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More on infinite sequences

Last class we discussed ways for computing

lim a
n—oo n

for various sequences a,,. In particular, we discussed geometric sequences and sequences that
arise as restrictions of functions that are defined on intevals such as the interval 1 < z < oo.
Today we continue to discuss ways in which we can calculate limits.

Theorem. (Squeeze Theorem) If a,, b,, and ¢, are three sequences such that
p < by < cp

lim ¢,, then lim,_,, b, = L.

for all n and if lim a, = L =
n—oo n—o0
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Bounded monotonic sequences
Definition. A sequence is monotonically increasing if a,,, > a, for all n.

Example. The sequence a,, defined recursively by a; = 1 and

1
an:an—1+72
n

is monotonically increasing.

an
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There is a similar definition of a monotonically decreasing sequence.
Definition. A sequence is bounded above by a real number B if a,, < B for all n.

Example. We will show that the sequence that we just defined recursively is bounded above
by B = 2.

Theorem. A monotonically increasing sequence a,, that is bounded above by the number B
converges, and the limit satisfies
lim a, < B.

n—0o0

Remark. In the example above, it turns out that the limit is

2

™
— ~ 1.64
6 Y

but we will not verify this fact in this course.
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Growth rates of sequences
Definition. Suppose that a, and b,, are two sequences such that
Jim an = Jim b, = oo

Then b, grows faster than a,, if
.y
nh—{go b, 0.

Notation: Our textbook uses the notation a,, << b, to indicate that b, grows faster than a,,.

Fact: From last semester, we know that Inn << n? << " << n"™ where p is any positive
power and b is any base that is greater than 1.

This semester we add an important new sequence to the list.
Example. The factorial sequence n! can be defined recursively as
00=1 and n!=(n)(n—1)!
Note that 2! =2, 3! =6, 4! =24, 5! =120, ...
A remarkable curiosity. The number of seconds in six weeks is exactly 10!
Consequently, 11! is greater than the number of seconds in a year.
12! is greater than the number of seconds in 12 years.
13! is greater than the number of seconds in a century.

Question: Where does the factorial sequence n! fit among our growth rates of common
sequences?

Let’s compare "™ and n! in the case where b = 100. For example,

10030 ~190734863281250000000000000000000000000000000000 377 5 1027

30! 50592967951238834121
If we plot the ratio
100"
n!

for 1 < n < 300, we get the following figure.



MA 124 March 4, 2019

100"
n!
[ ]
8x10% °
® °
6x10%
[} [ ]
4x10% ° °
° [ ]
0 [ .
A
2x10 . H
J 1 \_ )
0 50 100 150 200 250 300

The figure suggests that 100" << n!. Here is how we can verify this fact:

n!
Now let’s compare n! with n". We plot —.
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We conclude that Inn << nP << b << nl << n".



