Learning Catalytics exercise: Here's some space in case you need to do a quick calculation or want to take some notes when we finish the exercise.

More on Taylor polynomials
Exercise. Let a be a given real number and define

$$
p_{5}(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+c_{4}(x-a)^{4}+c_{5}(x-a)^{5}
$$

where the $c_{k}, k=0,1,2,3,4,5$, stand for constants or coefficients (whichever word makes the most sense for you).

1. Express $p_{5}(a)$ in terms of the c_{k}.
2. Calculate $p_{5}^{\prime}(x)$ and express $p_{5}^{\prime}(a)$ in terms of the c_{k}.
3. Calculate $p_{5}^{\prime \prime}(x)$ and express $p_{5}^{\prime \prime}(a)$ in terms of the c_{k}.
4. Calculate $p_{5}^{\prime \prime \prime}(x)$ and express $p_{5}^{\prime \prime \prime}(a)$ in terms of the c_{k}.
5. Calculate $p_{5}^{(4)}(x)$ and express $p_{5}^{(4)}(a)$ in terms of the c_{k}.
6. Calculate $p_{5}^{(5)}(x)$ and express $p_{5}^{(5)}(a)$ in terms of the c_{k}.
7. Calculate $p_{5}^{(6)}(x)$.
8. How would this exercise change if you made the same computations with one more term added to the polynomial? In other words, suppose that you start with $p_{6}(x)$ rather than $p_{5}(x)$, where $p_{6}(x)=p_{5}(x)+c_{6}(x-a)^{6}$.

Definition. Let f be a function that is n-times differentiable at $x=a$. Then the nth order Taylor polynomial of f centered at a is

$$
p_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

Remark. Using the logic involved in the exercise, note that

$$
p_{n}^{(k)}(a)=f^{(k)}(a) \text { for } k=0,1,2, \ldots, n .
$$

MA $124 \quad$ April 5, 2019

Example. Calculate Taylor polynomials for $f(x)=\sin x$ centered at $a=0$.

Now we want to estimate how well a Taylor polynomial approximates its function.
Consider the function $f(x)=\sin x$ and the Taylor polynomials

$$
p_{1}(x)=x \quad \text { and } \quad p_{3}(x)=x-\frac{x^{3}}{6}
$$

x	$x-\frac{x^{3}}{6}$	$\sin x$
0.00	0.00000000	0.00000000
0.01	0.00999983	0.00999983
0.02	0.01999870	0.01999870
0.03	0.02999550	0.02999550
0.04	0.03998930	0.03998930
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
0.25	0.24739600	0.24740400
0.26	0.25707100	0.25708100
0.27	0.26672000	0.26673100
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
0.50	0.47916700	0.47942600
0.51	0.48789200	0.48817700
0.52	0.49656500	0.49688000
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
1.00	0.83333300	0.84147100
1.01	0.83828300	0.84683200
1.02	0.84313200	0.85210800
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
1.50	0.93750000	0.99749866
1.51	0.93617483	0.99815247
1.52	0.93469867	0.99871044
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	$\cdot .66666667$	0.90929743
2.00		
	\cdot	\cdot
		\cdot

It is easier to see the error in the approximation by graphing the remainder function.
Definition. Let p_{n} be the Taylor polynomial of order n for f. The remainder in using p_{n} to approximate f at the number x is

$$
R_{n}(x)=f(x)-p_{n}(x)
$$

For the sine function, the remainders R_{1} and R_{3} are graphed below:

In general, we can estimate the remainder using Taylor's Theorem.
Theorem. (Taylor's Theorem) Let f have continuous derivatives up to $f^{(n+1)}$ on an open interval I containing a. For all x in I, the remainder is

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

for some point c between x and a. Suppose there exists an upper bound M such that $\left|f^{(n+1)}(c)\right| \leq M$ for all c between a and x. Then

$$
\left|R_{n}(x)\right| \leq M \frac{|x-a|^{n+1}}{(n+1)!}
$$

