Learning Catalytics exercise: Here's some space where you can do a calculation:

Calculating Volume Using the Definite Integral
Consider the graph $y=f(x)$ of a function. When you revolve this graph about the x-axis, it produces a solid of revolution.

We can calculate the volume of the solid by approximating the volume with Riemann sums.
We partition the interval $a \leq x \leq b$ using equal length subintervals. We get

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b
$$

where $x_{j}-x_{j-1}=\Delta x=(b-a) / n$. In each subinterval $\left[x_{j-1}, x_{j}\right]$, we pick a test number t_{j}. Then the volume is approximated by the Riemann sum

$$
\sum_{j=1}^{n} \pi\left(f\left(t_{j}\right)\right)^{2} \Delta x
$$

If we let $n \rightarrow \infty$, we get the equality

$$
\text { volume }=\int_{a}^{b} \pi(f(x))^{2} d x
$$

Example. Let $f(x)=4 x-x^{2}$. Note that $f(x)=0$ if $x=0$ or $x=4$. Calculate the volume of the solid of revolution if the region bounded by $y=4 x-x^{2}$ and $y=0$ is revolved about the x-axis.

We can also consider regions that are determined by two graphs.

In this case, the integral for volume is

$$
\int_{a}^{b} \pi\left(f(x)^{2}-g(x)^{2}\right) d x
$$

Example. Let R be the region bounded by $y=x$ and $y=2 \sqrt{x}$. What is the volume of the solid obtained by revolving R about the x-axis?

These methods are a special case of a more general method for calculating volumes. Suppose that we have a solid, and we know the area of all cross sections perpendicular to a given axis.

Then we can calculate its volume using Riemann sums too. In this situation we see that

$$
\text { volume }=\int_{a}^{b} A(x) d x
$$

where $A(x)$ is the function that gives the area of the cross section that is determined by the value of x.

Example. Find the volume of a pyramid that is 50 feet high with a rectangular base that is 50 feet by 100 feet.

