Parametric Surfaces and 3D Coordinate Systems

A parameterized surface in space is a set of points in space described by a (position) vector-valued function of the form

$$\mathbf{r}(u,v) = x(u,v)\,\mathbf{i} + y(u,v)\,\mathbf{j} + z(u,v)\,\mathbf{k},$$

where the functions x(u, v), y(u, v), and z(u, v) are defined on some region in the uv-plane.

Example. The elliptic cylinder

$$x^2 + \frac{y^2}{4} = 1$$

is parameterized by the function

$$\mathbf{r}(\theta, z) = (\cos \theta) \,\mathbf{i} + (2\sin \theta) \,\mathbf{j} + z \,\mathbf{k}.$$

MA 225	October 3, 2005

In addition to rectangular coordinates in space, there are two other coordinate systems that are used frequently.

Cylindrical Coordinates

Cylindrical coordinates consist of polar coordinates in the xy-plane along with the usual rectangular coordinate z. Unlike polar coordinates, we often restrict our attention to the situation where $r \ge 0$.

Example. Use cylindrical coordinates to parameterize the hyperboloid of one sheet

 $x^2 + y^2 - z^2 = 1.$

 $\rm MA~225$

Spherical coordinates

Another 3D coordinate system that is often convenient to use is the spherical coordinate system.

Example. Parameterize the unit sphere using spherical coordinates.