Learning Catalytics exercise: Here's some space where you can do a calculation:

Area Between Two Graphs

Consider two functions f and g that are continuous on the interval $[a, b]$. Their graphs determine a region in the plane, and we can use the integral to calculate the area of this region.

If $g(x) \leq f(x)$, then it is not difficult to show that the area of this region is

$$
\int_{a}^{b} f(x)-g(x) d x
$$

Figures 6.12 and 6.13 in your textbook suggest why this formula holds.

MA 124
January 28, 2019
What happens if $g(x)$ is not always less than $f(x)$? For example, suppose that $g(x) \leq f(x)$ on the interval $[a, b]$ and $f(x) \leq g(x)$ on the interval $[b, c]$ where $a<b<c$.

Then the area between the two graphs is

Example. Find the area of the region between the graphs of the functions $f(x)=x^{2}-x$ and $g(x)=x^{3}-4 x^{2}+3 x$.

Example. Find the area of the region between the graphs of $y=\sin x$ and $y=\cos x$ over the interval $[0,2 \pi]$.

Sometimes it is better to integrate with respect to y rather than with respect to x. In this case, we must express the curves as $x=f(y)$ and $x=g(y)$.

Example. Find the area of the region bounded by the two curves $y=x$ and $x=y^{3}-y$.

