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A little more on growth rates of sequences

Last class we saw that 100n << n!. You should think about the fact that there is nothing
special about 100. The base 100 can be replaced by any base b > 1.

Now let’s compare n! with nn. First, we plot
n!

nn
.
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We conclude that lnn << np << bn << n! << nn.

Infinite series

We begin with an example. Let x = 0.9999 . . . .
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To understand this computation, we need the concept of an infinite series. An infinite
series is the sum of an infinite list of numbers. That is, an infinite series is

∞∑
k=1

ak = a1 + a2 + a3 + a4 + . . . .

How do we determine if such a sum makes sense?

We consider the sequence of partial sums. Given an infinite series

∞∑
k=1

ak = a1 + a2 + a3 + a4 + . . . ,

we define its sequence of partial sums {Sn} by

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3

S4 = a1 + a2 + a3 + a4

...

Notation: Be careful about the difference between the terms ak of an infinite series and its
nth partial sums Sn.

Example. Consider the infinite series
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Remark. Note that the sequence of partial sums for any series can be defined recursively
by

Sn = Sn−1 + an .

Definition. The infinite series a1 + a2 + a3 + . . . converges if the limit

lim
n→∞

Sn

exists and is finite. Otherwise, the infinite series diverges.

Example. Here is a picture of the sequence of partial sums for the series
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Example. Consider the infinite series

∞∑
k=1
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Last class we discussed the fact that its sequence of partial sums is monotonically increasing.
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Example. Consider the infinite series 1 + 1 + 1 + 1 + . . . .

Example. Consider the infinite series 1− 1 + 1− 1± . . . .

Geometric series

Definition. A geometric series is one in which the ratio of successive terms is constant. In
other words, there is a number r such that

an+1

an
= r

for all n.

Example. The series
1
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+ . . . is a geometric series.

Example. The decimal expansion x = 0.999 . . . is also a geometric series.

Example. The series 1 +
1

4
+

1

9
+

1

16
+ . . . is not geometric.

4



MA 124 March 6, 2019

Geometric series are nice because we can always find a formula for the sequence of partial
sums. If we write the series as

a + ar + ar2 + . . . ,

then we have

Theorem. Consider the geometric series a + ar + ar2 + . . . where a 6= 0.

• If |r| < 1, then the series converges to
a

1− r
.

• If |r| ≥ 1, then the series diverges.

Example. We return to the decimal expansion x = 0.999 . . . .

Example. What about x = 3.142857142857?
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