Taylor Approximation

We want to estimate how well a Taylor polynomial approximates its function.

Definition. Let p_n be the Taylor polynomial of order n for f. The remainder in using p_n to approximate f at the number x is

$$R_n(x) = f(x) - p_n(x).$$

Example. Consider the function $f(x) = \sin x$ and the Taylor polynomials

In general, we can estimate the remainder using Taylor's Theorem.

Theorem. (Taylor's Theorem) Let f have continuous derivatives up to $f^{(n+1)}$ on an open interval I containing a. For all x in I, the remainder is

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1},$$

for some point c between x and a. Suppose there exists an upper bound M such that $|f^{(n+1)}(c)| \leq M$ for all c between a and x. Then

$$|R_n(x)| \le M \frac{|x-a|^{n+1}}{(n+1)!}$$

Example.

1. Approximate $\ln 1.1$ using the second-order Taylor polynomial of $\ln(x)$ centered at a = 1.

2. Use Taylor's Theorem to estimate the accuracy of that approximation.

(Additional blank space on the top of the next page.)

Example. How large must n be so that Taylor's Theorem guarantees that

$$|p_n(38) - \sqrt{38}| < 5 \times 10^{-5},$$

where $p_n(x)$ is the Taylor polynomial of order *n* centered at a = 36 for \sqrt{x} ?

(Additional blank space on the top of the next page.)

_