Taylor Approximation
We want to estimate how well a Taylor polynomial approximates its function.
Definition. Let p_{n} be the Taylor polynomial of order n for f. The remainder in using p_{n} to approximate f at the number x is

$$
R_{n}(x)=f(x)-p_{n}(x) .
$$

Example. Consider the function $f(x)=\sin x$ and the Taylor polynomials

$$
p_{1}(x)=x \quad \text { and } \quad p_{3}(x)=x-\frac{x^{3}}{6}
$$

In general, we can estimate the remainder using Taylor's Theorem.
Theorem. (Taylor's Theorem) Let f have continuous derivatives up to $f^{(n+1)}$ on an open interval I containing a. For all x in I, the remainder is

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

for some point c between x and a. Suppose there exists an upper bound M such that $\left|f^{(n+1)}(c)\right| \leq M$ for all c between a and x. Then

$$
\left|R_{n}(x)\right| \leq M \frac{|x-a|^{n+1}}{(n+1)!}
$$

Example.

1. Approximate $\ln 1.1$ using the second-order Taylor polynomial of $\ln (x)$ centered at $a=1$.
2. Use Taylor's Theorem to estimate the accuracy of that approximation.

(Additional blank space on the top of the next page.)

Example. How large must n be so that Taylor's Theorem guarantees that

$$
\left|p_{n}(38)-\sqrt{38}\right|<5 \times 10^{-5},
$$

where $p_{n}(x)$ is the Taylor polynomial of order n centered at $a=36$ for \sqrt{x} ?
(Additional blank space on the top of the next page.)

