MA 124

More on infinite sequences

Last class we discussed ways for computing

 $\lim_{n \to \infty} a_n$

for various sequences a_n . In particular, we discussed geometric sequences and sequences that arise as restrictions of functions that are defined on intevals such as the interval $1 \le x < \infty$. Today we continue to discuss ways in which we can calculate limits.

Theorem. (Squeeze Theorem) If a_n , b_n , and c_n are three sequences such that

$$a_n \le b_n \le c_n$$

for all n and if $\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n$, then $\lim_{n \to \infty} b_n = L$.

Bounded monotonic sequences

Definition. A sequence is monotonically increasing if $a_{n+1} \ge a_n$ for all n.

Example. The sequence a_n defined recursively by $a_1 = 1$ and

$$a_n = a_{n-1} + \frac{1}{n^2}$$

is monotonically increasing.

There is a similar definition of a monotonically decreasing sequence.

Definition. A sequence is bounded above by a real number B if $a_n \leq B$ for all n.

Example. We will show that the sequence that we just defined recursively is bounded above by B = 2.

Theorem. A monotonically increasing sequence a_n that is bounded above by the number B converges, and the limit satisfies

$$\lim_{n \to \infty} a_n \le B.$$

Remark. In the example above, it turns out that the limit is

$$\frac{\pi^2}{6} \approx 1.64$$

but we will not verify this fact in this course.

Growth rates of sequences

Definition. Suppose that a_n and b_n are two sequences such that

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \infty.$$

Then b_n grows faster than a_n if

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0.$$

Notation: Our textbook uses the notation $a_n \ll b_n$ to indicate that b_n grows faster than a_n .

Fact: From last semester, we know that $\ln n \ll n^p \ll b^n \ll n^n$ where p is any positive power and b is any base that is greater than 1.

This semester we add an important new sequence to the list.

Example. The factorial sequence n! can be defined recursively as

$$0! = 1$$
 and $n! = (n)(n-1)!$

Note that 2! = 2, 3! = 6, 4! = 24, 5! = 120, ...

A remarkable curiosity. The number of seconds in six weeks is exactly 10!

Consequently, 11! is greater than the number of seconds in a year.

12! is greater than the number of seconds in 12 years.

13! is greater than the number of seconds in a century.

Question: Where does the factorial sequence n! fit among our growth rates of common sequences?

Let's compare b^n and n! in the case where b = 100. For example,

If we plot the ratio

$$\frac{100^n}{n!}$$

for $1 \le n \le 300$, we get the following figure.

The figure suggests that $100^n \ll n!$. Here is how we can verify this fact:

Now let's compare n! with n^n . We plot $\frac{n!}{n^n}$.

We conclude that $\ln n \ll n^p \ll b^n \ll n! \ll n^n$.