Approximating infinite series using the Integral Test
Suppose that the Integral Test applies to the convergent infinite series

$$
\sum_{k=1}^{\infty} a_{k}
$$

where $a_{k}=f(k)$ for some positive, decreasing function f. We can use partial sums and improper integrals to approximate the infinite sum. Recall that the nth partial sum is

$$
S_{n}=a_{1}+a_{2}+\ldots+a_{n} .
$$

Define the infinite series

$$
R_{n}=a_{n+1}+a_{n+2}+a_{n+3}+\ldots
$$

Note that R_{n} converges and

$$
S_{n}+R_{n}=\sum_{k=1}^{\infty} a_{k}
$$

Theorem. The series R_{n} satisfies the inequality

$$
\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x
$$

Consequently,

$$
S_{n}+\int_{n+1}^{\infty} f(x) d x \leq \sum_{k=1}^{\infty} a_{k} \leq S_{n}+\int_{n}^{\infty} f(x) d x
$$

Example. How many terms of the series $\sum_{k=1}^{\infty} \frac{1}{k^{3}}$ must be summed to estimate the value of
the series within an error of 10^{-3} ?

We improve the estimate using L_{n} and U_{n}.

The Comparison Test
Consider the two series

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=1+\frac{1}{4}+\frac{1}{9}+\ldots
$$

and

$$
\sum_{k=1}^{\infty} \frac{k}{k^{3}+1}=\frac{1}{2}+\frac{2}{9}+\frac{3}{28}+\ldots
$$

Here is a graph of their partial sums:

Theorem. (Comparison Test) Given two series

$$
\sum a_{k} \quad \text { and } \quad \sum b_{k}
$$

where the terms a_{k} and b_{k} are positive. Then

1. If $\sum b_{k}$ converges and $a_{k}<b_{k}$ for all k, then $\sum a_{k}$ converges.
2. If $\sum a_{k}$ diverges and $a_{k}<b_{k}$ for all k, then $\sum b_{k}$ diverges.

MA 124
March 22, 2019
Example. $\sum_{k=2}^{\infty} \frac{k^{3}}{k^{4}-1}=\frac{8}{15}+\frac{27}{80}+\frac{64}{255}+\frac{125}{624}+\ldots$

Example. $\sum_{k=2}^{\infty} \frac{\sqrt{k-1}}{k^{2}+2}=\frac{1}{6}+\frac{\sqrt{2}}{11}+\frac{\sqrt{3}}{18}+\frac{2}{27}+\ldots$

