Taylor polynomials

Recall that our goal in the second half of this course is making sense of expressions such as

$$
e^{x} \approx 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}
$$

and

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots
$$

The approximation (as opposed to the infinite series) is one instance of Taylor approximation. We approximate a complicated function, e^{x}, by a cubic polynomial.

Linear approximation

Linear approximation uses the tangent line to the graph of a function to approximate the function. That is,

$$
L(x)=f(a)+f^{\prime}(a)(x-a) .
$$

Taylor approximation is a generalization of this idea where we use polynomials of various degrees in addition to linear functions.

Quadratic approximation

When we approximate a function f at $x=a$ using a quadratic polynomial, we are the quadratic whose graph best "fits" the graph of f at $x=a$ (see the figure on the top of the next page).

Example. Approximate the function $f(x)=e^{x}$ near $a=0$ using a quadratic polynomial.

MA 124
April 3, 2019
Sometimes approximating about $a=0$ does not make sense.
Example. Let $f(x)=\ln x$. Let's approximate f by linear and quadratic functions about $a=1$.

General Taylor polynomials
Now consider the same type of approximation question with polynomials of higher degree and approximations near the number $x=a$. For example, let's approximate a three-times differentiable function f about $x=a$ with a polynomial of the form

$$
p_{3}(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3} .
$$

Definition. Let f be a function that is n-times differentiable at $x=a$. Then the nth order Taylor polynomial of f centered at a is

$$
p_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

Example. Calculate Taylor polynomials for $f(x)=\sin x$ centered at $a=0$.

