More on trigonometric substitutions
Learning Catalytics exercise: Here's some space for you to make a calculation.

Example. $\int_{0}^{\pi / 2} r^{2} \cos ^{2} \theta d \theta$
Applying the half-angle formula to $\cos ^{2} \theta$, we have

$$
r^{2} \int_{0}^{\pi / 2}\left(\frac{1+\cos (2 \theta)}{2}\right) d \theta
$$

By the Fundamental Theorem of Calculus, this integral equals

$$
r^{2}\left[\frac{\theta}{2}+\frac{\sin (2 \theta)}{4}\right]_{\theta=0}^{\theta=\pi / 2}=r^{2}\left[\left(\frac{\pi}{4}+0\right)-(0+0)\right]=\frac{\pi r^{2}}{4}
$$

MA 124
February 15, 2019
Here is a more complicated indefinite integral.
Example. $\int \frac{x^{2}}{\sqrt{9-x^{2}}} d x$
(There is more space on the next page for converting back to the original variable x.)

The method of partial fractions
This method provides a way to calculate integrals of rational functions. Recall that a rational function is a quotient of two polynomials. For example,

$$
\frac{7 x+2}{x^{2}+x-2}
$$

is a rational function.
The method of partial fractions is analogous to taking a fraction such as $7 / 6$ and splitting it up into two fractions such as

$$
\frac{7}{6}=\frac{1}{2}+\frac{2}{3} .
$$

Example. $\int \frac{7 x+2}{x^{2}+x-2} d x$

Example. $\int_{2}^{3} \frac{-x+3}{2 x^{2}-5 x+3} d x=\ln \left(\frac{3^{3 / 2}}{4}\right)$

