More on Taylor approximation

Last class we discussed Taylor’s Theorem for estimating the remainder when a Taylor polynomial is used to approximate a function.

Theorem. (Taylor’s Theorem) Let \(f \) have continuous derivatives up to \(f^{(n+1)} \) on an open interval \(I \) containing \(a \). For all \(x \) in \(I \), the remainder is

\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1},
\]

for some point \(c \) between \(x \) and \(a \). Suppose there exists an upper bound \(M \) such that \(|f^{(n+1)}(c)| \leq M \) for all \(c \) between \(a \) and \(x \). Then

\[
|R_n(x)| \leq M\frac{|x-a|^{n+1}}{(n+1)!}.
\]

Example.

1. Calculate the \(n \)th degree Taylor polynomial \(p_n \) of \(e^x \) centered at \(a = 0 \).

2. Use Taylor’s Theorem to determine a value of \(n \) such that \(p_n \) provides an approximation of \(e \) to three decimal places. (An approximation to “three decimal places” is one that has an error that is less than 0.0005.)

(More blank space on top of next page.)
Power Series

Now that we understand what it means to say
\[e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}, \]
we study what it means to write
\[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \ldots. \]

Example. Consider all geometric series whose first term is 1.
Definition. A power series centered at \(a = 0 \) is an infinite series of the form

\[
\sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots.
\]

Note that its \(k \)th term is the product of a constant \(a_k \) and the expression \(x^k \).

Example. The infinite series

\[
\sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + \ldots
\]

is the power series representation of the function \(f(x) = \frac{1}{1-x} \) for \(|x| < 1 \).

First question: For what values of \(x \) does a power series represent a function?

Example. Consider the infinite series

\[
\sum_{k=0}^{\infty} \frac{x^k}{2k+1} = 1 + \frac{x}{3} + \frac{x^2}{5} + \frac{x^3}{7} + \ldots.
\]

(Additional blank space on next page.)
Theorem. Given a power series

$$
\sum_{k=0}^{\infty} a_k x^k,
$$

there exists a number r with $0 \leq r \leq \infty$ such that

1. the power series is absolutely convergent if $|x| < r$ and
2. the power series diverges if $|x| > r$.

Definition. The number r is called the radius of convergence of the power series.

Note: The power series may or may not converge for $x = r$ or $x = -r$.
Example. Calculate the interval of convergence of the power series

\[\sum_{k=0}^{\infty} \frac{k}{3^k} x^k. \]