More on the cross product

Last class we started our discussion of the cross product of two vectors, and we focused on its geometric properties. Today we will derive a formula for the cross product and do some applications.

Example. Last class we computed $(4\mathbf{i} + \mathbf{j}) \times (7\mathbf{i} + 2\mathbf{k})$ as follows:

$$(4\mathbf{i} + \mathbf{j}) \times (7\mathbf{i} + 2\mathbf{k}) = (4\mathbf{i}) \times (7\mathbf{i} + 2\mathbf{k}) + (\mathbf{j}) \times (7\mathbf{i} + 2\mathbf{k})$$
$$= 8(\mathbf{i} \times \mathbf{k}) + 7(\mathbf{j} \times \mathbf{i}) + 2(\mathbf{j} \times \mathbf{k})$$
$$= -8\mathbf{j} - 7\mathbf{k} + 2\mathbf{i}$$
$$= 2\mathbf{i} - 8\mathbf{j} - 7\mathbf{k}.$$

To get a general formula, we can repeat the same type of calculation on

 $(a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}) \times (b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}).$

The result is

$$(a_2b_3 - a_3b_2)\mathbf{i} + (a_3b_1 - a_1b_3)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

There is a handy way of remembering this formula that uses the determinant of a 3×3 matrix.

We can calculate the determinant

$$\begin{array}{cccc} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{array}$$

I

in one of two ways.

1. Expansion by minors: The determinant

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$

and the determinant

$$\begin{vmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{vmatrix} = \alpha_1 \begin{vmatrix} \beta_2 & \beta_3 \\ \gamma_2 & \gamma_3 \end{vmatrix} - \alpha_2 \begin{vmatrix} \beta_1 & \beta_3 \\ \gamma_1 & \gamma_3 \end{vmatrix} + \alpha_3 \begin{vmatrix} \beta_1 & \beta_2 \\ \gamma_1 & \gamma_2 \end{vmatrix}.$$

This method is the one that your textbook describes.

2. Sum of six terms, each a product of three numbers: We can also compute this determinant by writing it as

Then we get

$$\begin{vmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{vmatrix} = (\alpha_1 \beta_2 \gamma_3) + (\alpha_2 \beta_3 \gamma_1) + (\alpha_3 \beta_1 \gamma_2) \\ -(\alpha_3 \beta_2 \gamma_1) - (\alpha_1 \beta_3 \gamma_2) - (\alpha_2 \beta_1 \gamma_3) \end{vmatrix}$$

Using this formula, we can write

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.$$

Example. We use the determinant formula to calculate $(4\mathbf{i} + \mathbf{j}) \times (7\mathbf{i} + 2\mathbf{k})$.

 $\mathrm{MA}\ 225$

Applications to Lines and Planes

We have discussed finding the equation of a plane if we are given a point P on the plane and a normal vector **N**. Now that we can compute the cross product of two vectors, we are able to find the equation of a plane determined in more familiar ways, e.g., determined by three noncollinear points or by two intersecting lines. We use the cross product to determine **N**.

Example. Find an equation for the plane that contains the three points $P_1 = (1, 1, 1)$, $P_2 = (2, -2, 2)$, and $P_3 = (0, 2, 1)$.

Example. Find the equation of the plane that contains the two lines

$$x = y = z$$
 and $\frac{x-1}{2} = \frac{y-1}{3} = z - 1.$

Why do these lines intersect? Where do they intersect? What are their direction vectors \mathbf{D}_1 and \mathbf{D}_2 ?

 $\mathrm{MA}\ 225$

Example. Let ℓ_1 be line through (1,0,0) and (1,2,2). Let ℓ_2 be the line through (1,1,1) and $(1 + \sqrt{2}, 2, 2)$. Do these lines intersect? What is the angle of intersection?