MA 124

Taylor polynomials

Recall that our goal in the second half of this course is making sense of expressions such as

$$e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$$

and

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$

The approximation (as opposed to the infinite series) is one instance of Taylor approximation. We approximate a complicated function, e^x , by a cubic polynomial.

Linear approximation

Linear approximation uses the tangent line to the graph of a function to approximate the function. That is,

$$L(x) = f(a) + f'(a)(x - a).$$

Taylor approximation is a generalization of this idea where we use polynomials of various degrees in addition to linear functions.

Quadratic approximation

When we approximate a function f at x = a using a quadratic polynomial, we are the quadratic whose graph best "fits" the graph of f at x = a (see the figure on the top of the next page).

Example. Approximate the function $f(x) = e^x$ near a = 0 using a quadratic polynomial.

Sometimes approximating about a = 0 does not make sense.

Example. Let $f(x) = \ln x$. Let's approximate f by linear and quadratic functions about a = 1.

$\mathrm{MA}~124$

General Taylor polynomials

Now consider the same type of approximation question with polynomials of higher degree and approximations near the number x = a. For example, let's approximate a three-times differentiable function f about x = a with a polynomial of the form

$$p_3(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3.$$

Definition. Let f be a function that is *n*-times differentiable at x = a. Then the *n*th order Taylor polynomial of f centered at a is

$$p_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

Example. Calculate Taylor polynomials for $f(x) = \sin x$ centered at a = 0.

