Alternating series

An alternating series is one in which the terms alternate between positive and negative numbers.

Example. \[1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} \pm \cdots\]

Here is a plot of its partial sums:
Theorem 1. Consider the alternating series

\[\sum_{k=1}^{\infty} (-1)^{k+1}a_k \]

with \(a_k > 0 \). It converges if the following two conditions hold:

1. The \(a_k \) satisfy the condition that \(a_{k+1} \leq a_k \) for all \(k \).

2. \(\lim_{k \to \infty} a_k = 0 \).

If so, the series converges to a value \(S \) between 0 and \(a_1 \).

Example. \[\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k}{k^2 + 4} = \frac{1}{5} - \frac{1}{4} + \frac{3}{13} - \frac{1}{5} \pm \ldots \]

Here is a plot of its partial sums:

(Additional blank space on top of next page.)
Estimating the remainder in an alternating series
The nth remainder R_n for a series that converges to S is

$$R_n = |S - S_n|.$$

Theorem 2. For an alternating series that satisfies the hypothesis of Theorem 1, then

$$R_n < a_{n+1}.$$
Example. How large must \(n \) be so that \(S_n \) approximates

\[
S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \pm \ldots
\]

to at least one decimal place?

Example. Approximate the sum of the alternating series

\[
\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{(2k)!}
\]

to three decimal places.
Example. How many terms of the series

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{k!}$$

do we need to sum to be sure that the remainder is less than 10^{-4}? (We shall see that this infinite sum converges to $1/e$.)