MA 124
April 12, 2019
Power Series
Now that we understand what it means to say $e^{x} \approx 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}$, we study what it means to write

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots
$$

Example. Consider all geometric series whose first term is 1 .

Definition. A power series centered at $a=0$ is an infinite series of the form

$$
\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

Note that its k th term is the product of a constant a_{k} and the expression x^{k}.
Example. The infinite series

$$
\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+x^{3}+\ldots
$$

is the power series representation of the function $f(x)=\frac{1}{1-x}$ for $|x|<1$.

MA 124
April 12, 2019
First question: For what values of x does a power series represent a function?
Example. Consider the infinite series

$$
\sum_{k=0}^{\infty} \frac{x^{k}}{2 k+1}=1+\frac{x}{3}+\frac{x^{2}}{5}+\frac{x^{3}}{7}+\ldots
$$

Theorem. Given a power series

$$
\sum_{k=0}^{\infty} a_{k} x^{k}
$$

there exists a number r with $0 \leq r \leq \infty$ such that

1. the power series converges absolutely if $|x|<r$ and
2. the power series diverges if $|x|>r$.

Definition. The number r is called the radius of convergence of the power series.
Note: The power series may or may not converge for $x=r$ or $x=-r$.
Example. Back to $\sum_{k=0}^{\infty} \frac{x^{k}}{2 k+1}=1+\frac{x}{3}+\frac{x^{2}}{5}+\frac{x^{3}}{7}+\ldots$.

Example. Consider the power series

$$
\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

Determine its radius and interval of convergence.

Power series can be centered at numbers a that are not zero. Such power series are written

$$
\sum_{k=0}^{\infty} a_{k}(x-a)^{k}=a_{0}+a_{1}(x-a)+a_{2}(x-a)^{2}+a_{3}(x-a)^{3}+\ldots .
$$

Example. Find the radius and interval of convergence for the power series

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k 2^{k}}(x-2)^{k}
$$

