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A little more practice computing partial derivatives

Example. Consider g(x, y) = y ln(xy) + y.

The partial derivative with respect to y is defined in a similar fashion.

Definition. The partial derivative of f(x, y) in the y-direction at the point (a, b) is defined
by

∂f

∂y
(a, b) = lim

h→0

f(a, b+ h)− f(a, b)

h
.

We keep x constant and vary y as we take the limit.

Example. Consider g(x, y) = y ln(xy) + y again and calculate ∂g/∂y this time.
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Geometric interpretation of partial derivatives

When we calculate a partial derivative of a function of many variables, we fix all but one
variable, and we differentiate the function that is obtained by varying the remaining variable.

Example. Consider the function f(x, y) = 9−x2−y2 at the point (1, 2). In what direction,
the x-direction or the y-direction, does f(x, y) decrease most rapidly?

Now let’s discuss the geometric significance of the two numbers that we obtain from the
partials of f(x, y) at (1, 2). For example, we can use these numbers to calculate the equation
of the tangent plane to the graph of z = f(x, y) at the point (1, 2, 4).
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Definition. Suppose that the partial derivatives

∂f

∂x
(a, b) and

∂f

∂y
(a, b)

exist at the point (a, b). Then let

Tx = i +

(
∂f

∂x
(a, b)

)
k and Ty = j +

(
∂f

∂y
(a, b)

)
k.

The normal vector for f(x, y) at the point (a, b) is N = Ty ×Tx.

The equation for the tangent plane can be written as

z − c =

(
∂f

∂x
(a, b)

)
(x− a) +

(
∂f

∂y
(a, b)

)
(y − b),

where c = f(a, b).
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Linear approximation

The equation for the tangent plane can also be thought of as a linear approximation to
f(x, y) for (x, y) near (a, b).

Let ∆x = x− a, ∆y = y− b, and ∆z = f(x, y)− f(a, b). Then the equation for the tangent
plane yields the linear approximation

∆z = f(a+ ∆x, b+ ∆y)− f(a, b)

≈
(
∂f

∂x
(a, b)

)
∆x+

(
∂f

∂y
(a, b)

)
∆y.

Example. The linear approximation of the function f(x, y) = 9 − x2 − y2 centered at the
point (1, 2) is

f(x, y)− 4 ≈ −2(x− 1)− 4(y − 2).

Another way to write this approximation is as

f(1 + ∆x, 2 + ∆y) ≈ 4− 2 ∆x− 4 ∆y.
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Second partials

Just as there is a second derivative for a function of one variable, there are four second
partial derivatives for a function of two variables.

Example. Consider g(x, y) = y ln(xy)+y as discussed last class. We have already calculated
that

∂g

∂x
=
y

x
and

∂g

∂y
= 2 + ln(xy).

Consequently,
∂2g

∂x2
= − y

x2
and

∂2g

∂y2
=

1

y
.

What about the other two partials

∂

∂y

(
∂g

∂x

)
and

∂

∂x

(
∂g

∂y

)
?
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Clairaut’s Theorem. If f(x, y) and its partial derivatives

∂f

∂x
,

∂f

∂y
,

∂2f

∂x∂y
,

∂2f

∂y∂x

are continuous, then the order of partial differentiation is irrelevant. In other words,

∂2f

∂x∂y
=

∂2f

∂y∂x
.

There is a link on the course web page to a discussion of an example for which the conclusion
of Clairaut’s Theorem does not hold. We will do our best to avoid such functions in this
course.
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