Learning Catalytics exercise: Here's some space in case you need to do a quick calculation.

Numerical integration
Many (most?) definite integrals cannot be calculated exactly. For example, we know that Mathematica cannot calculate

$$
\int_{0}^{1} e^{\cos x} d x
$$

but it does know that

$$
\int_{0}^{1} e^{\cos x} d x \approx 2.34157
$$

How does it make that calculation?
We will discuss three numerical methods for approximating definite integrals-the Midpoint Rule, the Trapezoid Rule, and Simpson's Rule. All three are involve an equal length subdivision of the interval of integration.
Let n be the number of subdivisions. Then $\Delta x=(b-a) / n$, and the subdivision is determined by

$$
a=x_{0}, x_{1}=a+\Delta x, x_{2}=a+2 \Delta x, \ldots, x_{n}=a+n \Delta x=b .
$$

The Midpoint Rule evaluates the function at the midpoint m_{j} of each subinterval $\left[x_{j-1}, x_{j}\right]$. Midpoint Rule:

Example. Using the Midpoint Rule with $n=5$ subdivisions, approximate $\int_{0}^{10} e^{\cos x} d x$.

The Trapezoid Rule uses trapezoids rather than rectangles to estimate definite integrals. First, we must recall the area of a trapezoid.

To approximate the $\int_{a}^{b} f(x) d x$, we again subdivide the interval $[a, b]$ into n subintervals of equal length.
Trapezoid Rule:

Example. Using the Trapezoid Rule with $n=5$ subdivisions, approximate $\int_{0}^{10} e^{\cos x} d x$.

The following example illustrates how the Trapezoid Rule is used to approximate the integral of a continuously varying quantity given a table of observations of that quantity.

Example. Estimate the average temperature over a four-hour time interval using the observed temperatures listed in the following table:

hour	0	1	2	3	4
temperature	65	69	72	73	71

Hourly temperature readings over a four-hour period.

