Learning Catalytics exercise: Here's some space in case you need to do a quick calculation.

Alternating series
An alternating series is one in which the terms alternate between positive and negative numbers.
Example. $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6} \pm \ldots$
Here is a plot of its partial sums:

Theorem 1. Consider the alternating series $\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}$ with $a_{k}>0$. It converges if the following two conditions hold:

1. The a_{k} satisfy the condition that $a_{k+1} \leq a_{k}$ for all k.
2. $\lim _{k \rightarrow \infty} a_{k}=0$.

If so, the series converges to a value S between 0 and a_{1}.
Example. $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k}{k^{2}+4}=\frac{1}{5}-\frac{1}{4}+\frac{3}{13}-\frac{1}{5} \pm \ldots$.
Here is a plot of its partial sums:

Estimating the remainder in an alternating series
The nth remainder R_{n} for a series that converges to S is $R_{n}=\left|S-S_{n}\right|$.
Theorem 2. For an alternating series that satisfies the hypothesis of Theorem 1, then

$$
R_{n}<a_{n+1}
$$

Example. How large must n be so that the n-th partial sum S_{n} approximates

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4} \pm \ldots
$$

with a remainder that is less than 0.05 ?

