cn−ℓ−1
n−ℓ−1−jσ

jan−ℓ−1−j

〉

.

= −(n+ 1)

2

n+1
∑

ℓ=1

Cn+1
n+1−ℓσ

ℓ+2an+1−ℓ −A

n−2
∑

ℓ=1

Cn+1
n+1−ℓσ

ℓ+2

〈

χ̌,

n−ℓ−1
∑

j=1

Cn−ℓ−1
n−ℓ−1−jσ

jan−ℓ−1−j

〉

. (3.10)
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Using (3.5) and evaluating at bk = hk, b0 = γ = 0, we also have

b′n+1 = −
[

(n+ 1)

2
σ2 +Υ

] n+1
∑

ℓ=1

Cn+1
n+1−ℓan+1−ℓσ

ℓ −Aχ̃ ∗
n
∑

ℓ=1

Cnn−ℓan−ℓσ
ℓ+1

−Dtd

n−1
∑

ℓ=1

Cn−1
n−1−ℓan−1−ℓσ

ℓ+2 + σA2anχ̃ ∗ (Υ−1χ̌) +DtdAσ
2an−1(Υ

−1χ̌)

−A2(Υ−1χ̌)

〈

χ̌,

n−1
∑

ℓ=1

Cn−1
n−1−ℓan−1−ℓσ

ℓ+2

〉

. (3.11)

We now equate the expressions on the right hand sides of equations (3.10)-(3.11) to obtain

−A
n−2
∑

ℓ=1

Cn+1
n+1−ℓσ

ℓ+2

〈

χ̌,

n−ℓ−1
∑

j=1

Cn−ℓ−1
n−ℓ−1−jσ

jan−ℓ−1−j

〉

= −Υ
n+1
∑

ℓ=1

Cn+1
n+1−ℓan+1−ℓσ

ℓ −Aχ̃ ∗
n
∑

ℓ=1

Cnn−ℓan−ℓσ
ℓ+1 −Dtd

n−1
∑

ℓ=1

Cn−1
n−1−ℓan−1−ℓσ

ℓ+2

+σA2anχ̃ ∗ (Υ−1χ̌) +DtdAσ
2an−1(Υ

−1χ̌)−A2(Υ−1χ̌)

〈

χ̌,

n−1
∑

ℓ=1

Cn−1
n−1−ℓan−1−ℓσ

ℓ+2

〉

.

First, consider the resulting terms involving an. We need

0 = −ΥCn+1
n anσ + σA2anχ̃ ∗ (Υ−1χ̌) ⇒ Cn+1

n = A2Υ−1χ̃ ∗ (Υ−1χ̌).

The terms involving an−1 imply

0 = −ΥCn+1
n−1 −Aχ̃ ∗ Cnn−1 +DtdA(Υ

−1χ̌) ⇒ Cn+1
n−1 = DtdAΥ

−2χ̌−AΥ−1(χ̃ ∗ Cnn−1).

The terms involving an−2 imply

0 = −ΥCn+1
n−2 −Aχ̃ ∗ Cnn−2 −DtdC

n−1
n−2 −A(Υ−1χ̌)〈χ̌, Cn−1

n−2 〉
⇒ Cn+1

n−2 = Υ−1
[

−Aχ̃ ∗ Cnn−2 −DtdC
n−1
n−2 −A(Υ−1χ̌)〈χ̌, Cn−1

n−2 〉
]

.

Finally, for 3 ≤ k ≤ n, the terms involving an−k imply

−A
n−2
∑

ℓ=1

Cn+1
n+1−ℓ〈χ̌, Cn−ℓ−1

n−k 〉 = −ΥCn+1
n−k −Aχ̃ ∗ Cnn−k −DtdC

n−1
n−k −A2(Υ−1χ̌)〈χ̌, Cn−1

n−k〉,

which gives

Cn+1
n−k = Υ−1

[

A

n−2
∑

ℓ=1

Cn+1
n+1−ℓ〈χ̌, Cn−ℓ−1

n−k 〉 −Aχ̃ ∗ Cnn−k −DtdC
n−1
n−k −A2(Υ−1χ̌)〈χ̌, Cn−1

n−k〉
]

.

All of the coefficients appearing in the sums on the RHS of this expression have been computed at previous

stages of the iteration and hence we obtain Cn+1
n−k in the form asserted in the Proposition.

Step 2: Proving global convergence to the center manifold and justifying (3.8): We’ll show that

the exact invariant manifolds previously constructed are globally attracting. First, note that we can solve

(3.5) explicitly to find

γn(T ) = γn(0)e
−µnT ⇒ ‖γ(T )‖ℓ2 ≤ e−µ1T ‖γ(0)‖ℓ2 , (3.12)
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b0(T ) = e−ΥT b0(0)−
∫ T

0
e−Υ(T−s)Aχ̃ ∗γ(s)ds ⇒ ‖b0(T )‖ℓ2 ≤ C(‖b0(0)‖ℓ2 , ‖γ(0)‖ℓ2)(1+T )e−µ1T ,

(3.13)

and

σ(T ) =
1√
T + 1

⇒ |σ(T )| ≤ 1. (3.14)

Next, define

Bk = bk − hk(a0, . . . , ak−1, σ), k ≥ 1, (3.15)

where hk is defined in (3.6).

Lemma 3.4. There exists a C > 0, independent of ν, such that for all t > 0,

‖B1(T )‖ℓ2 ≤ C(1 + T )
3
2 e−µ1T

‖Bk(T )‖ℓ2 ≤ C(1 + T )1+
k
2 e−µ1T 2 ≤ k ≤ N.

Proof. For k = 1, we can compute B′
1 and solve the resulting equation explicitly to find

B1(T ) = e−ΥT− 1
2
log(T+1)B1(0)

−
∫ T

0
e−Υ(T−s)− 1

2
(log(T+1)−log(s+1))

[

A√
1 + s

χ̃ ∗ b0(s) +
Dtd√
1 + s

γ(s) +
A2

√
1 + s

(Υ−1χ̌)〈χ̌, γ(s)〉
]

ds.

As a result,

‖B1(T )‖ℓ2 ≤ C(‖B1(0)‖ℓ2 , ‖b0(0)‖ℓ2 , ‖γ(0)‖ℓ2)(1 + T )3/2e−µ1T . (3.16)

Next, for k ≥ 2, we have

B′
k = −

(

k2

2
σ2 +Υ

)

Bk − σAχ̃ ∗Bk−1 − σ2DtdBk−2 − σ2A2〈χ̌, Bk−2〉(Υ−1χ̌),

and so, assuming the result is true for k − 1,

‖Bk(T )‖ℓ2 ≤ e−µ1T ‖Bk(0)‖ℓ2

−C(‖Bk−1(0)‖ℓ2 , ‖Bk−2(0)‖ℓ2 , ‖γ(0)‖ℓ2)
∫ T

0
e−µ1T

[

1√
1 + s

(1 + s)1+
k−1
2

1
+

1

(1 + s)

(1 + s)1+
k−2
2

1

]

ds,

which implies the result.

Step 3: Justifying equation (3.9), the decay rate within the center manifold

The goal of this section is to compute the decay rates of the ak by considering the system (3.2) reduced to

its center manifold, which is given by

a′0 = 0

a′1 = −1

2
σ2a1

a′k = −k
2
σ2ak −Aσ2〈χ̌, hk−2(a0, . . . , ak−3, σ)〉ℓ2 2 ≤ k ≤ N

σ′ = −1

2
σ3.
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Converting back to τ = log(1 + T ), this becomes

ȧ0 = 0

ȧ1 = −1

2
a1

ȧk = −k
2
ak −A〈χ̌, hk−2(a0, . . . , ak−3, e

− τ
2 )〉ℓ2 2 ≤ k ≤ N.

Using the fact that h0 = 0, we see immediately that

a0(τ) = a0(0), a1(τ) = a1(0)e
− 1

2
τ , a2(τ) = a2(0)e

−τ . (3.17)

Lemma 3.5. There exists a C > 0, independent of ν, such that if we write k = 3j + n with j ∈ N ∪ {0}
and n ∈ {0, 1, 2} then, for all τ ≥ 0,

|ak(τ)| ≤ Ce−
(j+n)

2
τ , 0 ≤ k ≤ N.

Proof. Using the bound for h1 in (3.6), we find

|a3(τ)| ≤ e−
3
2
τ |a3(0)| + C

∫ t

0
e−

3
2
(τ−s)|a0(s)|e−

s
2ds,

which implies

|a3(τ)| ≤ Ce−
1
2
τ .

A similar calculation shows

|a4(τ)| ≤ Ce−τ , |a5(τ)| ≤ Ce−
3
2
τ .

Consider now general k, and assume the result holds for am with m ≤ k − 1. Using (3.6), we have

|ak(τ)| ≤ |ak(0)|e−
k
2
τ +

∫ τ

0
e−

k
2
(τ−s)

(

k−2
∑

ℓ=1

Cak−2−ℓe
− ℓ

2
s

)

ds.

Notice that

k−2
∑

ℓ=1

ak−2−ℓe
− ℓ

2
s = ak−3e

− 1
2
s + ak−4e

−s + ak−5e
− 3

2
s + · · ·+ a1e

− (k−3)
2

s + a0e
− (k−2)

2
s.

Thus, if k = 3j + n, we find

k−2
∑

ℓ=1

ak−2−ℓe
− ℓ

2
s ∼ e−

(j+n)
2

s + e−
(j+n+2)

2
s + · · ·+ e−

(3j+n−2)
2

s.

Thus, we find

|ak(τ)| ≤ |ak(0)|e−
k
2
τ +

∫ τ

0
e−

k
2
(τ−s)Ce−

(j+n)
2

sds ≤ Ce−
(j+n)

2
τ

as claimed.

This concludes the proof of Proposition 3.2.
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3.2 Proof of Theorem 1(i)

We now show how Theorem 1(i) follows from Proposition 3.2. Recall the definition of uapp in (2.11).

The dynamics of uapp are governed by the behavior of {αk}Nk=0 and {βnk }Nk=0, where n = 1, 2, . . . . Their

dynamics are governed by (2.10), which is a system of ODEs on R
N × (ℓ2(R))N . Proposition 3.2 shows

that, after converting to the variables ak, b
n
k , this system has a finite-dimensional globally attracting center

manifold given by (3.7), and the rate of convergence to that center manifold is exponential in T , as given

in (3.8). Finally, recalling that αk = ak, β
n
k = bnk − (Aχn/µn)αk, and that the only term among ak, b

n
k that

is not decaying in time is a0, one obtains the leading behavior of (2.11). This justifies the statements in

1(i).

4 Decay of the remainder via spectral decomposition and hypocoerciv-

ity

The goal of this section is to prove Theorem 1(ii), which states that the remainder terms decay rapidly. To

that end, insert the expansion (2.9) into (2.7)-(2.8) and project off the first N +1 eigenfunctions to obtain

∂τw
s
0 = Ltdws0 −Dtd

[

αN−1ϕ
td
N+1 + αNϕ

td
N+2 + ∂2ξw

s
0

]

−A
∞
∑

m=1

χm

[

βmN−1ϕ
td
N+1 + βmNϕ

td
N+2 + ∂2ξv

s
m

]

(4.1)

∂τv
s
n = Ltdvsn −Dtd

[

βnN−1ϕ
td
N+1 + βnNϕ

td
N+2 + ∂2ξ v

s
n

]

− e
τ
2A

∞
∑

m=1

χn,m

[

βmNϕ
td
N+1 + ∂ξv

s
m

]

−eτ [µnvsn +Aχmw
s
0].

The operator Ltd, acting on ws0 and vsn, decays like e−
N+1

2
τ . In addition, the forcing terms in the above

equation decay like αk, βk with k ≥ N − 1, which, due to Lemmas 3.4 - 3.5, decay like e−(j+n)τ/2 ≤ e−kτ/6,

for k = 3j + n. Therefore, we expect ws0 and vsn to decay with the same rate as the forcing terms.

To prove this, we will not work with the above system in the (ξ, τ) variables, but we will instead work in

the Fourier space associated with the original (X,T ) variables. Using the fact that

us0(X,T ) =
1√
T + 1

ws0

(

X√
T + 1

, log(T + 1)

)

, usn(X,T ) =
1

(T + 1)
∂ξv

s
n

(

X√
T + 1

, log(T + 1)

)

,

(4.2)
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we find

∂Tu
s
0 = ν2∂2Xu

s
0 −A

∞
∑

m=1

χm∂Xu
s
m

− Dtd

(1 + T )3/2

[

αN−1(log(T + 1))ϕtdN+1

(

X√
T + 1

)

+ αN (log(T + 1))ϕtdN+2

(

X√
T + 1

)]

− A

(1 + T )3/2

∞
∑

m=1

χm

[

βmN−1(log(T + 1))ϕtdN+1

(

X√
T + 1

)

+ βmN (log(T + 1))ϕtdN+2

(

X√
T + 1

)]

∂Tu
s
n = ν2∂2Xu

s
n −A

∞
∑

m=1

χn,m∂Xu
s
m − [µnu

s
n +Aχn∂Xu

s
0]

− Dtd

(1 + T )2

[

βnN−1(log(T + 1))ϕtdN+2

(

X√
T + 1

)

+ βnN (log(T + 1))ϕtdN+3

(

X√
T + 1

)]

− A

(1 + T )3/2

∞
∑

m=1

χn,mβ
m
N (log(T + 1))ϕtdN+2

(

X√
T + 1

)

.

If we now take the Fourier transform and use the notation

Û(κ, T ) =

(

ûs0(κ, T )

{ûsn(κ, T )}∞n=1

)

, χ̌ = {χn}∞n=1, (χ̃ ∗ f)n =

∞
∑

m=1

χn,mfm, (4.3)

we find
d

dT
Û = B(κ)Û + F̂ (κ, T ), (4.4)

where

B(κ) = −ν2κ2
(

1 0

0 1

)

+ iκA

(

0 χ̌·
χ̌ χ̃∗

)

−
(

0 0

0 Υ

)

=: κ2B2 + κB1 + B0 (4.5)

and

F̂ (κ, T ) =

(

F̂1(κ, T )

F̂2(κ, T )

)

, (4.6)

with

F̂1(κ, T ) = −DtdΦ̂
td
0 (κ, T )

(1 + T )3/2

[

αN−1(T )(1 + T )
N+1

2 (−iκ)N+1 + αN (T )(1 + T )
N+2

2 (−iκ)N+2
]

−AΦ̂
td
0 (κ, T )

(1 + T )3/2

∞
∑

m=1

χm

[

βmN−1(T )(1 + T )
N+1

2 (−iκ)N+1 + βmN (T )(1 + T )
N+2

2 (−iκ)N+2
]

F̂2(κ, T ) = −DtdΦ̂
td
0 (κ, T )

(1 + T )2

[

βnN−1(T )(1 + T )
N+2

2 (−iκ)N+2 + βnN (T )(1 + T )
N+3

2 (−iκ)N+3
]

−AΦ̂
td
0 (κ, T )

(1 + T )3/2

∞
∑

m=1

χn,mβ
m
N (T )(1 + T )

N+2
2 (−iκ)N+2. (4.7)

Note that we have written αj(log(T + 1)) = αj(T ) and βnj (log(T + 1)) = βnj (T ) for convenience, and a

direct calculation shows that

Φ̂td0 (κ, T ) =
√
T + 1e−νtdκ

2(T+1).

The plan is to analyze the behavior of (4.4) using Duhamel’s formula,

Û(κ, T ) = eB(κ)T Û(κ, 0) +

∫ T

0
eB(κ)(T−s)F (κ, s)ds, (4.8)

20



and show that solutions decay like T−N (N), where N can be made large by choosing N large. The precise

relationship between N and N is given in the statement of Proposition 4.2. We will obtain this decay in

the norm

‖Û(·, T )‖2 =

∫

R

‖Û (κ, T )‖2Y dκ =

∫

R

|ûs0(κ, T )|2dκ+

∫

R

‖{ûsn(κ, T )}‖2ℓ2dκ. (4.9)

Remark 4.1. Recall that we expect decay of the remainder terms ws0, v
s
n in L2(m), and the relationship

between these variables and u0, un is given in (4.2). Suppose that two functions g and f are related via

g(ξ, τ) = (1 + T )γf(X,T ), ξ =
X√
1 + T

, τ = log(1 + T ).

Then we have

‖g(τ)‖2L2(m) =

∫

(1 + ξ2)m|g(ξ, τ)|2dξ = (1 + T )2γ−1/2

∫

[1 +X2(1 + T )−1]m|f(X,T )|2dX

≃ (1 + T )2γ−1/2
m
∑

j=0

(1 + T )−j
∫

|Xjf(X,T )|2dX

= (1 + T )2γ−1/2
m
∑

j=0

(1 + T )−j‖∂jκf̂(T )‖2L2 .

The discussion at the beginning of this section suggests we can expect ws
0(ξ, τ) and vsn(ξ, τ) to decay like

‖ws
0(τ)‖L2(m) + ‖‖vs(τ)‖ℓ2‖L2(m) ∼ e−η(N)τ ,

where η(N) grows with N . Therefore, one could estimate solutions to (4.8) in terms of the norm

|||Û (T )||| = (1+T )1/2
m
∑

j=0

(1+T )−j‖∂jκû0(T )‖2L2 +(1+T )3/2
m
∑

j=0

(1+T )−j‖∂jκ(κ−1‖{ûn(T )}‖ℓ2)‖2L2 . (4.10)

Although this is possible [Cha17], the calculations are cumbersome. Therefore, we have chosen to carry out

the estimates in terms of the much simpler norm (4.9), which also seems quite natural.

The goal of this section will be to prove the following result.

Proposition 4.2. For any N ∈ N and Û(κ, 0) such that ‖∂ℓκÛ(·, 0)‖ < ∞ for all 0 ≤ ℓ ≤ N + 1, the

corresponding solution of (4.8) satisfies

‖Û(·, T )‖ ≤ C(1 + T )−
N
6
− 1

12 .

for all T ≥ 0, where C is a constant that is independent of ν but depends on Û(0) and its derivatives.

Remark 4.3. Note that the result claimed in Theorem 1(ii) follows from the above proposition. To see

this, recall that urem is defined in (2.12). Using equations (4.2), (4.9), and Plancherel’s Theorem , we have

‖urem(T )‖2L2 ≤ Cψ
[

‖us0(T )‖2L2 + ‖‖{usn(T )}‖2ℓ2‖2L2

]

= Cψ
[

‖ûs0(T )‖2L2 + ‖‖{ûsn(T )}‖2ℓ2‖2L2

]

= Cψ‖Û(T )‖2 ≤ C(1 + T )−
N
3
− 1

6 ,

where Cψ is a constant that depends on the L2 norms of the cross-sectional eigenfunctions ψn. Note that

the requirement that ‖∂ℓκÛ(·, 0)‖ < ∞ for all 0 ≤ ℓ ≤ N + 1 in the above proposition holds as long as the

initial data for (1.1) lies in the algebraically weighted function space: u(·, 0) ∈ L2(N +1)×L2(Ω). This is

because ∂ℓκf̂ ∈ L2 if and only if Xℓf ∈ L2, which means f ∈ L2(ℓ).
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We now state a brief result on the decay of the forcing terms in (4.8).

Lemma 4.4. There exists a constant C > 0, independent of ν, such that, for all T > 0, κ ∈ R

|F̂1(κ, T )| ≤ C(1 + T )
N−1

2
− 1

2
(j+n)|κ|N+1e−νtdκ

2(1+T )[1 + |κ|(1 + T )1/2]

‖F̂2(κ, T )‖ℓ2 ≤ C(1 + T )
N−1

2
− 1

2
(j+n)|κ|N+2e−νtdκ

2(1+T )[1 + |κ|(1 + T )1/2 + (1 + T )1/2]

where n, j are defined so that N − 1 = 3j + n, with n ∈ {0, 1, 2}.

Proof. This is a direct consequence of the definition of F̂ in (4.7), of Lemmas 3.4 - 3.5, and of (3.1).

In order to combine Lemma 4.4 with equation (4.8) and prove a decay result for the remainder terms, we

will need good control of the semigroup generated by B(κ). To obtain this, we will first obtain estimates

on the spectrum of B(κ). We will then use these spectral estimates to obtain decay estimates on the

semigroup for three different regions: 1) small wavenumber 0 ≤ |κ| ≤ κ0; 2) intermediate wavenumber

κ0 ≤ |κ| ≤ κ1ν
−1; and 3) large wavenumber κ1ν

−1 ≤ |κ|, where κ0 and κ1 are positive constants that are

independent of ν.

4.1 Spectral decomposition

First, we state a lemma on the spectrum of B0,1,2.

Lemma 4.5. On the space Y = C× ℓ2(C) the following hold.

(i) The operator B0 has only point spectrum, and it is given by σ(B0) = {0} ∪ {−µn}∞n=1.

(ii) The operators B1 and B2 are bounded.

Proof.

(i) This follows from the fact that B0 is diagonal and the only accumulation point of its entries is ∞.

(ii) This is trivially true for B2 because it is a scalar multiple of the identity, and for B1 it follows from

the fact that {ψn}∞n=0 forms an orthonormal basis for L2(Ω) and Parseval’s identity.

Next, we analyze the spectrum of B(κ) for any fixed κ ∈ R.

Lemma 4.6. Fix any κ ∈ R. The spectrum of B(κ) consists only of point spectrum.

Proof. We will show that, for fixed κ, B(κ) = B0 + κ(B1 + κB2) is a relatively compact perturbation of

B0. The result will then follow from Weyl’s theorem [RS78, XIII.4, Corollary 2]. We must show

κ(B1 + κB2)(B0 + i)−1
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is a compact operator on C× ℓ2(C). By Parseval’s identity, this is equivalent to showing that

κ(iAχ(y, z) − ν2κ)(∆ + i)−1

is a compact operator on L2(Ω). We let {ûn(y, z)} ⊂ L2(Ω) be a bounded sequence: ||ûn(y, z)||L2(Ω) ≤ C

for all n ∈ N. Then, since i is in the resolvent set of ∆ and (∆ + i)−1 : L2(Ω) → H1(Ω) is bounded, it

follows that {(∆ + i)−1ûn} is a bounded sequence in H1(Ω). Therefore

{κ(iAχ(y, z) − ν2κ)(∆ + i)−1ûn}

is also a bounded sequence in H1(Ω). Since H1(Ω) is compactly embedded in L2(Ω), this sequence has an

L2(Ω) convergent subsequence. Therefore κ(iAχ(y, z) − ν2κ)(∆ + i)−1 is compact.

4.1.1 Low wavenumber estimates using the leading eigenvalue

We next prove a result on the spectrum of B(κ) for |κ| sufficiently small. In particular, we show in this

case that the eigenvalues of B(κ) split into two parts: an eigenvalue λ0(κ) near 0, and eigenvalues λ(κ)

satisfying Re(λ(κ)) ≤ −µ1/2. Therefore, we expect λ0(κ) to dominate the long-time behavior, and we will

therefore be able to use it to obtain estimates on the low-wavenumber part of our solution. In addition,

we will show that this leading eigenvalue λ0(κ) is approximately −νtdκ2, so the long-time behavior will

correspond with Taylor dispersion.

Proposition 4.7. Let κ0 = min

{

µ1
2 ,

1
2A‖χ‖L∞

Ω

(

1

1+
µ2
1
2

)

1
√

1+( 2
µ1

)2

}

. Fix any κ ∈ R such that |κ| ≤ κ0,

and let 0 < ν < 1.

(i) The (point) spectrum of B(κ) can be divided into two disjoint sets, σ(B(κ)) = {λ0(κ)} ∪Σ(κ), where

|λ0(κ)| ≤
√
2µ1/2 and, for any eigenvalue λ(κ) ∈ Σ(κ) we have Re(λ(κ)) ≤ −µ1/2.

(ii) The leading eigenvalue satisfies λ0(κ) = −νtdκ2 +Λ0(κ), where Λ0(κ) = irκ3 +O(κ4) is smooth, and

independent of ν. Here r = r(χ, {µn}∞n=1) ∈ R is given in equation (4.21).

The main idea behind this Proposition is the following: recall that B(κ) = B0+κB1+κ
2B2. If |κ| is small,

then B(κ) is just a small perturbation of B0, which has spectrum {0}∪{−µn}∞n=1 and the separation claimed

in (i). Furthermore, we will see that B1 is antisymmetric, hence the real part of the spectrum of B(κ) is

actually an O(κ2) perturbation of that of B0. The ν-dependence of the spectrum stated in the proposition

can be obtained from the following decomposition: recall that B2 = −ν2κ2I. Letting C(κ) = B0 + κB1,

we have that B(κ) = C(κ)− ν2κ2I. That is, the operators B(κ) and C(κ) differ by a scalar multiple of the

identity, and, since C(κ) is independent of ν, all of the ν-dependence of B(κ) is contained in this scalar.

Therefore we immediately have the following lemma:

Lemma 4.8. Fix any κ ∈ R, let ν > 0, and let B(κ) and C(κ) be defined as above. The following are true:

(i) The semigroups of B(κ) and C(κ) are related by eB(κ)T = e−ν
2κ2T eC(κ)T .

(ii) The eigenvalues λ(κ) of B(κ) and Γ(κ) of C(κ) are in one-to-one correspondence with one another

via λ(κ) = Γ(κ)− ν2κ2, and corresponding eigenvalues have the same projection operators P (κ).
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Remark 4.9. Since the operator C(κ) is independent of ν, the above lemma tells us exactly what the ν-

dependence is in the semigroup eB(κ)T , and it tells us exactly what the ν-dependence is in the eigenvalues

λ(κ) in terms of the (ν-independent) eigenvalues Γ(κ) of C(κ). Furthermore, since the projections P (κ) of

corresponding eigenvalues are the same, and C(κ) is independent of ν, these projections can be taken to be

independent of ν. This relationship between the ν- dependence and the structure of the system is a direct

consequence of the change of variable (1.2).

Note that, because B(κ) generates an analytic semigroup, the following Corollary follows immediately from

Proposition 4.7(i).

Corollary 4.10. Let κ0 = min

{

µ1
2 ,

1
2A‖χ‖L∞

Ω

(

1

1+
µ2
1
2

)

1
√

1+( 2
µ1

)2

}

. Fix any κ ∈ R such that |κ| ≤ κ0, and

let 0 < ν < 1. Let Q0(κ) be the projection complementary to the eigenspace of the eigenvalue λ0(κ) of

B(κ). Then, for all W ∈ C× ℓ2(C) = Y and T > 0, we have

‖eB(κ)TQ0(κ)W‖Y ≤ Ce−
µ1
2
T ‖W‖Y ,

for some constant C > 0 which is independent of ν.

Before proving Proposition 4.7, we will need to prove the following Lemma.

Lemma 4.11. Let κ ∈ R, let κ0 = min

{

µ1
2 ,

1
2A‖χ‖L∞

Ω

(

1

1+
µ21
2

)

1
√

1+( 2
µ1

)2

}

, and let λ(κ) be an eigenvalue

of B(κ). Then

(i) Re(λ(κ)) ≤ −ν2κ2.

(ii) If |κ| ≤ κ0, then |Imλ(κ)| < µ1/2.

Proof. Recall from (4.5) that B(κ) = B0 + κB1 + κ2B2 with

B0 =

(

0 0

0 −Υ

)

, B1 = Ai

(

0 χ̌·
χ̌ χ̃∗

)

, B2 = −ν2
(

1 0

0 I

)

.

Note that B0 and B2 are diagonal and hence

S(κ) := B0 + κ2B2

is symmetric. Also note that

A(κ) := κB1

is anti-symmetric, due to the following argument. Let V = {Vn}∞n=0 ∈ C × ℓ2(C) and let v(y, z) =

V0 +
∑∞

n=1 Vnψn(y, z). We compute, using Parseval’s identity,

〈B1V, V 〉C×ℓ2(C) = 〈Aiχ(y, z)v(y, z), v(y, z)〉L2 (Ω)

= −〈v(y, z), Aiχ(y, z)v(y, z)〉L2 (Ω)

= −〈V,B1V 〉C×ℓ2(C).
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Next, we compute a bound on the spectrum of B(κ) = S(κ)+A(κ). Suppose λ(κ) is an eigenvalue of B(κ)
with eigenvector V (κ) normalized so that ‖V (κ)‖Y = 1. We have

B(κ)V (κ) = λ(κ)V (κ).

Taking the C× ℓ2(C) inner product of both sides with V (κ), we get

〈B(κ)V (κ), V (κ)〉 = 〈λ(κ)V (κ), V (κ)〉 = λ(κ)〈V (κ), V (κ)〉 = λ(κ).

Since B = S +A, this implies

〈(S(κ) +A(κ))V (κ), V (κ)〉 = λ(κ)

〈S(κ)V (κ), V (κ)〉 + 〈A(κ)V (κ), V (κ)〉 = λ(κ)

〈V (κ),S(κ)V (κ)〉 − 〈V (κ),A(κ)V (κ)〉 = λ(κ),

(4.11)

where the last line is obtained using the symmetry properties of S(κ) and A(κ). Taking the middle line in

(4.11) and taking the complex conjugate, we have

〈V (κ),S(κ)V (κ)〉 + 〈V (κ),A(κ)V (κ)〉 = λ(κ). (4.12)

Finally, adding (4.12) and the last line in (4.11) yields

Re(λ(κ)) = 〈V (κ),S(κ)V (κ)〉C×ℓ2(C).

Next, we let v(y, z, κ) = V0(κ) +
∑∞

n=1 Vn(κ)ψn(y, z), normalized so that 〈v(κ), v(κ)〉L2(Ω) = 1, and apply

Parseval’s identity to get

Re(λ(κ)) = 〈V (κ),S(κ)V (κ)〉C×ℓ2(C)

=

∫

Ω
v(y, z, κ)(∆ − ν2κ2)v(y, z, κ)dydz

= −
∫

Ω
∇v(y, z, κ) · ∇v(y, z, κ)dydz − ν2κ2

∫

Ω
|v(y, z, κ)|2dydz

≤ −ν2κ2
∫

Ω
|v(y, z, κ)|2dydz

= −ν2κ2,

(4.13)

which proves the first part of Lemma 4.11. For the second part of this lemma, let |κ| ≤ κ0. We use an

argument similar to that used in the proof of the first part of this lemma to control the imaginary part of

λ(κ). Subtracting (4.12) and the last line in (4.11) yields an expression for Im(λ(κ)):

Im(λ(κ)) = − 1

area(Ω)

∫

Ω
v(κ, y, z)κiAχ(y, z)v(κ, y, z)dydz,

where v(κ, y, z) is the unit eigenvector for λ(κ), and we have used Parseval’s identity. Continuing, we get

Im(λ(κ)) = iκA
1

area(Ω)

∫

Ω
v(κ, y, z)χ(y, z)v(κ, y, z)dydz,

so that

|Imλ(κ)| ≤ |κ|A‖χ‖L∞ .
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Furthermore, since we assumed |κ| ≤ κ0, we have that

|Imλ(κ)| ≤ |κ|A‖χ‖L∞ <
µ1
2
.

This completes the proof of the Lemma.

We now prove Proposition 4.7

Proof. First, we prove item (i). Note this separation between the eigenvalues is true for B0, since 0 is

an eigenvalue of B0 and all other eigenvalues satisfy −µn ≤ −µ1 < 0. Let κ satisfy |κ| ≤ κ0. To establish

this separation for B(κ), we will use Kato’s definition of a “gap” between operators [Kat95]. Given two

operators T and S and a closed curve Γ∗ ⊂ C that separates the spectrum of T in two parts (one part

inside Γ∗ and one part outside Γ∗), if the gap δ̂(T, S) is sufficiently small, the closed curve Γ∗ also separates

the spectrum of S. The definition of δ̂(T, S) is

δ̂(T, S) := max

{

sup
u∈G(T ),||u||=1

dist(u,G(S)), sup
v∈G(S),||v||=1

dist(v,G(T ))

}

, (4.14)

where G(L) = {(u,Lu) : u ∈ D(L)} is the graph of the operator L with domain D(L), with ||u|| being the

graph norm. If δ̂(T, S) satisfies

δ̂(T, S) < min
z∈Γ∗

1

2

1

1 + |z|2
1

√

1 + ||(T − z)−1||2
, (4.15)

then the closed curve Γ∗ also separates the spectrum of S. See [Kat95, ChapterIV, §3.4, Theorem 3.16].

Before we use Kato’s gap, recall from Lemma 4.8 that the eigenvalues λ(κ) of B(κ) and eigenvalues Γ(κ) of

C(κ) are in one-to-one correspondence via λ(κ) = Γ(κ)−ν2κ2. We can therefore apply Kato’s gap and prove

a decomposition for the spectrum of C(κ), and get an analogous decomposition using the correspondence

between the eigenvalues of B(κ) and C(κ). The advantage of doing so is in the relative simplicity of the

operator C(κ). Proceeding, we will show that the gap δ̂(C(κ),B0) satisfies

δ̂(C(κ),B0) < min
z∈Γ∗

(

1

2

1

1 + |z|2
1

√

1 + ||(B0 − z)−1||2

)

where Γ∗ is the boundary of the rectangle {z = x+ iy : |x|, |y| ≤ µ1/2}. If this holds, we will have shown

that there is one eigenvalue, which we denote λ0(κ), that lies inside Γ∗ (and hence near 0), and the rest of

the eigenvalues lie outside Γ∗.

Let’s proceed by computing the gap δ̂(C(κ),B0). Using the definition (4.14), we first need to bound

sup
||V̂ ||

C×ℓ2(C)+||C(κ)V̂ ||
C×ℓ2(C)=1

dist
(

(V̂ , C(κ)V̂ ), G(B0)
)

.

Pick a V̂ ∈ C× ℓ2(C) with ||V̂ ||C×ℓ2(C) + ||C(κ)V̂ ||C×ℓ2(C) = 1. Then

dist((V̂ , C(κ)V̂ ), G(B0)) ≤ ||(V̂ , C(κ)V̂ )− (V̂ ,B0V̂ )||
= ||(0, C(κ)V̂ − B0V̂ )||
= ||κB1V̂ ||C×ℓ2(C)
≤ |κ|

(

A‖χ‖L∞
Ω

)

||V̂ ||C×ℓ2(C)
≤ |κ|A‖χ‖L∞

Ω
.
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Since this holds for all V̂ with ||V̂ ||C×ℓ2(C) + ||C(κ)V̂ ||C×ℓ2(C) = 1, it follows that

sup
||V̂ ||

C×ℓ2(C)+||C(κ)V̂ ||
C×ℓ2(C)=1

dist
(

(V̂ , C(κ)V̂ ), G(B0)
)

≤ |κ|
(

A‖χ‖L∞
Ω

)

.

Next, using the definition of the Kato gap (4.14), we need to bound

sup
||Ŵ ||

C×ℓ2(C)+||B(0)Ŵ ||
C×ℓ2(C)=1

dist
(

(Ŵ ,B(0)Ŵ ), G(C(κ))
)

.

Pick a Ŵ ∈ C× ℓ2(C) with ||Ŵ ||C×ℓ2(C) + ||B0Ŵ ||C×ℓ2(C) = 1. Then

dist
(

(Ŵ ,B0Ŵ ), G(C(κ))
)

≤ ||(Ŵ ,B0Ŵ )− (Ŵ , C(κ)Ŵ )||

= ||(0,B0Ŵ − C(κ)Ŵ )||
= ||κB1Ŵ ||C×ℓ2(C)
≤ |κ|

(

A‖χ‖L∞
Ω

)

||Ŵ ||C×ℓ2(C)
≤ |κ|A‖χ‖L∞

Ω
.

Since this holds for all Ŵ ∈ C× ℓ2(C) with ||Ŵ ||C×ℓ2(C) + ||B0Ŵ ||C×ℓ2(C) = 1, it follows that

sup
||Ŵ ||

C×ℓ2(C)+||B(0)Ŵ ||
C×ℓ2(C)=1

dist
(

(Ŵ ,B(0)Ŵ ), G(C(κ))
)

≤ |κ|A‖χ‖L∞
Ω
.

Therefore

δ̂(C(κ),B0) ≤ |κ|A‖χ‖L∞
Ω
. (4.16)

Next, we bound

min
z∈Γ∗

1

2

(

1

1 + |z|2
1

√

1 + ||(B0 − z)−1||2

)

from below. First notice that, for z ∈ Γ∗,

||(B0 − z)−1|| ≤ 2

µ1
.

This is true since B0 is self adjoint, and µ1/2 is the distance from Γ∗ to σ(B0) [Kat95, Chapter V, §3.5,
(3.16)]. Therefore, for all z ∈ Γ∗,

1

2

1

1 + |z|2
1

√

1 + ( 2
µ1
)2

≤ 1

2

1

1 + |z|2
1

√

1 + ||(B0 − z)−1||2
.

Hence

min
z∈Γ∗





1

2

1

1 + |z|2
1

√

1 + ( 2
µ1
)2



 ≤ min
z∈Γ∗

(

1

2

1

1 + |z|2
1

√

1 + ||(B0 − z)−1||2

)

.

Next, we compute

min
z∈Γ∗





1

2

1

1 + |z|2
1

√

1 + ( 2
µ1
)2



 =
1

2

(

1

1 +
µ21
2

)

1
√

1 + ( 2
µ1
)2
.
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Therefore, using (4.16), we only need κ to satisfy

|κ|A‖χ‖L∞
Ω
<

1

2

(

1

1 +
µ21
2

)

1
√

1 + ( 2
µ1
)2
.

This follows since |κ| ≤ κ0. Therefore

δ̂(C(κ),B0) < min
z∈Γ∗

(

1

2

1

1 + |z|2
1

√

1 + ||(B0 − z)−1||2

)

as desired.

This proves that the rectangle Γ∗ separates the eigenvalues of C(κ). Now suppose that Γ(κ) is an eigenvalue

not contained in Γ∗ (and hence, by the relationship between the spectra of B(κ) and C(κ) it corresponds

to an eigenvalue λ(κ) ∈ Σ(κ).) Then either

(a) Re(Γ(κ)) ≤ −µ1/2 , or

(b) −µ1/2 ≤ Re(Γ(κ)) ≤ 0, and | Im(Γ(κ))| > µ1/2,

because Lemma 4.11 implies that none of the eigenvalues of C(κ) can have positive real part. If case (b)

held, then there would be a corresponding eigenvalue λ(κ) of B(κ) with |Im(λ(κ))| > µ1/2, and this would

violate Lemma 4.11 (ii). Hence case (a) applies and this in turn implies the bound in Proposition 4.7 (i).

Next, we prove item (ii) in Proposition 4.7. Note that, because λ0(κ) is a perturbation of the simple

eigenvalue 0 of B0, both λ0(κ) and its spectral projection P0(κ) perturb smoothly in κ [Kat95]. However,

due to Lemma 4.8, we can instead estimate the leading (ν-independent) eigenvalue Γ0(κ) of C(κ), which is

still a perturbation of the simple eigenvalue 0 of B0. We expand this eigenvalue

Γ0(κ) = Γ0 + Γ1κ+ Γ2κ
2 +O(κ3) (4.17)

and its corresponding eigenvector

V̂ (κ) = V̂0 + V̂1κ+ V̂2κ
2 +O(κ3), (4.18)

where

V̂ (κ) =

(

û0(k)

Û(κ)

)

, V̂j =

(

ûj0
Û j

)

.

Now the eigenvalue problem reads

C(κ)V̂ (κ) = Γ(κ)V̂ (κ), (4.19)

Plugging (4.17) and (4.18) into (4.19), we find

B0V̂0 = 0 · V̂0, ⇒ Γ0 = 0, V̂0 =

(

1

0

)

,

Next, we find

B1V̂0 + B0V̂1 = Γ1V̂0

B1V̂1 + B0V̂2 = Γ2V̂0 + Γ1V̂1

B1V̂2 + B0V̂3 = Γ3V̂0 + Γ2V̂1 + Γ1V̂2

(4.20)
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and so on. Solving the first equation, we find

Γ1 = 0, V̂1 =

(

c1

iAΥ−1χ̌

)

,

where the scalar constant c1 is undetermined but can be fixed by normalizing the eigenvectors. At O(κ2),

we similarly find

Γ2 = −Dtd, V̂2 =

(

c2

iAc1Υ
−1χ̌−A2Υ−1[χ̃ ∗ (Υ−1χ̌)]

)

.

Finally, at O(κ3), the first component in the equation implies

Γ3 = c1(Dtd) + iAχ̌ ·
[

iAc1Υ
−1χ̌−A2[χ̃ ∗ (Υ−1χ̌)]

]

= −iA3χ̌ · [χ̃ ∗ (Υ−1χ̌)].

In particular, Γ3 is purely imaginary, and therefore

Γ0(k) = −Dtdκ
2 + irκ3 +O(κ4),

where

r = −A3χ̌ · [χ̃ ∗ (Υ−1χ̌)]. (4.21)

Finally, using Lemma 4.8, we have

λ0(κ) = −(ν2 +Dtd)κ
2 + Λ0(κ)

= −νtdκ2 +Λ0(κ),

where Λ0(κ) = irκ3 +O(κ4) is independent of ν. This completes the proof of item (ii), and of Proposition

4.7.

4.1.2 High wavenumber estimates using standard diffusive estimates

Next, we consider the behavior of the spectrum of B(κ) for large |κ|.

Corollary 4.12. Given any fixed constant κ1, for all |κ| ≥ κ1
ν we have

‖eB(κ)TW‖Y ≤ Ce−κ
2
1T ‖W‖Y .

Proof. This follows immediately from Lemma 4.11, using the fact that B(κ) generates an analytic semi-

group.

4.1.3 Intermediate wavenumber estimates via hypocoercivity

In this subsection, we prove the following Lemma.

Proposition 4.13. Let κ0 = min

{

µ1
2 ,

1
2A‖χ‖L∞

Ω

(

1

1+
µ21
2

)

1
√

1+( 2
µ1

)2

}

. Then there exist positive constants

κ1 and δ ∈ (0, 14) such that for all κ1ν ≥ |κ| ≥ κ0(1− δ) and T > 0, we have

‖eB(κ)TW‖Y ≤ Ce−MT ‖W‖Y ,

where M and C are constants that are independent of ν.
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Remark 4.14. This result does not appear to be obvious. A naive estimate, such as that in the proof of

Corollary 4.12, would only give

‖eB(κ)TW‖Y ≤ Ce−ν
2(κ0(1−δ))2T ‖W‖Y .

For large times T = 1, this does not actually produce decay: e−ν
2(κ0(1−δ))2T = e−ν

2(κ0(1−δ))2 ∼ 1. Therefore,

we really do need the stronger result given in Proposition 4.13 to conclude that small wavenumbers |κ| ≤ κ0

really do give the leading order behavior of solutions.

Proof. Let δ ∈ (0, 14 ) and fix κ ∈ [κ0(1 − δ), κ1/ν], with any fixed κ1 > νκ0(1 − δ). We will study the

decay of solutions to
d

dT
Û = B(κ)Û ,

with Û and B(κ) defined in (4.3) and (4.5) using Villani’s theory of hypocoercivity [Vil09]. Writing this

equation in components and writing ûs0 = u and ûsm = vm with m = 1, 2, . . . for notational convenience,

we have

∂Tu = −ν2κ2u+Aiκ

∞
∑

m=1

χmvm

∂T vm = −(ν2κ2 + µm)vm +Aiκχmu+Aiκ

∞
∑

j=1

χm,jvj.

Motivated by [Vil09], we consider the functional

Φ[(u, v)](T ) = ζ0uū+
∑

m

ζmvmv̄m + 2Re

(

iu
∑

m

σmv̄m

)

with ζ0, ζm, and σm to be defined below. We will show that Φ̇ ≤ −MΦ for some constant M that is

independent of ν and κ, as long as κ1/ν ≥ |κ| ≥ κ0(1 − δ). We will also chose ζ0, ζm, and σm so that

there exist constants c1,2 independent of ν and κ so that c1‖(u, v)‖Y ≤ Φ(u, v) ≤ c2‖(u, v)‖Y . This will

imply that ‖(u, v)(τ)‖Y ≤ (c2/c1)e
−MT . Undoing the scalings will then imply the decay claimed in the

Proposition.

We compute

Φ̇ = −2ζ0ν
2κ2|u|2 − 2Aκζ0Re

(

iu
∑

m

χmv̄m

)

− 2
∑

m

ζm(ν
2κ2 + µm)|vm|2 + 2AκRe

(

iu
∑

m

ζmχmv̄m

)

+2AκRe



i
∑

m

ζmv̄m

∞
∑

j=1

χm,jvj



− 2ν2κ2Re

(

iu
∑

m

σmv̄m

)

− 2AκRe





∑

j

χjvj
∑

m

σmv̄m





−2Re

(

iu
∑

m

σm(ν
2κ2 + µm)v̄m

)

+ 2AκRe

(

|u|2
∑

m

σmχm

)

+2AκRe



u
∑

m

σm

∞
∑

j=1

χm,j v̄j



 .

Next, define

σm = − c

2Aκµm
χm, ζm = ζ0 ∀m,
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where c is a constant to be determined. Note that this choice of ζm implies

−2Aκζ0Re

(

iu
∑

m

χmv̄m

)

+ 2AκRe

(

iu
∑

m

ζmχmv̄m

)

= 0

Also,

2AκRe



i
∑

m

ζmv̄m

∞
∑

j=1

χm,jvj



 = 0,

which results from the fact that the χm,j are real and χm,j = χj,m. This follows from the fact that the

eigenfunctions ψj of the Laplacian on the cross section Ω can be chosen to be real. Therefore, we have

Φ̇ = −2ζ0ν
2κ2|u|2 − 2ζ0

∑

m

(ν2κ2 + µm)|vm|2 +
cν2κ

A
Re

(

iu
∑

m

1

µm
χmv̄m

)

+ cRe





∑

j

χjvj
∑

m

1

µm
χmv̄m





+
c

A
Re

(

iu
∑

m

χm
κµm

(ν2κ2 + µm)v̄m

)

− c|u|2|χ|2µ − cRe



u
∑

m

χm
µm

∞
∑

j=1

χm,j v̄j





≤
[

−2ζ0ν
2κ2 +

cν2|κ|
AQ2

1

+
c

2A|κ|Q2
2

− c|χ|2µ +
c

2Q2
3

]

|u|2
[

−2ζ0(µ1 + ν2κ2) +
cν2|κ|Q2

1|χ|2µ
A

+ c|χ||χ|µ +
cQ2

2

2A|κ| |χ|
2 +

cQ2
3

2
|χ|2µ|χ|2L∞

]

|v|2.

= (Iu + IIu) |u|2 + (Iv + IIv) |v|2,

where we denote |v| = ‖v‖ℓ2 and where

Iu = −c|χ|2µ +
c

2A|κ|Q2
2

+
c

2Q2
3

, IIu = −2ζ0ν
2κ2 +

cν2|κ|
AQ2

1

,

and

Iv = −2ζ0µ1 + c|χ||χ|µ +
cQ2

3

2
|χ|2µ|χ|2L∞ +

cQ2
2

2A|κ| |χ|
2, IIv = −2ζ0ν

2κ2 +
cν2|κ|Q2

1|χ|2µ
A

.

Recall that 0 < δ < 1/4, |κ| > κ0(1− δ), where κ0 = min

{

µ1
2 ,

1
2A‖χ‖L∞

Ω

(

1

1+
µ21
2

)

1
√

1+( 2
µ1

)2

}

. Furthermore,

let

c < min







1− δ

|χ|2µ
,

µ1

|χ||χ|µ + |χ|2L∞ + 2|χ|2|
3A2κ20|χ|2µ

, A2κ20(1− δ),
12µ1
|χ|2µ







.

We choose ζ0 = 1, Q2
1 = Q2

2 =
1

Aκ0|χ|2µ and Q2
3 =

2
|χ|2µ . Then

Iu = c|χ|2µ
(

−3

4
+

κ0
2|κ|

)

≤ −c|χ|
2
µ

12
≤ −µ1

since |κ| > κ0(1− δ), 0 < δ < 1/4, and c < 12µ1/|χ|2µ. Next, notice that the above choices imply that

IIu = ν2
(

−2κ2 + c|χ|2µκ0|κ|
)

≤ −ν2κ2,
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where we have used the facts that |κ| > κ0(1− δ) and c < (1−δ)
|χ|2µ . Similarly,

Iv = −2µ1 + c

[

|χ||χ|µ + |χ|2L∞ +
2|χ|2|

3A2κ20|χ|2µ

]

≤ −µ1.

Finally,

IIv = ν2
(

−2κ2 +
c

A2κ0
|κ|
)

≤ −ν2κ2

because c < a2κ20(1− δ). Therefore

Φ̇ ≤ −(µ1 + ν2κ2)(|u|2 + |v|2).

Also, we have that

Φ ≤
(

1 +
c

2A|κ|

)

|u|2 +
(

1 +
c|χ|2µ
2A|κ|

)

|v|2

≤ M̃(|u|2 + |v|2),

where M̃ = 1 + Aκ0
2 max{1, |χ|2µ}. As a result,

Φ̇ ≤ −MΦ, (4.22)

where M = µ1/M̃ . If we now additionally require that

c ≤ min

{

Aκ0(1− δ),
Aκ0(1− δ)

|χ|2µ

}

,

we find

Φ ≥
(

1− c

2Aκ0(1− δ)

)

|u|2 +
(

1−
c|χ|2µ

2Aκ0(1− δ)

)

|v|2 ≥ 1

2
(|u|2 + |v|2).

Therefore,

|u(T )|2 + |v(T )|2 ≤ 2Φ(T ) ≤ 2e−MTΦ(0) ≤ 4e−MT [|u(0)|2 + |v(0)|2],

which completes the proof of the Proposition.

4.2 Splitting of the semigroup

The goal of this subsection is to establish the decay rates on the semigroup by splitting it as

eB(κ)(T−s) = Ehigh(κ, T − s) + Elow(κ, T − s) + TN (κ, T − s) +RN (κ, T − s), (4.23)

where the components are defined as follows. Both Ehigh,low will be exponentially decaying pieces that

correspond to high and low wavenumbers, respectively. The terms TN and RN will both correspond to the

leading order eigenvalue λ0(κ) = −νtdκ2 +Λ0(κ) of B(κ), defined in Proposition 4.7, with TN arising from

the Taylor diffusion term −νtdκ2 and RN arising from the remainder Λ0(κ).
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To precisely define each term in (4.23), first let ψ(κ) be a smooth bump function that equals 1 for |κ| ≤ κ0

and 0 for |κ| ≥ 2κ0, where κ0 is any fixed positive number such that, for example,

κ0 ≤ 1

2
min







µ1
2
,

1

2A‖χ‖L∞
Ω

(

1

1 +
µ21
2

)

1
√

1 + ( 2
µ1
)2







as motivated by Proposition 4.7. (We will need to adjust the value of κ0, below, to make it slightly smaller.)

Furthermore, let P0(κ) be the (ν-independent) projection onto the eigenspace for the leading eigenvalue

λ0(κ) of B(κ), defined in Proposition 4.7, and let Q0(κ) = I − P0(κ) be its complement. We can then

define

Ehigh(κ, T − s) = (1− ψ(κ))eB(κ)(T−s) (4.24)

Elow(κ, T − s) = ψ(κ)Q0(κ)e
B(κ)(T−s). (4.25)

We use a Taylor expansion to define the remaining two terms TN , acting on a function Ĝ(κ, s), and RN as

TN (κ, T − s)Ĝ(κ, s) = e−νtdκ
2(T−s)

N
∑

ℓ=0

1

ℓ!
∂ℓκ

(

ψ(κ)P0(κ)e
Λ0(κ)(T−s)Ĝ(κ, s)

)

|κ=0κ
ℓ (4.26)

RN (κ, T − s) = e−νtdκ
2(T−s)ψ(κ)P0(κ)e

Λ0(κ)(T−s) − TN (κ, T − s). (4.27)

With this definition, we have

TN (κ, T−s)+RN (κ, T−s) = ψ(κ)P0(κ)e
B(κ)(T−s) = ψ(κ)P0(κ)e

λ0(κ)(T−s) = e−νtdκ
2(T−s)ψ(κ)P0(κ)e

Λ0(κ)(T−s).

We now obtain decay estimates on each piece of (4.23).

4.2.1 Bounds on Elow

Before providing bounds on Elow, we first state the following lemma.

Lemma 4.15. Recall νtd = ν2 +Dtd, where Dtd = A2‖χ‖2µ. Let d > 0 and T > 0. Then

‖κde−νtdκ2(1+T )‖L2(R) ≤ C(1 + T )−
d
2
− 1

4 ,

where the constant C = C(d) is independent of ν.

Proof. This follows from a direct calculation; the ν-independence of the constant C follows from the fact

that

ν−1
td = (ν2 +Dtd)

−1 ≤ D−1
td

We now prove the following lemma, which provides estimates on Elow. Recall that the norm ‖ · ‖ is defined

in (4.9).

Lemma 4.16. (i) ‖Elow(·, T )V̂ (·)‖ ≤ Ce−
µ1
2
T ‖V̂ (·)‖

33



(ii) ‖
∫ T
0 Elow(·, T − s)F̂ (·, s)ds‖ ≤ C(1 + T )−

N
6
− 1

12 .

Proof. By (4.9) and Corollary 4.10, we have

‖Elow(·, T )V̂ (·)‖2 =

∫

R

‖Elow(κ, T )V̂ (κ)‖2Y dκ

≤
∫

R

Ce−µ1T ‖V̂ (κ)‖2Y dκ = Ce−µ1T ‖V̂ (·)‖2.

This proves (i). To prove item (ii), note

‖
∫ T

0
Elow(·, T − s)F̂ (·, s)ds‖ = ‖‖

∫ T

0
Elow(·, T − s)F̂ (·, s)ds‖Y ‖L2(R)

≤
∫ T

0
Ce−

µ1
2
(T−s)‖‖F̂ (·, s)‖Y ‖L2(R)ds.

Now from Lemma 4.4, we know that

‖F̂ (κ, s)‖Y ≤ C(1 + s)
N−1

2
− 1

2
(j+n)e−νtdκ

2(1+s)[|κ|N+1 + |κ|N+2(1 + s)1/2 + |κ|N+2 + |κ|N+3(1 + s)1/2].

Next, using Lemma 4.15, we have that

‖‖F̂ (·, s)‖Y ‖L2(R) ≤ C(1 + s)
N−1

2
−N+1

2
− 1

4 (1 + s)−
1
2
(j+n)

= C(1 + s)−
5
4 (1 + s)−

1
2
(j+n),

where the constant C is independent of ν. Therefore

‖
∫ T

0
Elow(·, T − s)F̂ (·, s)ds‖ ≤

∫ T

0
Ce−

µ1
2
(T−s)(1 + s)−

5
4 (1 + s)−

1
2
(j+n)ds

≤ C(1 + T )−
1
2
(j+n)− 1

4

≤ C(1 + T )−
N
6
− 1

12 ,

where the exponent in the last line follows from the fact that N − 1 = 3j + n, and n ∈ {0, 1, 2}.

4.2.2 Bounds on Ehigh

We prove the following Lemmas.

Lemma 4.17. There exist constants C and M1, independent of ν, such that

(i) ‖Ehigh(·, t)V̂ (·)‖ ≤ Ce−M1T ‖V̂ (·)‖

(ii)

‖
∫ T

0
Ehigh(·, T − s)F̂ (·, s)ds‖ ≤ Ce−

1
4
M1T .

Proof. We can use Proposition 4.13 for κ0 ≤ |κ| ≤ κ1
ν and Corollary 4.12 for |κ| ≥ κ1

ν to find

‖eB(κ)TW‖Y ≤ Ce−MT‖W‖Y
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for all |κ| ≥ κ0. Therefore, we have

‖Ehigh(·, T )V̂ (·)‖2 =

∫

R

‖Ehigh(κ, T )V̂ (κ)‖2Y dκ

≤
∫

R

Ce−2MT‖V̂ (κ)‖2Y dκ = Ce−2MT ‖V̂ (·)‖2,

which proves (i). Item (ii) follows additionally from Lemma 4.4 and the estimate

‖
∫ T

0
Ehigh(·, T − s)F̂ (·, s)ds‖ ≤

∫ T

0
Ce−M(T−s)‖(1− ψ(·))‖F̂ (·, s)‖Y ‖L2(R)ds

≤
∫ T

0
Ce−M(T−s)(1 + s)

N−1−n
3 ‖(1 − ψ(κ))|κ|(N+1)e−νtdκ

2(1+s)[1 + (|κ| + |κ|2)(1 + s)1/2]‖L2(R)ds

≤
∫ T

0
Ce−M(T−s) sup

|κ|≥2κ0

(e−
νtd
2
κ2(1+s))(1 + s)

N−1−n
3 ‖|κ|(N+1)e−

νtd
2
κ2(1+s)[1 + (|κ| + |κ|2)(1 + s)1/2]‖L2(R)ds

≤
∫ T

0
Ce−M(T−s) sup

|κ|≥2κ0

(e−
νtd
2
κ2(1+s))(1 + s)−

N
6
− 1

2ds

=

∫ T

0
Ce−M(T−s)e−2νtdκ

2
0(1+s)(1 + s)−

N
6
− 1

2ds

=

∫ T

0
Ce−M(T−s)e−νtdκ

2
0(1+s)e−νtdκ

2
0(1+s)(1 + s)−

N
6
− 1

2ds

≤ Ce−MT e(M−νtdκ20)T ≤ Ce−Dtdκ
2
0T .

4.2.3 Bounds on RN

In this section we prove the following lemma.

Lemma 4.18. Recall that RN(κ, T ) is defined in (4.27), ‖ · ‖ in (4.9), and F̂ in (4.6). Then

(i) ‖RN(·, T )V̂ (·)‖2 ≤ C(ψ,P0, V̂ )T−N
6
− 5

12

(ii) ‖
∫ T
0 RN(·, T − s)F̂ (·, s)ds‖ ≤ C(1 + T )−

N
6
− 1

12

for all T > 0, where the constant C(ψ,P0, V̂ ) depends on the first N + 1 derivatives of ψ,P0, and V̂ . In

particular, we need to require that ‖∂ℓκV̂ ‖ is bounded for all 0 ≤ ℓ ≤ N + 1.

Remark 4.19. We can ensure that the initial condition Û(κ, 0) in (4.8) has ‖∂ℓκÛ(·, 0)‖ bounded for all

0 ≤ ℓ ≤ N + 1 by requiring that the initial condition u(x, y, z, 0) to (1.1) lies in L2((N + 1)).

Proof. To estimate RN, notice that a smooth function minus the first N terms of its Taylor series can be

written

f(κ)−
N
∑

j=0

1

j!
f (j)(0)κj =

∫ κ

0

∫ κN

0
· · ·
∫ κ1

0
∂N+1
y f(y)dydκ1 . . . dκN .

Therefore, we can write

RN(κ, T −s)Ĝ(κ, T −s) = e−νtdκ
2T

∫ κ

0

∫ κN

0
· · ·
∫ κ1

0
∂N+1
y

[

ψ(y)eΛ0(y)(T−s)P0(y)Ĝ(y, T − s)
]

dydκ1 . . . dκN .
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Furthermore, the computation of the expansion of λ0(κ) that follows equation (4.17) implies that

|λ0(κ) + νtdκ
2| = |Λ0(κ)| ≤ C|κ|3, for |κ| ≤ 2κ0

for some constant C that is independent of ν. The y-derivatives in the above integral expression could fall

on any of the terms in the brackets. Thus, we need to bound terms of the form

‖(∂m1
κ ψ(κ))(∂m2

κ eΛ0(κ)T )(∂m3
κ P0(κ))(∂

m4
κ V̂ (κ))‖, m1 +m2 +m3 +m4 = N + 1.

Using the form of Λ0(κ), we have

∂m2
κ eΛ0(κ)T ∼ (κ2T )ρ1(κT )ρ2(T )ρ3(T )ρ4 · · · (T )ρm2 eΛ0(κ)T ,

where ρ1 + 2ρ2 + · · · +m2ρm2 = m2 and ρi ∈ {0, 1, . . . ,m2} for all i. Thus, the ρi term corresponds to i

derivatives falling on Λ0(κ). Therefore,

‖RN(·, T )V̂ (·)‖2 ≤
∫

R

∥

∥

∥

∥

e−νtdκ
2T

∫ κ

0

∫ κN

0
· · ·
∫ κ1

0
∂N+1
y

[

ψ(y)eΛ0(y)TP0(y)V̂ (y)
]

dydκ1 . . . dκN

∥

∥

∥

∥

2

Y

dκ

≤
∑

m1+m2+m3+m4=N+1

sup
|κ|≤2κ0

∥

∥

∥(∂m1
κ ψ(κ))(∂m3

κ P0(κ))(∂
m4
κ V̂ (κ))

∥

∥

∥

2

Y

×
∫

|κ|≤2κ0

(

e−νtdκ
2T

∫ κ

0

∫ κN

0
· · ·
∫ κ1

0

∣

∣

∣
∂m2
y eΛ0(y)T

∣

∣

∣
dydκ1 . . . dκN

)2

dκ

= C(ψ,P0, V̂ )

∫

|κ|≤2κ0

e−2νtdκ
2T

×
(∫ κ

0

∫ κN

0
· · ·
∫ κ1

0

∣

∣

∣(y2T )ρ1(yT )ρ2(T )ρ3(T )ρ4 · · · (T )ρm2 eΛ0(y)T
∣

∣

∣ dydκ1 . . . dκN

)2

dκ

≤ C(ψ,P0, V̂ )T 2(ρ1+···+ρm2 )

∫

|κ|≤2κ0

e−2νtdκ
2T e2C|κ|3T |κ|2(2ρ1+ρ2+N+1)dκ.

The constant C(ψ,P0, V̂ ) is determined by sup|κ|≤2κ0

∥

∥

∥(∂m1
κ ψ(κ))(∂m3

κ P0(κ))(∂
m4
κ V̂ (κ))

∥

∥

∥

2

Y
. The function ψ

and the projection P0 are smooth, bounded, and independent of ν, so we need not worry about derivatives

that fall on them. Notice that, for z = κ
√
T , we have

∫

|κ|≤2κ0

e−2νtdκ
2T e2C|κ|3T |κ|ρdκ = CT− (ρ+1)

2

∫

|z|≤2κ0
√
T
|z|ρe−2νtdz

2
e2CT |z/

√
T |3dz

≤ CT− (ρ+1)
2

∫

|z|≤2κ0
√
T
|z|ρe−νtdz2e−z

2
(

νtd− 2C|z|√
T

)

dz

≤ CT− (ρ+1)
2 ,

Note that we have used the fact that |z| ≤ 2κ0
√
T with κ0 = O(1). Therefore, after possibly making κ0

smaller if necessary, νtd − 2C|z|√
T

≥ 0 . As a result

‖RN(·, T )V̂ (·)‖ ≤ C(ψ,P0, V̂ )T ρ1+···+ρm2T− 1
4
− 1

2
(2ρ1+ρ2+N+1).

Notice that

ρ1 + · · ·+ ρm2 −
1

4
− 1

2
(2ρ1 + ρ2 +N + 1) =

1

2
ρ2 + ρ3 + ρ4 + . . . ρm2 −

3

4
− N

2

≤ 1

3
(ρ1 + 2ρ2 + · · ·+m2ρm2)−

3

4
− N

2

≤ −N
6

− 5

12
.
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In addition,

2ρ1 + 2ρ2 + 2ρ3 + 3ρ4 + · · ·+ (m2 − 1)ρm2 ≤ 2m1 ≤ 2(N + 1).

Therefore, we obtain

‖RN(·, T )V̂ (·)‖ ≤ C(ψ,P0, V̂ )T−N
6
− 5

12 ,

which proves (i). To prove (ii), Lemma 4.4 implies

‖F̂ (κ, s)‖Y ≤ C|κ|N+1(1 + s)
N−1

3 e−νtdκ
2(1+s)[1 + (|κ|+ |κ|2)(1 + s)1/2].

Similarly,

‖∂m4
k F̂ (k, s)‖Y ≤ C|κ|N+1−r1(1 + s)

N−1
3 (∂r2κ e

−νtdκ2(1+s))∂r3κ [1 + (|κ|+ |κ|2)(1 + s)1/2],

where r1 + r2 + r3 = m4. Moreover,

(∂r2κ e
−νtdκ2(1+s)) =

∑

q1+2q2=r2

C(−νtdκ(1 + s))q1(−νtd(1 + s))q2e−νtdκ
2(1+s).

As a result,

‖RN(·, T − s)F̂ (·, s)‖2 ≤
∫

R

∥

∥

∥

∥

e−νtdκ
2(T−s)

∫ κ

0

∫ κN

0
· · ·
∫ κ1

0
∂N+1
y

[

ψ(y)eΛ0(y)(T−s)P0(y)F̂ (y, s)
]

dydκ1 . . . dκN

∥

∥

∥

∥

2

Y

dκ

≤
∑

m1+m2+m3+m4=N+1

sup
|κ|≤2κ0

‖(∂m1
κ ψ(κ))(∂m3

κ P0(κ))‖2L(Y )

×
∫

|κ|≤2κ0

(

e−νtdκ
2(T−s)

∫ κ

0

∫ κN

0
· · ·
∫ κ1

0

∥

∥

∥|∂m2
y eΛ0(y)(T−s)∂m4

y F̂ (y, s)
∥

∥

∥

Y
dydκ1 . . . dκN

)2

dκ

≤ C(ψ,P0)ν
2(q1+q2)
td (T − s)2(ρ1+···+ρm2 )(1 + s)

2(N−1)
3

+2(q1+q2)

×
∫

|κ|≤2κ0

e−2νtdκ
2(T−s)e−2νtdκ

2(1+s)e2C|κ|3(T−s)|κ|2(2ρ1+ρ2+N+1)|κ|2(N+1−r1+q1)dκ

≤ C(ψ,P0)ν
2(q1+q2)
td (T − s)2(ρ1+···+ρm2 )(1 + s)

2(N−1)
3

+2(q1+q2)

×min
{

(T − s)−(2N+2+2ρ1+ρ2−r1+q1)− 1
2 , (1 + s)−(2N+2+2ρ1+ρ2−r1+q1)− 1

2

}

.

As a result,

∫ T

0
‖RN(·, T − s)F̂ (·, s)‖ds ≤

C(ψ,P0)ν
(q1+q2)
td

∫ T/2

0
(T − s)(ρ1+···+ρm2 )(1 + s)

(N−1)
3

+(q1+q2)(T − s)−(N+1+ρ1+ρ2/2−r1/2+q1/2)− 1
4ds

+C(ψ,P0)ν
(q1+q2)
td

∫ T

T/2
(T − s)(ρ1+···+ρm2 )(1 + s)

(N−1)
3

+(q1+q2)(1 + s)−(N+1+ρ1+ρ2/2−r1/2+q1/2)− 1
4ds

≤ C(ψ,P0)ν
(q1+q2)
td (1 + T )−

N
6
− 1

12 ≤ C(ψ,P0, A, χ)(1 + T )−
N
6
− 1

12 .

37



Note that we have used the fact that

(ρ1 + · · ·+ ρm2) +
(N − 1)

3
+ (q1 + q2)− (N + 1 + ρ1 + ρ2/2− r1/2 + q1/2

=
(ρ2
2

+ ρ3 + . . . ρm2

)

− 2N

3
− 7

12
+
r1
2

+
q1
2

+ q2

≤ 1

3
(ρ1 + 2ρ2 + · · ·+m2ρm2)−

2N

3
− 7

12
+

1

2
(r1 + r2)

≤ 1

3
m2 +

1

2
m4 −

2N

3
− 7

12

≤ 1

2
(N + 1)− 2N

3
− 7

12
= −N

6
− 1

12
.

4.2.4 Bounds on TN

In this section we show that the Taylor polynomial terms are actually zero.

Lemma 4.20. Let TN(κ, T − s))Ĝ(κ, s) be defined as in (4.26). If s = 0 and Ĝ(κ, 0) is an initial condition

for (4.8), or if Ĝ(κ, s) = F̂ (κ, s), where F̂ is defined in (4.6), then TN(κ, T − s)Ĝ(κ, s) = 0 for all κ.

Proof. Recall that

TN(κ, T − s)Ĝ(κ, s) =

N
∑

ℓ=0

1

ℓ!
∂ℓκ

(

ψ(κ)eΛ0(κ)(T−s)P0(κ)Ĝ(κ, s)
)

|κ=0κ
ℓ. (4.28)

In this expression, some derivatives fall on Ĝ(κ, s), but the order of these derivatives does not exceed N .

First consider the case where Ĝ(κ, 0) is an initial condition for (4.8). This implies that

Ĝ(κ, 0) =

(

ûs0(κ, 0)

{ûsn(κ, 0)}∞n=1

)

.

The functions ûsn, for n = 0, 1, . . . are defined via the projections in (2.9), the similarity variables in (4.2),

and the Fourier transform. Equation (2.9) defines ws0 and vsn as the projections off of the first N + 1

eigenfunctions of the operator Ltd. The projections onto those eigenfunctions are defined in terms of the

Hermite polynomials, which implies that
∫

R

ξjws0(ξ, τ)dξ =

∫

R

ξjvsn(ξ, τ)dξ = 0

for all τ ≥ 0 and j = 0, . . . , N . Since when τ = 0 we have ξ = X, we therefore find

∂jκû
s
0(κ, 0)|κ=0 =

∫

R

F−1[∂jκû
s
0(·, 0)](X)dX = C

∫

R

Xjus0(X, 0)dX = C

∫

R

Xjws0(X, 0)dX = 0, j = 0, . . . N,

where we have used F−1 to denote the inverse Fourier transform and C is some constant that can be

explicitly determined. Similarly,

∂jκû
s
n(κ, 0)|κ=0 = C

∫

R

Xjusn(X, 0)dX = C

∫

R

Xj∂Xv
s
n(X, 0)dX = −jC

∫

R

Xj−1vsn(X, 0)dX = 0, j = 1, . . . N.

When j = 0, the result holds because
∫

∂ξv
s
n(ξ, 0)dξ =

∫

Vn(ξ, 0)dξ = 0, where Vn is defined in (2.4).

Next, consider the case where Ĝ = F̂ . Note that F̂ (κ, s) = κN+1Ĥ(κ, s), where Ĥ(κ, s) is a smooth,

bounded function in κ and s. This fact can be seen from equation (4.7). Therefore ∂ℓκĜ(κ, s)|κ=0 = 0 for

0 ≤ ℓ ≤ N .
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4.3 Proof of Proposition 4.2, and hence Theorem 1(ii)

Recall that the goal of this chapter is to prove Proposition 4.2, which by Remark 4.3 implies Theorem

1(ii). Hence, we want to establish the estimate

‖Û(·, T )‖ ≤ C(1 + T )−
N
6
− 1

12 .

Recall from (4.8) that

Û(κ, T ) = eB(κ)T Û(κ, 0) +

∫ T

0
eB(κ)(T−s)F̂ (κ, s)ds.

Using the splitting of the semigroup in (4.23) and Lemmas 4.16, 4.17, 4.18, 4.20, we have

‖Û (T )‖ ≤ C
[

e−
µ1
2
T + e−MT + (1 + T )−

N
6
− 5

12

]

‖Û(0)‖

+C
[

(1 + T )−
N
6
− 1

12 + e−
1
4
MT + (1 + T )−

N
6
− 1

12

]

,

which proves the result.
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