A little more on growth rates of sequences
Last class we saw that $100^{n} \ll n$!. You should think about the fact that there is nothing special about 100 . The base 100 can be replaced by any base $b>1$.
Now let's compare $n!$ with n^{n}. First, we plot $\frac{n!}{n^{n}}$.

We conclude that $\ln n \ll n^{p} \ll b^{n} \ll n!\ll n^{n}$.
Infinite series
We begin with an example. Let $x=0.9999 \ldots$

To understand this computation, we need the concept of an infinite series. An infinite series is the sum of an infinite list of numbers. That is, an infinite series is

$$
\sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+a_{3}+a_{4}+\ldots
$$

How do we determine if such a sum makes sense?
We consider the sequence of partial sums. Given an infinite series

$$
\sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+a_{3}+a_{4}+\ldots
$$

we define its sequence of partial sums $\left\{S_{n}\right\}$ by

$$
\begin{aligned}
& S_{1}=a_{1} \\
& S_{2}=a_{1}+a_{2} \\
& S_{3}=a_{1}+a_{2}+a_{3} \\
& S_{4}=a_{1}+a_{2}+a_{3}+a_{4}
\end{aligned}
$$

Notation: Be careful about the difference between the terms a_{k} of an infinite series and its nth partial sums S_{n}.

Example. Consider the infinite series

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots
$$

Remark. Note that the sequence of partial sums for any series can be defined recursively by

$$
S_{n}=S_{n-1}+a_{n} .
$$

Definition. The infinite series $a_{1}+a_{2}+a_{3}+\ldots$ converges if the limit

$$
\lim _{n \rightarrow \infty} S_{n}
$$

exists and is finite. Otherwise, the infinite series diverges.

Example. Here is a picture of the sequence of partial sums for the series

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots
$$

Example. Consider the infinite series

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\ldots
$$

Last class we discussed the fact that its sequence of partial sums is monotonically increasing.

Example. Consider the infinite series $1+1+1+1+\ldots$.

Example. Consider the infinite series $1-1+1-1 \pm \ldots$.

Geometric series
Definition. A geometric series is one in which the ratio of successive terms is constant. In other words, there is a number r such that

$$
\frac{a_{n+1}}{a_{n}}=r
$$

for all n.
Example. The series $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots$ is a geometric series.
Example. The decimal expansion $x=0.999 \ldots$ is also a geometric series.

Example. The series $1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\ldots$ is not geometric.

Geometric series are nice because we can always find a formula for the sequence of partial sums. If we write the series as

$$
a+a r+a r^{2}+\ldots,
$$

then we have

Theorem. Consider the geometric series $a+a r+a r^{2}+\ldots$ where $a \neq 0$.

- If $|r|<1$, then the series converges to $\frac{a}{1-r}$.
- If $|r| \geq 1$, then the series diverges.

Example. We return to the decimal expansion $x=0.999 \ldots$.

Example. What about $x=3.142857 \overline{142857}$?

