More on improper integrals

At the end of last class, we were in the middle of discussing the following very important family of examples.

Example. Consider the family of improper integrals \(\int_1^{\infty} \frac{1}{x^p} \, dx \) where \(p \) is any real constant.
Now we consider improper integrals where the function is unbounded on the interval of integration. However, we start with a calculation that is wrong.

Example. \(\int_{-1}^{1} \frac{1}{x^2} \, dx \)

![Graph of the function \(\frac{1}{x^2} \)](image)

Definition. Suppose that the function \(f \) is continuous on the half-open interval \((a, b]\) with

\[
\lim_{x \to a^+} f(x) = \pm \infty.
\]

Then

\[
\int_{a}^{b} f(x) \, dx = \lim_{a \to a^+} \int_{a}^{b} f(x) \, dx,
\]

provided the limit exists and is finite.

In general, if the function \(f \) is continuous on the interval \([a, b]\) except at some number \(p \) between \(a \) and \(b \) and if the graph of \(f \) has a vertical asymptote at \(p \), then

\[
\int_{a}^{b} f(x) \, dx = \int_{a}^{p} f(x) \, dx + \int_{p}^{b} f(x) \, dx,
\]

provided that both improper integrals on the right-hand side exist.
Example. Find the arc length of the semicircle that is the graph of \(y = \sqrt{1 - x^2} \) for \(-1 \leq x \leq 1\).
Example. $\int_{-1}^{1} \frac{1}{x^2} \, dx$

Example. $\int_{0}^{1} \frac{x}{\sqrt{1 - x^2}} \, dx$