More on the multivariable chain rules

Chain Rule—Type I (continued)

Yesterday we learned that the multivariable chain rule for $f(P(t))$ is:

Chain Rule. The derivative of the composition $f(P(t))$ is given by

$$\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}.$$

This version of the Chain Rule has an important formulation in terms of the gradient of f.

Definition. Given a function $f(x, y)$ that is differentiable at the point (a, b). Then the *gradient vector of f at (a, b)* is the vector

$$\nabla f(a, b) = \frac{\partial f}{\partial x}(a, b) \mathbf{i} + \frac{\partial f}{\partial y}(a, b) \mathbf{j}.$$

Sometimes the gradient vector of f is denoted $\text{grad} f(a, b)$.

Restatement of the Chain Rule. The derivative of the composition $f(P(t))$ is

$$\left.\frac{df}{dt}\right|_{t=t_0} = \nabla f(P(t_0)) \cdot P'(t_0).$$

Example. Once again we return to $P(t) = t \mathbf{i} + t^2 \mathbf{j}$ and $f(x, y) = 2x^2 + y^2$.
Animation of this chain rule

Example. Use the polar curve $r = \cos 2\theta$ to parametrize a curve $P(t)$ in the xy-plane and consider the composition $f(P(t))$ where

$$f(x, y) = y^2 - x^2.$$
This chain rule has some important theoretical implications as well.

Theorem.

1. Let \(f(x,y) \) be a differentiable function such that \(\nabla f(x,y) = 0 \) for all \((x,y)\). Then \(f(x,y) \) is a constant function.

2. If \(g(x,y) \) and \(h(x,y) \) are two differentiable functions such that

 \[
 \nabla g(x,y) = \nabla h(x,y)
 \]

 for all \((x,y)\). Then \(g(x,y) = h(x,y) + K \) for some constant \(K \).
Chain Rule—Type II

For this situation, consider a function \(f(x, y) \) of two variables and suppose that the variables \(x \) and \(y \) are functions of other variables.

For example, consider \(x \) and \(y \) as a function of the polar coordinates \(r \) and \(\theta \). That is,

\[
x = r \cos \theta \quad \text{and} \quad y = r \sin \theta.
\]

Example. Let \(f(x, y) = xy + y^2 \). What is the angular rate of change of \(f(x, y) \) at the point \((x, y) = (1, 2)\)?