Better figure to illustrate the computation we made at the end of last class
Last class we compared b^{n} and n ! in the case where $b=100$. We ended up with some impressive numbers such as

$$
\frac{100^{30}}{30!}=\frac{190734863281250000000000000000000000000000000000}{50592967951238834121} \approx 3.77 \times 10^{27}
$$

If we plot the ratio

$$
\frac{100^{n}}{n!}
$$

for $1 \leq n \leq 200$, we get the following figure. Note that the axes do not cross at $(0,0)$. The second coordinate is considerably greater than 0 .

The figure suggests that $100^{n} \ll n$!. Here is how we can verify this fact:
Let

$$
M=\frac{100^{100}}{100!} \approx 1.07 \times 10^{42}
$$

We will see that M is the largest number in this infinite sequence. In other words, M is the maximum value in the graph above.

Suppose that n is any integer that is greater than 100 . We write

$$
\frac{100^{n}}{n!}=\left(\frac{100}{1}\right)\left(\frac{100}{2}\right) \ldots\left(\frac{100}{100}\right)\left(\frac{100}{101}\right)\left(\frac{100}{102}\right) \ldots\left(\frac{100}{n}\right) .
$$

We group the first 100 factors together and get M, that is,

$$
M=\left(\frac{100}{1}\right)\left(\frac{100}{2}\right) \ldots\left(\frac{100}{100}\right) .
$$

MA 124
March 4, 2019 Addendum
Therefore,

$$
\frac{100^{n}}{n!}=M\left(\frac{100}{101}\right)\left(\frac{100}{102}\right) \ldots\left(\frac{100}{n}\right)
$$

The number M is a (large) constant that does not depend on n. Next we observe that

$$
\frac{100^{n}}{n!}=M\left(\frac{100}{101}\right)\left(\frac{100}{102}\right) \ldots\left(\frac{100}{n}\right)<M\left(\frac{100}{101}\right)^{n-100}
$$

Then

$$
\lim _{n \rightarrow \infty} \frac{100^{n}}{n!} \leq M \lim _{n \rightarrow \infty}\left(\frac{100}{101}\right)^{n-100}=(M)(0)=0
$$

because

$$
\left\{\left(\frac{100}{101}\right)^{n-100}\right\}
$$

is a geometric sequence with ratio $r=100 / 101$ and $|r|<1$ in this case.
This argument shows that $100^{n} \ll n$!.
There is nothing special about the base 100 in this argument. How would you modify the argument to handle other bases $b>1$ such as $b=\pi, b=10^{100}$ (a googol), or $b=100$!?

We conclude that $b^{n} \ll n$! for any $b>1$.

