MA 124

Improper integrals

Improper integrals are integrals with infinite limits of integration such as

$$\int_0^\infty e^{-x} \, dx$$

or integrals over intervals where the function is unbounded such as $\int_{-5}^{5} \frac{1}{x^2} dx$.

The physical significance of these types of integrals is illustrated by the following example.

Example. Consider a rocket taking off from the Earth. Is there such a thing as escape velocity?

Today we focus on improper integrals on infinite intervals.

Definition. Suppose that f is a continuous function on the interval $[a, \infty)$. Then

$$\int_{a}^{\infty} f(t) dt = \lim_{b \to \infty} \int_{a}^{b} f(t) dt.$$

If this limit exists and is finite, we say that the integral converges. If the limit does not exist or equals either $+\infty$ or $-\infty$, we say that the integral diverges.

The following example will play a very important role throughout most of the rest of the semester.

Example. Consider the "family" of improper integrals $\int_1^\infty \frac{1}{x^p} dx$ where p is any real constant.

(Additional blank space at the top of the next page for the continuation of this example.)

Here's an interesting comparison between area and volume.

Example. Consider the region in the xy-plane bounded by the x-axis, the line x = 1, and the graph of y = 1/x.

