Improper integrals for functions with vertical asymptotes
We consider improper integrals where the function is unbounded on the interval of integration. However, we start with a calculation that is wrong.

Example. $\int_{-1}^{1} \frac{1}{x^{2}} d x$

Definition. Suppose that the function f is continuous on the half-open interval $(a, b]$ with

$$
\lim _{x \rightarrow a^{+}} f(x)= \pm \infty
$$

Then

$$
\int_{a}^{b} f(x) d x=\lim _{\alpha \rightarrow a^{+}} \int_{\alpha}^{b} f(x) d x
$$

provided the limit exists and is finite.
In general, if the function f is continuous on the interval $[a, b]$ except at some number p between a and b and if the graph of f has a vertical asymptote at p, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{p} f(x) d x+\int_{p}^{b} f(x) d x
$$

provided that both improper integrals on the right-hand side exist.

Example. Find the arc length of the quarter circle that is the graph of $y=\sqrt{1-x^{2}}$ for $0 \leq x \leq 1$.

Example. $\int_{-1}^{1} \frac{1}{x^{2}} d x$

Example. $\int_{0}^{1} \frac{x}{\sqrt{1-x^{2}}} d x$

$$
y=\frac{x}{\sqrt{1-x^{2}}}
$$

