More on infinite sequences
Last class we discussed ways for computing

$$
\lim _{n \rightarrow \infty} a_{n}
$$

for various sequences a_{n}. In particular, we discussed geometric sequences and sequences that arise as restrictions of functions that are defined on intevals such as the interval $1 \leq x<\infty$. Today we continue to discuss ways in which we can calculate limits.

Theorem. (Squeeze Theorem) If a_{n}, b_{n}, and c_{n} are three sequences such that

$$
a_{n} \leq b_{n} \leq c_{n}
$$

for all n and if $\lim _{n \rightarrow \infty} a_{n}=L=\lim _{n \rightarrow \infty} c_{n}$, then $\lim _{n \rightarrow \infty} b_{n}=L$.

Example. $\lim _{n \rightarrow \infty}(-1)^{n} \frac{\cos n}{n}$

Bounded monotonic sequences
Definition. A sequence is monotonically increasing if $a_{n+1} \geq a_{n}$ for all n.
Example. The sequence a_{n} defined recursively by $a_{1}=1$ and

$$
a_{n}=a_{n-1}+\frac{1}{n^{2}}
$$

is monotonically increasing.

There is a similar definition of a monotonically decreasing sequence.
Definition. A sequence is bounded above by a real number B if $a_{n} \leq B$ for all n.
Example. We will show that the sequence that we just defined recursively is bounded above by $B=2$.

Theorem. A monotonically increasing sequence a_{n} that is bounded above by the number B converges, and the limit satisfies

$$
\lim _{n \rightarrow \infty} a_{n} \leq B
$$

Remark. In the example above, it turns out that the limit is

$$
\frac{\pi^{2}}{6} \approx 1.64
$$

but we will not verify this fact in this course.

Growth rates of sequences
Definition. Suppose that a_{n} and b_{n} are two sequences such that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\infty
$$

Then b_{n} grows faster than a_{n} if

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0
$$

Notation: Our textbook uses the notation $a_{n} \ll b_{n}$ to indicate that b_{n} grows faster than a_{n}.
Fact: From last semester, we know that $\ln n \ll n^{p} \ll b^{n} \ll n^{n}$ where p is any positive power and b is any base that is greater than 1 .

This semester we add an important new sequence to the list.
Example. The factorial sequence n ! can be defined recursively as

$$
0!=1 \quad \text { and } \quad n!=(n)(n-1)!
$$

Note that $2!=2,3!=6,4!=24,5!=120, \ldots$
A remarkable curiosity. The number of seconds in six weeks is exactly 10 !
Consequently, 11! is greater than the number of seconds in a year.
12 ! is greater than the number of seconds in 12 years.
13 ! is greater than the number of seconds in a century.
Question: Where does the factorial sequence n ! fit among our growth rates of common sequences?

Let's compare b^{n} and n ! in the case where $b=100$. For example,

$$
\frac{100^{30}}{30!}=\frac{190734863281250000000000000000000000000000000000}{50592967951238834121} \approx 3.77 \times 10^{27}
$$

If we plot the ratio

$$
\frac{100^{n}}{n!}
$$

for $1 \leq n \leq 300$, we get the following figure.

The figure suggests that $100^{n} \ll n$!. Here is how we can verify this fact:

Now let's compare n ! with n^{n}. We plot $\frac{n!}{n^{n}}$.

We conclude that $\ln n \ll n^{p} \ll b^{n} \ll n!\ll n^{n}$.

